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ABSTRACT

This paper presents a comprehensive investigation into the
explainability and creative affordances derived from nav-
igating a latent space generated by Realtime Audio Vari-
ational AutoEncoder (RAVE) models. We delve into the
intricate layers of the RAVE model’s encoder and decoder
outputs by leveraging a novel timbre latent space that cap-
tures micro-timbral variations from a wide range of sax-
ophone extended techniques. Our analysis dissects each
layer’s output independently, shedding light on the dis-
tinct transformations and representations occurring at dif-
ferent stages of the encoding and decoding processes and
their sensitivity to a spectrum of low-to-high-level musi-
cal attributes. Remarkably, our findings reveal consistent
patterns across various models, with the first layer consis-
tently capturing changes in dynamics while remaining in-
sensitive to pitch or register alterations. By meticulously
examining and comparing layer outputs, we elucidate the
underlying mechanisms governing saxophone timbre rep-
resentation within the RAVE framework. These insights
not only deepen our understanding of neural network be-
havior but also offer valuable contributions to the broader
fields of music informatics and audio signal processing, ul-
timately enhancing the degree of transparency and control
in co-creative practices within deep learning music frame-
works.

1. INTRODUCTION

The intersection of music, deep learning, and creative ex-
ploration has spurred transformative advancements in un-
derstanding and manipulating sound, offering tools for cre-
ating immersive soundscapes [1], transforming existing
music [2–4], and synthesizing entirely new sounds [5–7].

WaveNet [8] and SampleRNN [9] were among the pio-
neering deep-learning approaches for audio modeling in
its raw waveform, but their reliance on extensive data
and parameters often led to slow synthesis and error ac-
cumulation due to their autoregressive nature. Building
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upon WaveNet, Engel et al. introduced NSynth [5] to
tackle representation learning. Additionally, Kumar et
al. [10] proposed leveraging generative adversarial mod-
eling to address parallel audio modeling. In the realm
of real-time audio processing tasks, a significant mile-
stone is reached with Realtime Audio Variational AutoEn-
coder (RAVE) models [4]. RAVE models leverage vari-
ational autoencoders’ capacity to learn audio data repre-
sentations, enabling dynamic manipulation and synthesis
in real-time, and the integration of AI-driven sound design
into real-time production workflows [11], such as live per-
formances [12–14] to interactive installations [15].

While these models excel at learning the structures of the
audio data, they often remain opaque to users, hindering
interaction and control [16]. Navigating RAVE’s latent
space proves challenging due to the complex and highly-
dimensional nature of sound. Nevertheless, transparent
representations in audio latent spaces are indispensable for
advancing music generation. They offer insight into how
the model interprets musical timbres, enabling users to re-
fine outputs and fostering collaboration and innovation. A
transparent latent space encourages diverse contributions
to model development.

Moreover, direct interaction with musical attributes en-
hances user engagement and customization. Ethical con-
cerns underscore the need for transparency to manage risks
and ensure accountability. Efforts to improve the acces-
sibility of latent space representations encompass various
strategies. Intuitive visualization tools and detailed doc-
umentation elucidate the space’s structure and meaning,
empowering users to navigate it effectively. Democratiz-
ing access to transparent latent space representations un-
leashes the full potential of generative models like RAVE,
nurturing creativity, collaboration, and innovation in music
composition and synthesis.

This paper undertakes a thorough investigation of RAVE
models with the objective of elucidating the characteris-
tics of their latent spaces. A particular focus is directed
towards a specialized timbre latent space (timbre is un-
derstood as all auditory sensations other than pitch, loud-
ness, and perceived duration [17]), meticulously designed
to capture the intricate nuances inherent in saxophone ex-
tended techniques. We explore the layers of RAVE’s en-
coder and decoder outputs, revealing the transformations
and representations at each level through a dual evalua-
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tion approach: 1) a perceptual subjective assessment in-
volving a detailed analysis of the outputs, layer by layer,
and comparison across different models trained on diverse
datasets; and 2) an objective examination of the extent to
which the models’ encoding’s latent spaces recognize se-
mantically meaningful timbre attributes. This examination
is conducted by quantifying intra- and inter-segment dis-
tances per technique, register, dynamic, and their combi-
nations across all sounds in the provided dataset. Our eval-
uation aims to elucidate the fundamental mechanisms gov-
erning tenor saxophone timbre representation within the
RAVE framework.

