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ABSTRACT

This paper investigates sampling strategies within latent
spaces for music generation, focusing on (chordified) J.S.
Bach Chorales and utilizing MusicVAE as the generative
model. We conduct an experiment comparing three sam-
pling and interpolation strategies within the latent space
to generate chord progressions – from a discrete vocab-
ulary of Bach’s chords – to Bach’s original chord se-
quences. Given a three-chord sequence from an original
Bach chorale, we assess sampling strategies for replac-
ing the middle chord. In detail, we adopt the follow-
ing sampling strategies: (1) traditional linear interpolation,
(2) 𝑘-nearest neighbors, and (3) 𝑘-nearest neighbors com-
bined with angular alignment. The study evaluates their
alignment with music theory principles of functional har-
mony embedding and voice-leading to mirror Bach’s orig-
inal chord sequences. Preliminary findings suggest that 𝑘-
nearest neighbors and 𝑘-nearest neighbors combined with
angular alignment closely align with the tonal function of
the original chord, with 𝑘-nearest neighbors excelling in
bass line interpolation and the combined strategy poten-
tially enhancing voice-leading in upper voices. Linear in-
terpolation maintains aspects of voice-leading but confines
selections within defined tonal spaces, reflecting the non-
linear characteristics of the original sequences. Our study
contributes to the dynamics of latent space sampling for
music generation, offering potential avenues for enhancing
explainable creative strategies.

1. INTRODUCTION

The rise of generative models in music composition has
sparked a notable interest in delving into the latent spaces
of musical data for creative pursuits [1–3]. As AI-driven
technologies advance, there is a growing curiosity about
the intricate mechanisms underlying these models and their
potential to unlock new realms of musical expression.
Latent spaces, in particular, present an enticing prospect
for composers and researchers, offering a rich landscape
where musical ideas can be explored, manipulated, and
synthesized in innovative ways [4–6]. This fascination has
led to investigations into the dynamics of latent space nav-
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igation, aiming to unveil the hidden structures governing
musical composition and interpretation [5, 7–9].

The pursuit of uncovering meaningful music semantics
within latent spaces for controllable sampling based on dis-
tinct music characteristics is a vibrant area of investigation
within the realms of music informatics and artificial intel-
ligence [9–12]. This research endeavor is driven by the
overarching goal of equipping users, musicians, and com-
posers with sophisticated tools, enabling them to engage
in interactive exploration and creation of music tailored to
their preferences and specifications. The potential appli-
cations of such advancements span a broad spectrum, en-
compassing domains like music composition, production,
interactive entertainment, and personalized music recom-
mendation systems [9].

Exploring a latent space involves navigating its multi-
dimensional structure to capture the essence of music se-
mantics. This capability empowers users to transition be-
tween different representations, each embodying a unique
combination of musical traits, facilitating the exploration
of a multitude of musical variations and possibilities. Ad-
ditionally, interpolation, a traditional method of exploring
latent spaces, involves seamlessly transitioning between
established music representations within the latent space,
thereby facilitating smooth transitions and novel combina-
tions [13, 14].

In this context, our study delves into the realm of mu-
sic generation, seeking to elucidate the role of sampling
strategies within latent spaces, with a particular focus on
J.S. Bach Chorales as a benchmark test set. Our primary
objective is to evaluate the efficacy of different sampling
and interpolation strategies within the latent space, using
MusicVAE [15] as our generative model.

The fundamental aim of our evaluation is to ascertain
the extent to which these strategies can accurately gener-
ate chord progressions that adhere to Bach’s original se-
quences. To achieve this, we conduct an experiment com-
paring three distinct sampling strategies. These strategies
involve departing from a chorale’s chord progression and
exploring chord substitutions based on the previous and se-
quential chord contexts. For instance, given a chord se-
quence [A, B, C], our goal is to generate new sequences
such as [A, B’, C], [A, B”, C], and so forth.

The three sampling strategies under scrutiny include the
traditional linear interpolation between adjacent chords,
𝑘-nearest neighbors, and a novel approach combining 𝑘-
nearest neighbors with angular alignment to 𝐴𝐵. By
adopting these strategies, we aim to assess their efficacy
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in preserving the essence of Bach’s style while introducing
variations that retain semantic coherence within the latent
space.

