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ABSTRACT

Machine learning techniques have become a common ap-
proach for modeling analog audio effects. Black-box and
hybrid solutions have been applied to a large variety of
audio effects. Audio effects usually incorporate user-
controllable parameters, and how to infuse this information
into the networks is still a challenge. Feature-wise Linear
Modulation is a popular conditioning method, but its use
in audio effect modeling is still limited. This technique in-
volves an affine transformation via learnable coefficients
based on conditioning information. This study compares
this approach with other proposals used in this field, such
as gated activation. In addition, the control parameters may
present a nonlinear relationship with the effect’s associated
sonic response. Therefore, the investigation also considers
nonlinear mapping. This case study investigates two types
of analog audio effects: distortion and dynamic range com-
pression. Results indicate the conditioning layer leads to
better performance if placed at the end of the architecture,
and the Feature-wise Linear Modulation method outper-
forms other approaches. In addition, nonlinear mapping
can be beneficial for cases with strong nonlinear relation-
ships between parameters, such as the overdrive effect.

1. INTRODUCTION

Machine learning has become widely used in audio mod-
eling effects. In an early attempt, a multilayer feedfor-
ward network was utilized to learn a high-pass filter and
the Ibanez Tube-Screamer distortion effect [1]. Subse-
quently, convolutional-based networks have been applied
for a vacuum-tube amplifier [2] and distortion pedals [3].
Here, conditioning information was infused using a gated
activation (GA) as used in the original Wavenet network
[4]. Recurrent networks have also been applied for mod-
eling distortion pedals and amplifiers [5–7]. In the case
of [6, 7], the conditioning information was incorporated
as an extra input to the network. The mentioned works
considered one parameter control. A larger number of pa-
rameters are considered in [8, 9], where a sequence-to-
sequence-based model, based on recurrent networks, ex-
ploited the sharing of internal states for the case of an op-
tical compressor. One network encodes the conditioning
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information, and in this case, some past samples of the sig-
nal in its internal states are also shared with the decoder
when inferring the output. Two parameters were initially
used [8] and later extended to four [9], particularly includ-
ing parameters determining a time-variant response, such
as attack and release time. Still, in the case of another op-
tical compressor, a Temporal Convolution network (TCN)
has been used [10] together with the Feature-wise Lin-
ear Modulation (FiLM) method [11]. In this case, two
parameters were included, but they did not have time char-
acteristics. The FiLM method computed two vectors from
the conditioning information to perform linear mapping of
the input or some layer’s output. FiLM layers learn how
to manipulate the control parameters to create a map and
decide how this information should influence the network.
An activation function such as ReLU or sigmoid can be
placed at the end to decide how much information should
pass to the inferring network.

Machine learning modeling of nearly all types of ana-
log effects has been investigated. However, not all the
proposed models integrate the variable control parameters
typically found on audio effect units. A comprehensive
model of an audio effect should include user-controllable
parameters that determine variations in the sound alter-
ation process. These parameters should allow for continu-
ous changes within their range, determining an immediate
change in the model’s response. To address this gap in
machine learning modeling of audio effects, we further in-
vestigate approaches for conditioning with control param-
eters artificial neural network models of different effects.
We compare three approaches used in the field, such as
the FiLM and GA layers, against concatenating the condi-
tioning information with the input samples representing the
baseline. FiLM and GA are placed at different stages in the
architecture to compare when the conditioning information
is more beneficial for prediction accuracy. Finally, control
parameters may present nonlinear relationships, resulting
in a variation of the sound alteration process of the audio
effect. Therefore, including nonlinearities in the condi-
tioning block can be beneficial. We use two audio effects
to evaluate the various conditioning approaches: overdrive
and compressor. For each effect, we select only two vari-
able parameters to condition the networks: the level and
tone for the overdrive and the ratio and threshold for the
compressor.

Section 2 presents our experiments’ methodology, archi-
tectures, and datasets. Section 3 detailed the obtained re-
sults and the consequent discussion, while Section 4 con-
cludes the paper with a summary of the findings.
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2. METHODS

The experiments reported in this paper aim to explore dif-
ferent conditioning methods for artificial neural network
modeling of audio effects. The architecture is based on
state-space models (SSMs) [12]. In particular, we employ
the diagonal state space model variant, the S4D layer [13].

We explore the placement of conditioning layers at differ-
ent stages of the neural network. Specifically, we consider
three configurations labeled pre, post, and pre-post. The
first configuration presents the conditioning layer before
the S4D layer, the second after the S4D layer, and the last
one includes a conditioning layer before and after the S4D
layer. At the same time, we evaluate different network ar-
chitectures for the conditioning layer.