Our paper is organized as follows. Section 2 intro-
duces the pre-trained models used for comparison and the
datasets employed for their training. Additionally, we out-
line our methodology for curating a comprehensive collec-
tion of sounds representing the entirety of the tenor saxo-
phone dataset, encapsulating the timbre latent space. Sec-
tion 3 delineates the methodology utilized to evaluate the
transparency derived from navigating a latent space gen-
erated by RAVE models. This section offers detailed in-
sights into the twofold experimental setup. Subsequently,
Section 4 presents and discusses the results obtained. Fi-
nally, Section 5 summarizes the conclusions drawn from
our study and proposes potential avenues for future re-
search.

2. MATERIALS AND METHODS

Our experimental methods utilize deep learning models
(i.e., as Variational Autoencoders) designed to encode tim-
bral information from audio into a latent space. Addition-
ally, we introduce a novel timbre dataset specifically cre-
ated to capture the subtle timbral variations produced by
diverse extended tenor saxophone techniques.

2.1 RAVE models

Realtime Audio Variational AutoEncoder (RAVE) models
are deep learning models specifically crafted for generating
high-quality audio in real-time [4]. Unlike traditional Vari-
ational Autoencoders (VAEs), which can struggle with re-
construction accuracy, RAVE uses a twofold training pro-
cess (representation learning and adversarial fine-tuning)
for enhanced performance. It breaks down audio into mul-
tiple frequency bands, capturing fine degrees of detail from
large (≈ 48kHz) sampling rate input audio representations
without sacrificing efficiency. RAVE models can be used
in timbre transfer (i.e., change the timbre of a sound from,
e.g., a piano into a violin), for manipulating audio in real-
time for performances, or even for compressing audio files.

We begin our exploration with pre-trained RAVE models,
detailed in Table 1, originating from both the Institut de
Recherche et Coordination Acoustique/Musique (IRCAM)
and the Intelligent Instruments Lab (IIL). These models are
trained on various raw waveform datasets, as summarized
in Table 1, providing a foundation for investigating their
capacity to generalize across diverse musical timbres.

The models are built upon different RAVE architectures:
IRCAM’s models are based on RAVE v2, an enhanced

continuous model compared to the one outlined in [4], em-
ploying the Variational Auto Encoder objective (ELBO or
evidence lower bound function) for regularization. Con-
versely, IIL’s models are trained on a modified iteration of
RAVE v1, facilitating transfer learning capabilities. The
IIL models exclusively consist of encoder-decoder config-
urations, without priors, utilizing causal convolutions and
optimized for streaming inference with MAX/MSP, Pure-
data (PD), and Supercollider [18].

Notably, IRCAM’s models operate at a sampling rate of
44.1kHz, while IIL’s models operate at 48kHz. Further-
more, IIL’s models typically feature a greater number of
layers, averaging between 16 to 20 layers compared to IR-
CAM’s 8 to 16 layers.

2.2 Tenor Saxophone Timbre Dataset

In this study, our aim was to delve into a timbre latent
space, enabling us to capture the nuanced tonal intricacies
emanating from the sonic palette of the tenor saxophone.
Renowned for its versatility within the timbral spectrum,
this instrument offers a plethora of well-documented ex-
tended techniques, as documented by Kientzy [25] and
Weiss [26]), extensively explored in the context of con-
temporary Western Art Music.

To document the timbre of the tenor saxophone, we have
curated a collection of instrumental tones encompassing a
broad array of combinations of (extended) techniques, reg-
isters, and dynamics. The details of these combinations
are summarized in Table 2. We recorded 191 samples us-
ing a stereo pair of microphones (Sontronics STC-1S MT
BK) at a sample rate of 48 kHz. The sounds are sam-
pled at 44.1 kHz with a resolution of 24 bits. We pro-
vide a more comprehensive list, as well as the dataset,
as supplementary material in https://acesse.one/
tenor-saxophone-dataset.

Extended techniques entail the utilization of the instru-
ment in unconventional manners by expanding the sonic
palette [27]. The final set of conventional and extended
techniques adopted in our dataset are the following: (1)
long non-vibrato notes, and (2) long vibrato notes; (3) long
quarter-tone notes; (4) long subtone notes, characterized
as an “airy, breathy way of playing lower notes” [26]; (5)
flutter-tonguing notes – described as “a kind of tremolo on
one tone (...) created with the tip of the tongue” [26]; (6)
slap notes – described as “an especially sharp tonguing of
a percussive character” [26]; (7) bisbigliando – interpreted
as a color trill; (8) multiphonics, resulting from two or
more simultaneous pitches sounding on what is otherwise
a monophonic instrument; and (9) growling long notes –
simultaneous playing and singing.