Through our investigation, we aim to provide insights
into manipulating latent spaces for music generation, en-
hancing creative autonomy and stylistic fidelity in algorith-
mic composition by examining different sampling strate-
gies. Our methodology integrates music theory to assess
the similarity between generated sequences and original
Bach chorales, allowing us to evaluate stylistic fidelity and
delve into latent space semantics. Ultimately, our study
seeks to contribute to the ongoing discourse surrounding
the intersection of AI and music, paving the way for more
sophisticated and nuanced approaches to automated com-
position.

Our paper is structured as follows. In Section 2, we sum-
marize the sampling strategies employed, namely: (1) tra-
ditional linear interpolation between adjacent chords, (2)
𝑘-nearest neighbors, and (3) 𝑘-nearest neighbors combined
with angular alignment to 𝐴𝐵. Section 3 outlines the
methodology employed to assess the effectiveness of the
sampling strategies in generating chord progressions ad-
hering to a specific musical style. This section provides
comprehensive details regarding the experimental setup,
including the dataset and the model utilized for the eval-
uation. Subsequently, Section 4 presents and discusses the
obtained results. Finally, Section 5 summarizes the conclu-
sions drawn from our study and suggests potential avenues
for future research.

2. SAMPLING STRATEGIES

In this section, we examine sampling techniques enabling
us to traverse a discrete set of chords depicted in the latent
space and produce novel sequences from a specified chord
progression [A, B, C], yielding variations like [A, B’, C],
[A, B”, C], and so on. The pursued strategies include:
(1) conventional linear interpolation between consecutive
chords, (2) 𝑘-nearest neighbors, and (3) a novel approach
integrating 𝑘-nearest neighbors with angular alignment to
𝐴𝐵.

The subsequent sections delve into each of these strate-
gies in intricate detail, elucidating their principles, method-
ologies, and implications in the context of our exploration
of latent space for music generation.

2.1 Linear Interpolation

Conventional generative music methodologies using VAE
latent spaces [13, 14, 16] often entail sampling via linearly
interpolated coordinates between two designated musical
elements. Musical elements, such as chords, measures, or
phrases, can adopt different time scales. Typically, a pre-
determined number of points are sampled at equal intervals
between the starting and ending points, such that:

𝑝 = (1− 𝑡) · 𝑝0 + 𝑡 · 𝑝1 , (1)

where 𝑝 is the interpolated point, 𝑝0 and 𝑝1 are the two
points between which interpolation is being performed,

and t is the interpolation parameter ranging from 0 to 1,
determining the weight of 𝑝1.

This methodology aims to facilitate smooth transitions
between predefined musical sequences, predicted on the
assumption of a continuous musical spectrum [17]. We
sample the dataset to pinpoint the chord nearest to the
equally spaced interpolated coordinate to align with our
dictionary-constrained chord space.

Figure 1. Sampling a chord B’ from the latent space (rep-
resented in a two-dimensional space) using traditional Lin-
ear Interpolation from a sequence of selected chords [A, B,
C]. Blue circles represent discrete chords projected in the
latent space. The midpoint, found via linear interpolation
between A and C, is shown as a dark-green hexagon.

Figure 1 depicts the interpolated sampling technique.
Starting from points A and C within the latent space, we
interpolate a single point by interpolating linearly between
A and C, with a t halfway between 0 and 1. The blue circles
in the illustration denote discrete chords projected in the la-
tent space. The midpoint, determined through linear inter-
polation between A and C, is represented by a dark-green
hexagon. In this case, the nearest discrete point is, coin-
cidentally, the original chord B. Thus, the sampled chord,
labeled B’ in Fig. 1, corresponds to the second nearest dis-
crete chord point.

2.2 𝑘-Nearest Neighbors

The 𝑘-nearest neighbors (𝑘-NN) algorithm is a versatile
approach commonly employed in classification and regres-
sion tasks within supervised learning contexts [18]. This
algorithm functions by determining the value of a data
point based on the average value of its 𝑘 nearest neighbors
in the feature space. This intuitive principle allows 𝑘-NN
to adapt effectively to diverse datasets [19].