Due to the unique characteristics of each technique, we
accounted for variations in register and dynamics. For in-
stance, in the case of long notes, both with and without
vibrato, and quarter-tone long notes, we concentrated on
the four different pitch registers previously described – Al-
tissimo, High, Medium, and Low – including two notes
for each of these registers: C7 and G6 (altissimo), F6 and
C6,(high), D5 and A4 (medium), and C4 and Bb3 (low). 1

1 These notations are specifically tailored for tenor saxophone tuned to
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Name Team RAVE Sample
Rate

Lat.
Dim. Dataset Ref.

Sol_full IRCAM v2 44.1kHz 8
Full Studio OnLine IRCAM database,
incorporating over 20,000 samples of
extended instrumental playing techniques

[19, 20]

Isis IRCAM v2 44.1kHz 8
ISiS Database, comprising synthesized
high-quality singing voices,
akin to real singers

[21]

MusicNet IRCAM v2 44.1kHz 16
Musicnet database, comprising recordings
spanning 34 hours of chamber music
performances, showcasing 11 instruments

[22, 23]

IILGuitarTimbre IIL v1 48kHz 16
Timbre-oriented collection of plucking,
strumming, striking, scraping, and more
recorded dry from an electric guitar

[18]

SaxSoprano IIL v1 48kHz 20 Original soprano saxophone
improvisation by Franziska Schroeder [18]

VocalSet IIL v1 48kHz 16

VocalSet dataset, comprehending high-
quality recordings of 20 professional
singers exhibiting diverse vocal
techniques across various vowels

[18, 24]

Table 1. Pre-trained RAVE models employed in our experiments, their characteristics (version, sample rate, and number of
latent dimensions), and dataset description.

Technique Register Dynamic
Long non-vibrato notes Altissimo Very Loud

Long vibrato note High Loud
Quarter-Tones Medium Medium

Flutter-tonguing Low Soft
Slap notes Very Soft Very Soft
Growling

Bisbigliando
Subtones

Multiphonics

Table 2. Collection of sounds encompassing the entire
spectrum of the tenor saxophone (timbre space).

Simultaneously, each note was performed at different dy-
namic levels – Very Loud, Loud, Medium, Soft, and Very
Soft.

Given the specific characteristics of the technique, long
subtone notes are exclusively applied to the low register of
the instrument, specifically notes Low D4, Low C4, Low
B3, and Low Bb3. Due to their challenging execution and
infrequent usage, flutter-tonguing notes are omitted from
the altissimo register (above G6). Additionally, the two
notes of each High, Medium, and Low register are studied
without dynamic variation.

Efficiency constraints similarly result in the omission of
slap notes from the altissimo register. Various registers
(High, Medium, Low) were incorporated, each with two
notes, featuring variations between a drier attack (secco
slap) and a standard attack with clear pitch recognition.
Regarding bisbigliando, we established position variations
for the established notes for each register (Altissimo, High,

B-flat. In concert pitch, the corresponding notes are altissimo (Bb5 and
F5), high (Eb5 and Bb4), medium (C4 and G3), and low (Bb2 and Ab2).

Medium, and Low).
In the case of multiphonics, we recorded the following

five multiphonics [26, 28] addressing different notes and
registers without introducing dynamic variations:

1. C#5, D6 (quarter-tone higher), A6 2

2. D5 (three quarter-tone higher), F#5 3

3. F#4, G5 4

4. D4 (quarter-tone lower), Bb5, D6 (quarter-tone
higher), F#6 5

5. D5 (quarter-tone higher), G5 (quarter-tone higher),
E6, B6 6

For Growling Long Notes, we gathered notes distributed
across various registers (Altissimo, High, Medium, and
Low) without dynamic variations. This decision was made
due to the inherent performance limitations of this tech-
nique, particularly in soft or very soft dynamics.

These sounds represent a diverse range of timbral qual-
ities and extended techniques inherent to the tenor saxo-
phone, offering potential avenues for exploring the timbre
latent space.

3. EVALUATION METHODOLOGY

To explore the transparency afforded by navigating the
latent space created by RAVE models within the timbre

2 concert pitch: B3, C5 (quarter-tone higher), G5
3 concert pitch: C4 (three quarter-tone higher), E4
4 concert pitch: E3, F4
5 concert pitch: C3 (quarter-tone lower), Ab4, C5 (quarter-tone

higher), E5
6 concert pitch: C4 (quarter-tone higher), F4 (quarter-tone higher), D5,

A5
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domain of the tenor saxophone, we adopt a two-pronged
strategy. Firstly, a subjective perceptual assessment aims
to offer a comprehensive understanding of the sensitivity
of RAVE model layers to various sonic attributes within
the context of the tenor saxophone’s timbre characteris-
tics. Secondly, an objective evaluation utilizes clustering
metrics to analyze the degree to which layers demonstrate
sensitivity to multiple sound attributes. This involves as-
sessing whether layers tend to group specific attributes, in-
dicating a heightened sensitivity towards them.

3.1 Perceptual Subjective Assessment

The first evaluation approach delves into the complex lay-
ers of the mentioned RAVE model’s encoder and decoder
outputs, aiming to serve as a guide for systematic empirical
analysis.

The perceptual subjective assessment was conducted by
the saxophonist Jorge Sousa, who has thirteen years of
professional experience playing the tenor saxophone, seek-
ing to provide an in-depth understanding of the sensitivity
of RAVE model layers to multiple sonic attributes within
the context of the timbre characteristics of the tenor saxo-
phone. This evaluation strives to unveil the unique trans-
formations and representations at various stages of the en-
coding and decoding processes.

In this scenario, every sound within the dataset undergoes
meticulous examination, with thorough listening sessions
conducted at each individual layer of every model enumer-
ated in Table 1. The output of each neuron in every layer
was converted into a sound signal and listened to individ-
ually. The analysis was realized in the visual multimedia
programming language Pure Data (PD), 7 using IRCAM’s
nn_tilde object for PD. 8

3.2 Analysis of Timbre Clusters

The second evaluation approach objectively assesses the
extent to which the models’ latent spaces recognize seman-
tically meaningful musical attributes (i.e., timbre, pitch,
and dynamics). This assessment quantifies intra- and inter-
segment distances across various parameters, such as tech-
nique, register, dynamic, and their combination, across all
sounds in the provided dataset.

To this end, we construct the latent space for individual
sounds, sampled in segments with 40 milliseconds of du-
ration. Clustering is then partitioned into four primary cat-
egories: (1) technique, (2) pitch register, (3) dynamic, and
(4) all combined. For the initial two categories, we employ
metrics on the sounds both with and without normalization,
aiming to ascertain whether the overall inherent dynamics
of each technique and register significantly influence the
model’s capacity to discern the attributes under investiga-
tion. For normalization, we use librosa 9 to scale the audio
input to have a maximum absolute value of 1, ensuring the
signal fits within a standard dynamic range.

7 https://msp.ucsd.edu/software.html, accessed on
March 10, 2024.

8 https://github.com/acids-ircam/nn_tilde, ac-
cessed on March 10, 2024.

9 https://librosa.org, accessed on March 10, 2024.

We utilize two cluster evaluation metrics, the Davis-
Bouldin score (DB) [29] and Dunn index [30], to assess
both intra-segment distances within each cluster and inter-
cluster distances across the latent spaces. The Davis-
Bouldin score and Dunn index evaluate the resulting la-
tent space’s ability to produce compact and well-separated
sound clusters. A lower Davis-Bouldin score indicates
better-separated clusters, while a higher score indicates
poorly separated clusters. The Dunn index aims for max-
imization, with the intra-cluster metric (cluster diameter)
calculated as the average Euclidean distance across all
cluster segments and the inter-cluster metric determined
as the distance between each cluster’s nearest neighbors.
A higher Dunn index indicates more distinct and tightly
packed clusters. In this context, the metric compares which
layer better discriminates a certain attribute without con-
sidering minimum or maximum expected values.

To enable a more objective analysis across the output of
each layer, we implement this method for the entire latent
space of each sound within the clusters and every individ-
ual layer, supplemented by the findings from perceptual
assessments. This thorough evaluation aims to uncover the
underlying mechanisms governing the representation of
tenor saxophone timbre within the RAVE framework. We
make the code available at https://github.com/
NadiaCarvalho/SMC-TimbreLandscape.git.

4. RESULTS AND DISCUSSION

4.1 Perceptual Subjective Assessment

Observations drawn from subjective perceptual assess-
ments of each layer’s distinct responses to the sound sam-
ples of the tenor saxophone offer valuable perspectives that
we can integrate into our objective evaluation process.

For Model Sol_full, Jorge’s examination indicates that
six of the eight layers exhibit no discernible reaction to
the instrument’s sound samples: layers two, four, five, six,
seven, and eight. Layers one and three consistently show
minimal differentiation among different pitches and dy-
namics.