In this approach, we rely on the perceived significance
of the latent space to identify chords that are similar to
a given target chord based on their proximity in the em-
bedding space. To sample a chord from the corpus chords



represented in the latent space, we utilize 𝑘-NN to choose
the 𝑘 nearest neighbors of a chord within a predefined em-
bedding space. This process, illustrated in Figure 2, in-
volves computing distances (e.g., Cosine or Euclidean) be-
tween the target chord and all other chords in the embed-
ding space and selecting the 𝑘 nearest neighbors. These
nearest neighbors serve as candidates for sampling, pro-
viding a diverse set of potential chords that are expected to
be related to the target chord.

Figure 2. Sampling a chord B” from the latent space (rep-
resented in a two-dimensional space) using 𝑘-NN. Blue
circles represent discrete chords projected in the latent
space. The 𝑘 nearest neighbors (in this case, 𝑘 = 3) are
identified within the dotted red line.

In this case, as displayed in Figure 2, we only take B
into consideration to find its substitute chord. We search
within the nearest neighbors of B (circles within the dotted
red line in the Figure; in this case, we use 𝑘 = 3). The
closest candidate, according to a measure of distance (e.g.,
Euclidean or cosine), is notated as B”.

2.3 𝑘-Nearest Neighbors and Angular Displacement

We depart from our previous strategy by suggesting a fu-
sion of 𝑘-NN with angular alignment, meticulously crafted
for the chord pair vector 𝐴𝐵. Angular displacement, used
frequently to improve the handling of high-dimensional
data whose direction is important [20], involves aligning
vectors in a multi-dimensional space according to their an-
gles. Through employing angular alignment to the original
chord sequence, our aim is to preserve the overarching di-
rection of the initial sequence.

The initial phase of this sampling strategy mirrors the
previous approach: we examine the nearest neighbors of
B and curate a subset of the 𝑘 closest ones using a des-
ignated distance metric such as Cosine or Euclidean dis-
tance. In this instance, 𝑘 must encompass a broader se-
lection of chords since we exclusively apply angular align-
ment to this subset. To compute the angular displacement

relative to the vector 𝐴𝐵, we first determine the vector it-
self. Next, we compute the vector from A to each potential
chord point within the set of the 𝑘 closest ones. Subse-
quently, we assess the angular disparity between each of
these vectors and the original one. The chord displaying
the least angular deviation is identified as the optimal re-
placement.

Figure 3. Sampling a chord B”’ from the latent space (rep-
resented in a two-dimensional space) using 𝑘-NN with An-
gular Alignment to the vector formed from the latent space
representation of the selected sequence of chords [A, B].
In this visualization, discrete chords are depicted as blue
circles. Within the dotted red line, the 𝑘 nearest neighbors
(in this instance, 𝑘 = 3) are identified. A dark-green arrow
indicates the vector from chord A to B, while light-green
arrows represent the vectors from chord A to each candi-
date point.

In Figure 3, we showcase an example wherein we identify
the trio of closest neighbors of B and calculate the angu-
lar separation between vector 𝐴𝐵 and the extension from
A to each prospective point. Even though it isn’t the clos-
est neighbor, the closest candidate chord, ensuring optimal
continuity, would be the one marked as B”’ in the illustra-
tion due to its minimal angle.

3. EVALUATION

In this section, we thoroughly evaluate different sampling
strategies in latent spaces for generating music, focusing
specifically on (chordified) J.S. Bach Chorales as our main
test set. Our main goal is to carefully examine various sam-
pling and interpolation techniques within the latent space,
using MusicVAE as our model.

Our evaluation seeks to gauge the effectiveness of various
sampling methods in generating chord progressions akin to
Bach’s original compositions. We compare three sampling
strategies as outlined in Section 2: one based on the con-
ventional linear interpolation method, drawn from existing
literature, and two innovative strategies centered around



the concept of perceptual relatedness shared by neighbor-
ing points in the latent space.