The Isis model displays notable reactivity to louder dy-
namics (Loud and Very Loud) globally, although it is less
efficient in responding to various multiphonics. It shows
heightened responsiveness in the lower register of the tenor
saxophone, particularly with notes such as Bb3, B3, and
C4. 10

Regarding the model trained on Musicnet, layer one
demonstrates reactivity to nearly all tenor saxophone
sound samples, particularly excelling in discerning and re-
sponding to samples with distinctive attacks (articulation
in slap). However, layers fourteen, fifteen, and sixteen, es-
pecially the last one, prove ineffective at discerning most
sounds. Layer five stands out for its ability to modify the
pitches of introduced sounds.

Model IILGuitarTimbre shows layer one’s reactivity to
all tenor saxophone sound samples, albeit with minimal

10 Pitch in this section is always presented in the notation specifically
tailored for tenor saxophone tuned to B-flat.
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responsiveness to changes in dynamics and pitch. Con-
versely, layers two, five, ten, thirteen, and fourteen show
no response to any stimulus. Layer seven demonstrates
noticeable reactions to sound stimuli at low dynamics (Soft
and Very Soft).

The SaxSoprano model is generally deemed ineffective.
Among its twenty layers, eleven show no reaction to tenor
saxophone sound samples. Layer one emerges as the most
responsive, consistently reacting across various dynamics
and effectively responding to slap articulations and multi-
phonics. Layer eleven consistently reacts to the note D5
(medium register), a unique trait not found in other mod-
els. Activating layer one influences other layers, leading
to distinct behaviors, such as amplifying low frequencies,
adding granular texture, producing a "Pan flute" sound, and
closely resembling the input pitch.

(a) Input Audio (b) Layer 1

(c) Layer 11 (d) Layer 16

Figure 1. Spectrograms for the input audio of the soft low
C recording, as well as the sounds decoded from layers 1,
11, and 16 of the latent space.

In our examination of the VocalSet model comprising
sixteen layers, we found it to be a balanced model, with
layers responding to sound samples across all registers
(from Low to Altissimo), except for layer sixteen, which
showed greater reactivity to the Low register (as observed
in Fig. 1). While several layers reacted to multiphon-
ics (see Fig. 2), the second and third multiphonics didn’t
elicit any response. Layer one emerged as the most re-
active layer, layer eleven displayed high reactivity to the
Altissimo register, and layer thirteen responded solely to
note C across various registers.

Finally, among the models studied, we propose that the
Musicnet and Vocalset models are the most reactive to
tenor saxophone sound samples. Despite both being sax-
ophones, the model trained on soprano saxophone sounds
proves ineffective when examined layer-by-layer. Layer
one consistently exhibits the most robust reaction to vari-
ous registers, pitches, effects, and dynamics. The models
demonstrate higher reactivity to louder dynamics (Loud
or Very Loud) and are generally more effective in lower

(a) Input Audio (b) Layer 1

(c) Layer 10 (d) Layer 16

Figure 2. Spectrograms for the input audio of the multi-
phonic number five, as well as the sounds decoded from
layers 1, 11, and 16 of the latent space.

notes, particularly Bb3. Additionally, we observe an ap-
parent inability to react to and distinguish between various
presented multiphonics.

4.2 Analysis of Timbre Clusters

Table 3 shows the cluster analysis results, encompassing
all layers of each model. From these findings, several con-
clusions emerge. Foremost among them is the clear in-
dication that the absence of normalization negatively im-
pacts the Davis-Bouldin score when applying clustering
metrics to extended techniques and pitch registers across
all models. Consequently, the models struggle to effec-
tively discern extended techniques, and consequently, tim-
bre changes or register variations when dynamics vary.
The exception to this trend is observed in the VocalSet
model, where both normalized and non-normalized audio
inputs yield very similar values for both technique and
pitch register.

Among the models evaluated, the SaxSoprano model
stands out for its superior ability to distinguish between
extended techniques, particularly when the audio is nor-
malized. With the second-best Davis-Bouldin score and
the highest Dunn index score, it demonstrates notable pro-
ficiency in this aspect. A noteworthy finding concerns the
MusicNet model, which achieves the best Davis-Bouldin
score but one of the lowest Dunn index scores. This sug-
gests that while the MusicNet model excels in forming dis-
tinct timbre clusters due to its capacity to capture unique
data patterns, it struggles to achieve adequate separation
between these clusters. Consequently, it faces challenges
differentiating characteristics to create clearly distinct tim-
bre clusters.