Our hypothesis posits that sampling within a latent space
should capture key musical principles such as chord sub-
stitutions and parsimonious voice leading. We anticipate
a cumulative effect from our strategies: interpolating be-
tween adjacent chords introduces variations that harmo-
nize seamlessly with the original musical style. Addi-
tionally, employing 𝑘-NN enables us to identify chords
that share similar traits with the original chord, maintain-
ing harmonic coherence. This approach facilitates the ex-
ploration of potential chord substitutions while preserv-
ing continuity and smooth voice leading within the pro-
gression. This technique is expected to further ensure the
preservation of musical continuity and smooth voice lead-
ing when coupled with angular displacement to a chord
sequence. Moreover, angular displacement is expected to
enhance the perceptual similarity to the original chord se-
quence.

3.1 Materials

To construct a latent space using MusicVAE, we utilize an
architecture incorporating a recurrent encoder featuring a
two-layer bidirectional LSTM with 1024 units. The de-
coder is structured hierarchically, employing a two-layer
unidirectional LSTM with a hidden size of 1024 for both
the conductor and decoder components. A latent size of
256 is selected to significantly reduce input dimensionality
while preserving adequate information for effective recon-
struction [14]. During the training phase, we utilize the
Adam optimizer with an initial learning rate set to 10E-4
and a batch size of 16 to minimize the loss function and
refine the model parameters.

As input to our model, we utilize a binary 128-element
vector piano roll encoding, representing note activations
per unit of time as ‘salami slices,’ 1 to capture intricate
pitch changes within the music.

We employ a standard benchmark of 371 chorales by J.S.
Bach to evaluate the proposed strategies, which act as a
representative tonal music corpus. The stylistic nature of
Bach’s chorales makes them an ideal corpus to study har-
monic information within the VAE latent space, as the re-
maining textural aspects are somehow constant, e.g., num-
ber of voices, instrumentation, limited change in pitch reg-
isters, and harmonic rhythm.

These chorales are obtained from the music21 library. 2

The corpus comprises chorales in major (53%) and mi-
nor (47%) keys, with G Major (14%), A minor (12%),
and G minor (11%) being the most prevalent tonalities.
On average, each chorale consists of 84 chordified slices.
Our training process utilizes 60% of the chorales from the
corpus, while the remaining 40% are reserved for testing.
To enhance diversity, the chorales utilized for training are
subject to augmentation through transposition across all

1 These slices entail segmented information, capturing the addition or
subtraction of pitches from the musical surface each time a change occurs.
The salami slice segmentation can be computed from MIDI files by the
chordify() function within the music21 software package.

2 http://web.mit.edu/music21/, accessed on March 10,
2024.

twelve keys, ascending (transposing to the upper 6 keys),
as well as descending (transposing to the lower 6 keys).

3.2 Method

Utilizing the trained VAE latent space, we derive regional
chord sequences directly from the original dataset, without
transposed augmentation. We gauge the proximity of the
three sampling strategies delineated in Section 2, operating
under the assumption that the closer they align with the
original dataset, the higher their efficacy.

In total, we gather 15276 three-chord sequences from ma-
jor chorales, with the possible dataset comprising solely
chords within major chorales. Furthermore, 13324 three-
chord sequences are sourced from minor chorales, exclu-
sively considering chords existing within these chorales for
the discrete dataset. Lastly, 28600 three-chord sequences
are extracted from all chorales, encompassing all chords
within the chorales for the discrete dataset.

We utilize chord distances within a perceptually inspired
pitch-space to determine the sampling strategy closest to
the original [21]. Here, the Euclidean distances between
pitch-class sets reflect their perceptual relatedness [22].
Chords are projected as a chroma vector 𝑐𝑛 into a weighted
pitch-class Discrete Fourier Transform (DFT) space, using
Equation 2, where magnitudes and phases correspond to
chord qualities and regional sets. N = 12 is the dimension
of the chroma vector, and 𝑤𝑞 are weights derived from em-
pirical dissonance ratings of dyads used to adjust the con-
tribution of each dimension 𝑞 of the space [23].

𝑇 (𝑞) = 𝑤𝑞

𝑁−1∑︁
𝑛=0

𝑐𝑛𝑒
−𝑗2𝜋𝑘𝑛

𝑁 , 1 < 𝑞 < 6

with 𝑐𝑛 =
𝑐𝑛∑︀𝑁−1

𝑛=0 𝑐𝑛

(2)

In this space, we can compute the Euclidean distance be-
tween two given 𝑇1(𝑘) and 𝑇2(𝑘) vectors, representing
chords, by utilizing Equation 3 [21].

𝑑{𝑇1(𝑘), 𝑇2(𝑘)} =
√︀

‖𝑇1(𝑘)− 𝑇2(𝑘)‖

=

⎯⎸⎸⎷ 𝑀∑︁
𝑘=1

|𝑇1(𝑘)− 𝑇1(𝑘)|2
(3)

We analyze descriptive statistics for the 15276 major,
13324 minor, and 28600 combined chords. The sampling
strategy with the lowest mean value serves as an indica-
tor of the closest resemblance to the baseline original J.S.
Bach chord sequences.

4. RESULTS AND DISCUSSION

The results of our evaluation are shown in Table 1. Regard-
less of the distance measures employed and the chorale sets
evaluated, chords sampled via the 𝑘-NN method consis-
tently exhibit the closest proximity to the original. Follow-
ing closely are the chords sampled using the 𝑘-NN with
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angular displacement technique. However, despite our ex-
pectations, the angular displacement fails to contribute sig-
nificant information towards capturing chords that exhibit
greater perceptual similarity to the original chord. Linear
interpolation consistently yields the poorest results, often
exhibiting distance values nearly twice as high compared
to the other sampling methods.

Major Minor All

E
uc

lid
ea

n
D

is
ta

nc
e Linear

Interp.
19.6 ± 6.8 20.5 ± 6.8 20.1 ± 6.8

𝑘-NN 9.6 ± 4.3 10.2 ± 4.5 9.5 ± 4.3

𝑘-NN

w/ AD
10.0 ± 4.6 10.7 ± 4.8 9.9 ± 4.5

C
os

in
e

D
is

ta
nc

e Linear

Interp.
19.7 ± 7.2 20.6 ± 7.2 20.1 ± 7.2

𝑘-NN 9.5 ± 4.2 10.2 ± 4.4 9.4 ± 4.2

𝑘-NN

w/ AD
10.0 ± 4.6 10.8 ± 4.8 9.8 ± 4.5

Table 1. Results of the comparative analysis regarding
the perceptual relatedness of the chord sampling strategies.
Descriptive statistics for 15276 major, 13324 minor, and
28600 combined chords are presented. Three strategies —
Linear Interpolation, 𝑘-NN, and 𝑘-NN with angular dis-
placement — are evaluated. Distances within strategies,
calculated using both Euclidean and cosine measures, are
depicted. Best results per dataset of chords are highlighted
in bold.

To further inspect the quality of these sampling strate-
gies and enlighten the raised hypothesis that a latent space
ought to capture key principles from music theory and
practice, such as chord substitutions (by replacing a given
chord in a sequence and maintaining the same function)
and similar voice leading between adjacent chords in a
given sequence, we will study in detail two three-chord
sequences from BWV 184.5 and BWV 311, chorales in
major and minor keys, respectively.

Figure 4 illustrates a three-chord sequence correspond-
ing to the (authentic) cadence of the initial phrase in J.S.
Bach’s Choral BWV 184.5 in D Major, along with the five
closest candidates selected by each sampling strategy, or-
dered by closeness to the original. Notably, both the 𝑘-NN
and 𝑘-NN with angular displacement strategies demon-
strate comparable selections for four of the five candi-
date chords, indicating similar hypotheses underlying their
choices.

Intriguingly, the third and fifth options are interchanged
between the two strategies, while the fourth option varies
from 𝑘-NN to 𝑘-NN with angular displacement. Neverthe-
less, all options remain within the dominant space, main-
taining the function of the original chord.