Regarding pitch registers, most of the models perform
similarly with normalized audio. The exception is the
IILGuitarTimbre, which presents very high values of the
Davis-Bouldin score, meaning it cannot distinguish pitch
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Technique Register Dynamic AllModel N NN N NN

Sol_full DB 9,3978 63,1686 3,1654 71,0053 61,2390 23,3833
Dunn 0,0001 0,0003 0,0002 0,0003 0,0002 0,0014

Isis DB 7,8626 36,9219 2,5262 17,9766 30,7508 18,4759
Dunn 0,00002 0,0003 0,0001 0,0005 0,0001 0,0006

MusicNet DB 6,9871 27,2322 3,4207 22,0426 35,3139 14,3542
Dunn 0,00002 0,0003 0,0001 0,0005 0,0003 0,0016

IILGuitarTimbre DB 46,4832 69,0797 25,9224 40,3061 58,2117 35,3975
Dunn 0,0002 0,0002 0,0005 0,0003 0,0001 0,0003

SaxSoprano DB 8,8365 23,6323 3,1240 5,8060 14,4397 9,2430
Dunn 0,0003 0,0004 0,0004 0,0005 0,0002 0,0034

VocalSet DB 11,4939 12,7429 2,5283 2,9858 8,4275 5,5918
Dunn 0,0003 0,0003 0,0002 0,0005 0,0003 0,0024

Table 3. Clustering Results Across All Layers. The best results for each clustering category and metric are marked in bold.
N and NN denote normalized and non-normalized audio, respectively.

well. However, contrary to the previous example re-
garding extended techniques, it features the best Dunn
index. This suggests that the dataset used for training
may encompass greater complexity regarding pitch regis-
ters associated with extended techniques. This distinction
might be attributed to the fact that the IILGuitarTimbre
model is trained on a dataset featuring sounds more dis-
tant from those of the tenor saxophone, unlike the other
models, which are associated with instrumental orchestral
and chamber music sounds or voice, often resembling sax-
ophone timbres.

Concerning dynamics (coupled with extended tech-
niques) and all sounds clustered separately, the VocalSet
model emerges as the top performer for both metrics,
closely followed by the SaxSoprano model.

Figure 3 showcases the outcomes of the cluster analysis,
organized layer by layer. Due to the close resemblance of
Dunn index results across all metrics (approximately 1E-
05), only Davis-Bouldin score results are presented in the
figure. Several discernible patterns emerge from these re-
sults, complementing the listening test findings. Specifi-
cally, dynamics are consistently better generalized in the
initial layer of the model, except in the case of the IILGui-
tarTimbre and VocalSet models, where they are observed
in the second and sixth layers, respectively. Combined
sounds are not adequately clustered at any model layer,
likely due to the limitation of a single layer in capturing the
diverse timbre attributes of entire sounds. The pitch regis-
ter is generally well perceived across the models, although
not consistently at the same layer in every model. At the
level of extended techniques, Musicnet, closely followed
by VocalSet and Isis, are the best models at semantically
perceiving timbric changes by a single layer.

5. CONCLUSIONS AND FUTURE WORK

This study conducts a comprehensive examination of
RAVE models to uncover the nuances of their latent
spaces. Emphasizing a specialized timbre latent space tai-
lored for saxophone extended techniques, we delve into the
encoder and decoder outputs of RAVE layers. Through a

dual evaluation method, we subjectively analyze outputs
layer by layer and compare them across diverse model
datasets. Additionally, we objectively assess the models’
encoding latent spaces’ ability to recognize semantically
meaningful timbre attributes. This assessment involves
quantifying intra- and inter-segment distances across vari-
ous sound attributes, including technique, register, and dy-
namics, across the entire dataset.

The conclusions drawn from this investigation into RAVE
models reveal crucial insights into their ability to cap-
ture and represent saxophone timbre attributes. Through
a meticulous dual evaluation approach encompassing sub-
jective listening tests and objective clustering analyses,
several key findings emerge.

Firstly, among the models studied, MusicNet and Vo-
calSet exhibit heightened reactivity to tenor saxophone
samples, particularly evident in the subjective perceptual
layer-by-layer examination. However, the effectiveness
varies across models, with the soprano saxophone model
proving less reactive. Notably, the initial layer consistently
demonstrates robust responses to different attributes, high-
lighting its pivotal role in timbre representation.

Secondly, the absence of normalization negatively im-
pacts clustering metrics, hindering the models’ ability to
effectively distinguish extended techniques and pitch reg-
isters. While some models, such as SaxSoprano, excel in
distinguishing between extended techniques, others strug-
gle to achieve adequate separation, as seen in the case of
MusicNet. Furthermore, dynamics and combined sounds
present additional challenges in clustering, underscoring
the complexity of timbre representation.

Lastly, objective layer-by-layer analysis complements the
findings from perceptual evaluation, uncovering consis-
tent patterns in dynamics perception across models. While
there are variations in pitch register perception across dif-
ferent layers, MusicNet and VocalSet stand out as top per-
formers in semantically perceiving timbral changes within
a single layer.

In summary, the comprehensive evaluation elucidates
fundamental mechanisms governing tenor saxophone tim-
bre representation in RAVE models. The insights gleaned
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(a) Clustering on Technique (b) Clustering on Register

(c) Clustering on Dynamic (d) Combined Clustering

Figure 3. Davis-Bouldin Score Results by Layer. The best results are marked with a circle. All audio is normalized for the
cluster categories corresponding to extended techniques and pitch registers.

contribute to advancing our understanding of neural
network-based timbre modeling and hold implications for
music synthesis and analysis applications.

Moving forward, we plan to further investigate the RAVE
model layers by analyzing their behavior across individual
registers, dynamics, and extended techniques. Such an en-
deavor promises to unveil further insights into the intrica-
cies of RAVE models, thereby enhancing transparency in
their functioning. Additionally, we aspire to move beyond
mere transparency and innovate new tools that empower
users to harness the potential of these models creatively.
By enabling users to take control and experiment with the
models, we envision facilitating the creation of music and
performances that are enriched and elevated. This forward-
looking approach not only advances our understanding of
RAVE models but also fosters a dynamic and collaborative
environment for music exploration and expression.

Acknowledgments

This research has been funded by the Portuguese National
Funding Agency for Science, Research and Technology
[2021.05132.BD and 2023.01345.BD].

6. REFERENCES

[1] H. Scurto and A. Chemla-Romeu-Santos, “Deeply
Listening Through/Out the Deepscape,” in 28th
International Symposium on Electronic Art (ISEA

2023), Paris, France, May 2023. [Online]. Available:
https://hal.science/hal-04108995

[2] S. Huang, Q. Li, C. Anil, X. Bao,
S. Oore, and R. B. Grosse, “Timbretron: A
wavenet(cyclegan(cqt(audio))) pipeline for musical
timbre transfer,” Computing Research Repository
(CoRR), vol. abs/1811.09620, 2018. [Online]. Avail-
able: http://arxiv.org/abs/1811.09620

[3] D. K. Jain, A. Kumar, L. Cai, S. Singhal, and V. Ku-
mar, “Att: Attention-based timbre transfer,” in 2020
International Joint Conference on Neural Networks
(IJCNN), 2020, pp. 1–6.

[4] A. Caillon and P. Esling, “RAVE: A variational
autoencoder for fast and high-quality neural audio
synthesis,” Computing Research Repository (CoRR),
vol. abs/2111.05011, 2021. [Online]. Available: https:
//arxiv.org/abs/2111.05011

[5] J. Engel, C. Resnick, A. Roberts, S. Dieleman,
M. Norouzi, D. Eck, and K. Simonyan, “Neural
audio synthesis of musical notes with WaveNet au-
toencoders,” in Proceedings of the 34th International
Conference on Machine Learning, ser. Proceed-
ings of Machine Learning Research, D. Precup
and Y. W. Teh, Eds., vol. 70. PMLR, 06–11
Aug 2017, pp. 1068–1077. [Online]. Available:
https://proceedings.mlr.press/v70/engel17a.html



530

[6] F. Roche, T. Hueber, S. Limier, and L. Girin,
“Autoencoders for music sound modeling : a
comparison of linear, shallow, deep, recurrent and
variational models,” in SMC 2019 - 16th Sound
& Music Computing Conference, ser. Proc. of
SMC 2019, U. of Malaga (UMA), Ed., no. 1-
6, Malaga, Spain, May 2019. [Online]. Available:
https://hal.science/hal-02349406

[7] K. Tatar, D. Bisig, and P. Pasquier, “Latent timbre
synthesis: Audio-based variational auto-encoders for
music composition and sound design applications,”
Neural Computing and Applications, vol. 33, no. 1,
p. 67–84, Oct. 2020. [Online]. Available: http:
//dx.doi.org/10.1007/s00521-020-05424-2

[8] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. W.
Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” Computing Research Repos-
itory (CoRR), vol. abs/1609.03499, 2016. [Online].
Available: http://arxiv.org/abs/1609.03499

[9] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain,
J. Sotelo, A. C. Courville, and Y. Bengio, “Samplernn:
An unconditional end-to-end neural audio generation
model,” Computing Research Repository (CoRR), vol.
abs/1612.07837, 2016. [Online]. Available: http:
//arxiv.org/abs/1612.07837

[10] K. Kumar, R. Kumar, T. de Boissière, L. Gestin, W. Z.
Teoh, J. M. R. Sotelo, A. de Brébisson, Y. Bengio,
and A. C. Courville, “Melgan: Generative adversarial
networks for conditional waveform synthesis,” in Neu-
ral Information Processing Systems, 2019. [Online].
Available: https://doi.org/10.48550/arXiv.1910.06711

[11] S. Nercessian, “P-rave: Improving rave through pitch
conditioning and more with application to singing
voice conversion,” in Proceedings of the 26th Interna-
tional Conference on Digital Audio Effects (DAFx23),
2023.