In terms of voice-leading within the original sequence,

(a) Original sequence

(b) Linear Interpolation

(c) 𝑘-nearest neighbors

(d) 𝑘-nearest neighbors and angular displacement

Figure 4. Original sequence, derived from the cadence
of the first phrase of J.S. Bach’s Choral BWV. 184.5 in
D Major, along with 5 optimal sampling candidates using
the three different sampling strategies, ordered by close-
ness to the original. For each strategy, we present the tonal
functions within the phrase, the number of the chord in
the dataset of all chords, and the distance metric calcu-
lated, i.e., in 𝑘-NN and 𝑘-NN with angular displacement,
we present the Euclidean distance (dist) from the candidate
point to the original, plus angular distance for 𝑘-NN with
angular displacement (ang). For linear interpolation, we
present the Euclidean distance from the candidate point to
the interpolated continue point in the latent space (dist) and
the distance to the original chord (dist to B).

contrary to our anticipation, 𝑘-NN appears to yield supe-
rior bass line interpolation, as the bass notes of the ini-
tially sampled chords are notably closer to the first chord.
Conversely, diverse candidate chords in 𝑘-NN with angu-
lar displacement could potentially enhance voice-leading
in the upper voices. Even if the bass line leaps from the
first chord in the progression to one of these chords, it re-
mains stylistically acceptable, given that Bach’s chorales
often feature bass line jumps. Additionally, the substan-
tial difference in bass between the first and third chords in
the progression suggests that the bass leap from the second
chord could effectively prepare the transition to the third
chord, aligning with typical movement in Bach’s chorales.
For instance, both the third and fourth potential selections
of 𝑘-NN with angular displacement present intriguing op-
tions for voice-leading, with the lower and upper voices
resolving in opposing directions towards the final chord of
the sequence.

In the case of linear interpolation, a contrasting pattern



emerges: all candidates fall within the tonal space of the
tonic, notably closer to both the first and third chords than
to the second chord in the original sequence. We posit
that this phenomenon occurs because the original sequence
does not adhere to a linear function, where the middle
chord is functionally more distant from both the preced-
ing and succeeding chords. Thus, the interpolated point
will tend to remain closer to the starting and ending points
of the linear function. Consequently, the movement be-
tween voices in all chords is much closer than in the last
two strategies, as the notes are mainly the same between
the three chords.

(a) Original sequence

(b) Linear Interpolation

(c) 𝑘-nearest neighbors

(d) 𝑘-nearest neighbors and angular displacement

Figure 5. Original sequence, derived from the cadence of
the first phrase of J.S. Bach’s Choral BWV 311 in B Minor,
along with 5 optimal sampling candidates using the three
different sampling strategies, ordered by closeness to the
original. For each strategy, we present the tonal functions
within the phrase, the number of the chord in the dataset
of all chords, and the distance metric calculated, i.e., in 𝑘-
NN and 𝑘-NN with angular displacement, we present the
Euclidean distance (dist) from the candidate point to the
original, plus angular distance for 𝑘-NN with angular dis-
placement (ang). For linear interpolation, we present both
the Euclidean distance from the candidate point to the in-
terpolated continue point in the latent space (dist) and the
distance to the original chord (dist to B).

In the minor domain, we introduce a second example, dis-
played in Figure 5. This figure showcases a chord progres-
sion referencing a half cadence, ending the initial phrase
of J.S. Bach’s Choral BWV. 311 in B Minor.

In this scenario, a familiar pattern emerges: the linear
interpolation strategy yields candidate chords with voice
leading closer to the first and last chords of the original
sequence, yet the preservation of tonal function is com-

promised (in this instance, remaining within the dominant
domain). Nonetheless, the difference between these candi-
dates and those in the previous example is less pronounced,
with the Euclidean distance to the original chord being no-
tably closer, albeit still farther from the alternatives pre-
sented by the other two strategies.

The 𝑘-NN and 𝑘-NN with angular displacement strate-
gies exhibit comparable outcomes to those in the previ-
ous example, with similar options across the two methods,
barring one exception. However, between the two differ-
ent chords proposed by the strategies, the one selected by
𝑘-nearest neighbors would likely provide superior voice
leading in this specific sequence. This preference arises
as the voice leading of the chord suggested by angular dis-
placement would introduce a fourth interval in the upper
voice between the second and third chords of the progres-
sion, a departure from the natural style observed in Bach’s
chorales.