[12] F. Schroeder and F. Reuben, “Ai Impro-
vised Music Duo,” AIMC 2023, aug 29 2023,
https://aimc2023.pubpub.org/pub/8x9jxz9a.

[13] J. C. Reus, “i o we,” AIMC 2023, aug 29 2023,
https://aimc2023.pubpub.org/pub/hpy32yre.

[14] J. Armitage, “Gagnavera,” AIMC 2023, aug 29 2023,
https://aimc2023.pubpub.org/pub/ppgwfht1.

[15] ——, “Strengjavera,” AIMC 2023, aug 29 2023,
https://aimc2023.pubpub.org/pub/83k6upv8.

[16] A. Chemla–Romeu-Santos and P. Esling, “Challenges
in creative generative models for music: a divergence
maximization perspective,” in Proceedings of the 3rd
Conference on AI Music Creativity. AIMC, Sep.
2022. [Online]. Available: https://doi.org/10.5281/
zenodo.7088272

[17] T. Letowski, “Timbre, tone color, and sound qual-
ity: concepts and definitions,” Archives of Acoustics,
vol. 17, pp. 17–30, 1992.

[18] Intelligent Instruments Lab, “rave-
models (revision ad15daf),” 2023. [On-
line]. Available: https://huggingface.co/
Intelligent-Instruments-Lab/rave-models

[19] G. Ballet, R. Borghesi, P. Hoffmann, and F. Lévy,
“Studio Online 3.0: An Internet ”Killer Application”
for Remote Access to IRCAM Sounds and Processing
tools,” in Journées d’Informatique Musicale, Paris,
France, May 1999. [Online]. Available: https:
//hal.science/hal-03112091

[20] C. Cella, D. Ghisi, V. Lostanlen, F. Lévy, J. Fineberg,
and Y. Maresz, “Orchideasol: a dataset of extended
instrumental techniques for computer-aided orches-
tration,” Computing Research Repository (CoRR),
vol. abs/2007.00763, 2020. [Online]. Available:
https://arxiv.org/abs/2007.00763

[21] L. Ardaillon, “Synthesis and expressive transformation
of singing voice,” Theses, Université Pierre et Marie
Curie - Paris VI, Nov. 2017. [Online]. Available:
https://hal.science/tel-01710926

[22] J. Thickstun, Z. Harchaoui, and S. Kakade, “Learning
features of music from scratch,” 2017.

[23] J. Thickstun, Z. Harchaoui, and S. M. Kakade,
“Musicnet,” Jul. 2021. [Online]. Available: https:
//doi.org/10.5281/zenodo.5120004

[24] J. Wilkins, P. Seetharaman, A. Wahl, and B. Pardo,
“Vocalset: A singing voice dataset,” in Proceedings of
the 19th International Society for Music Information
Retrieval Conference, ISMIR 2018, Paris, France,
September 23-27, 2018, E. Gómez, X. H. 0001,
E. Humphrey, and E. Benetos, Eds., 2018, pp.
468–474. [Online]. Available: http://ismir2018.ircam.
fr/doc/pdfs/114_Paper.pdf

[25] D. Kientzy and D. Charles, “Saxologie du potentiel
acoustico - expressif des 7 saxophones,” Ph.D. disser-
tation, Paris 8, 1990.

[26] M. Weiss and G. Netti, The Techniques of Saxophone
Playing. Bärenreiter, 2010.

[27] M. Burtner, “Making noise: Extended techniques after
experimentalism,” New Music Box, vol. 6, 2005.

[28] D. Kientzy, Les Sons Multiples aux Saxophones. Edi-
tions Salabert, 1982.

[29] D. L. Davies and D. W. Bouldin, “A cluster separation
measure,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. PAMI-1, no. 2, pp. 224–227,
1979.

[30] J. C. Dunn†, “Well-separated clusters and optimal
fuzzy partitions,” Journal of Cybernetics, vol. 4,
no. 1, pp. 95–104, 1974. [Online]. Available:
https://doi.org/10.1080/01969727408546059