5. CONCLUSIONS AND FUTURE WORK

This paper delves into the exploration of sampling strate-
gies within latent spaces for music generation, specifically
focusing on chordified J.S. Bach Chorales as a bench-
mark test set and utilizing MusicVAE as the generative
model. We experimentally compare three sampling and
interpolation strategies within the latent space to gener-
ate chord progressions mirroring Bach’s original chord se-
quences. These strategies depart from an original Bach
chorale phrase and evaluate chord substitutions given the
previous and sequential chord contexts. Specifically, we
employ the following sampling strategies: (1) traditional
linear interpolation between adjacent chords, (2) 𝑘-nearest
neighbors, and (3) 𝑘-nearest neighbors combined with an-
gular alignment.

Our approach investigates these sampling strategies’
alignment to music theory principles of functional har-
mony embedding and voice-leading to assess the similarity
to the original Bach style and the semantic description of
the space. The study yields valuable insights into the dy-
namics of latent space manipulation for music generation,
paving the way for potential advancements in creative au-
tonomy and stylistic fidelity in algorithmic music compo-
sition.

Our preliminary findings suggest that 𝑘-NN and 𝑘-NN
with angular alignment to 𝐴𝐵 most closely align with the
tonal function of the original chord, especially the for-
mer. Interestingly, 𝑘-NN tends to offer superior bass line
interpolation, while 𝑘-NN with angular displacement po-
tentially enhances voice-leading in upper voices. Despite
slight variations between strategies, they generally main-
tain the essence of the original chord progression while of-
fering alternatives with varying degrees of voice-leading
quality and tonal function preservation.

Conversely, linear interpolation seems to excel in main-
taining aspects of voice-leading. This could stem from its
incorporation of both preceding and succeeding chords as
reference points, resulting in smoother transitions and min-
imized leaps in the voices. However, linear interpolation
often confines its selections within the tonal space defined



by these two chords. We hypothesize that this tendency
may arise from the non-linear characteristics inherent in
the original sequence.

These findings underscore the complexity of generat-
ing plausible chord progressions within the context of
Bach’s chorales and highlight the nuanced differences
between sampling strategies regarding voice-leading and
tonal function preservation. The study suggests that while
each strategy offers viable alternatives, considerations such
as bass line interpolation, upper voice resolution, and ad-
herence to Bach’s stylistic conventions play crucial roles
in determining the most suitable chord progression.

In forthcoming research, motivated by the revelation that
linear interpolation does not fully capture the original
chord progressions in Bach’s chorales, we plan to explore
alternative interpolation strategies rooted in the broader
framework of parametric curves. Our objective is to exam-
ine whether the tonal functionality traits exhibit consistent
patterns or relationships within these curves. This explo-
ration seeks to uncover more effective methods for model-
ing chord progressions in Bach’s music, thereby advancing
our understanding of the underlying structural principles
and enhancing the authenticity of generated musical com-
positions.

Furthermore, we plan to explore deep-learning strate-
gies to identify optimal interpolations (e.g., the Adversari-
ally Constrained Autoencoder Interpolation and the Bridge
Process [24, 25]). These methodologies, which have not
yet been integrated into symbolic music VAEs, possess
the potential to produce more authentic and stylistic inter-
polations. Their ability to discern interpolation patterns
within the original chord progressions suggests an excit-
ing avenue for future exploration. By incorporating these
methodologies into symbolic music VAEs, we aim to en-
hance the fidelity and richness of generated musical com-
positions, ultimately advancing the state-of-the-art in com-
putational music generation.

In summary, we plan to investigate the applicability of
these sampling strategies to other latent spaces within the
realm of music, such as audio latent spaces. By extend-
ing our exploration beyond symbolic representations, we
aim to enhance sampling techniques and improve music
generation across various types of models. This broader
inquiry holds promise for advancing the field of compu-
tational music generation and facilitating the creation of
more diverse and expressive musical compositions across
different modalities.
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