In particular, we use the FiLM and the GA layers. The
first consists of computing two vectors from the condition-
ing information using a linear function to perform a linear
mapping of input or some layer’s output. The second in-
volves learnable convolution weights for the conditioning
vector and the latent space computed from the input vector.
The sigmoid is applied to the outputs of the first convolu-
tion, while the hyperbolic tangent is applied to the second
one. Finally, the two results are element-wise multiplied
together. The FiLM layer originally used FC layers to pre-
dict the coefficient for the transformation. We expand the
methods using convolution as in the GA. These approaches
are compared with a baseline we obtain by training simi-
lar S4D-based architecture without conditioning layers and
with conditioning values provided as input and the array
of audio samples. Furthermore, we carry out experiments
exploring different transformations inside the FiLM layer.
Linear mapping preserves the dimension of any affine sub-
spaces. Still, in the context of audio effect modeling, con-
trol parameters may present nonlinear relationships with
the sound-altering process of the audio effect. For this rea-
son, we explore nonlinear transformations to assert if in-
creasing the transformation complexity benefits the condi-
tioning process. In particular, we selected transformations
of odd orders due to their anti-symmetric characteristic.

As mentioned, the architecture selected for our exper-
iments is based on SSMs, particularly the S4D model.
These operate similarly to recurrent neural networks but
showed remarkable results on sequence modeling tasks
and improved accuracy also in audio effect modeling [14].
The remarkable ability of SSMs to capture long-range de-
pendencies stems from their utilization of a specific state
matrix known as the HiPPO matrix [15]. This matrix is
designed to encode all the past input history, finding a map
from the input to a higher dimensional space that repre-
sents the compression of the history. The matrix allows the
model to be conceptualized as a convolutional model that
decomposes an input signal onto an orthogonal system of
smooth basis functions. In this way, the state encodes the
history of the signal. Audio effects, to a different extent,
present time dependencies crucial for accurately modeling
them. The ability to track long dependencies in the input-
output audio is beneficial in this context. In addition, The
S4D model offers faster training times than classic RNNs
and is defined by parameterizing its state matrix as a diag-

onal matrix. As RNNs, SSMs offer advantages due to their
ability to capture dependencies in time-series data by uti-
lizing internal states rather than solely relying on the input
received at each iteration, such as a lengthy array of past
input samples. This aspect is crucial when the goal is to
achieve an implementation for live audio, which requires
low input-output latency, where input refers to both audio
and control parameters. We restrict the experimentation
to relatively small networks with low computational com-
plexity, allowing implementation on real-time consumer-
grade digital audio systems. Experiments are based on
models we have developed to exhibit minimal input-output
latency, using small blocks of audio samples we typically
find in computer-based audio processing dataflow as input.

The audio examples, dataset, source code, and trained
models described in this paper are available online 1 .

2.1 Architecture

The architecture of the artificial neural network used in this
study is shown in Figure 1, and consists of fully connected
(FC) layers and an S4D layer. The input is an array includ-
ing the 64 most recent samples of the effect input signal
xn. This choice is to give more context to the network but
without introducing significant latency. The input is lin-
early projected with an FC layer to compute un, which is
in turn fed to the S4D layer to obtain on. The S4D layer
does not present nonlinearity; for this reason, an FC layer
with a softsign activation function follows, obtaining ôn.
An FC layer with one unit is the output layer.

The conditioning block indicated in Figure 1 with a
dashed line can be placed at different network points. In
particular, before and after the S4D layer. The first vari-
ation utilizes a single conditioning layer after the linear
projection performed by the linear FC layer on the input.
The second presents the conditioning layer after the FC
layer with nonlinearity. Lastly, the third one places condi-
tioning on both the previously mentioned positions. These
experiments should reveal the optimal positioning of the
conditioning layer for the network processing of the audio
samples.

2.2 Conditioning Block

The types of conditioning blocks we compare in this study
are shown in Figure 2. These may include the FiLM layer
or the GA layer. As mentioned earlier, the FiLM method
applies an affine transformation to the vector pn represent-
ing the conditioning information. The conditioning vector
is fed to an FC layer to produce another vector ηn having
double the size of the conditioning vector. The output vec-
tor is split into two equally sized vectors, and the following
operation is then applied to pn:

p̂n = η1pn + η0 (1)

where η1 and η0 are the vectors obtained from the output
of the FC layer. Following the projection, it is common to
apply a function, such as ReLU or sigmoid, to determine

1 https://github.com/RiccardoVib/
Conditioning-Methods-for-Neural-Audio-Effects
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Figure 1. Architecture: the input is a vector including the
64 most recent input samples [xn, ..., xn−63], which is fed
to the network producing the output sample yn. The net-
work consists of a linear FC, S4D, and FC layer with soft-
sign activation function adding the nonlinearity. The out-
put layer is an FC layer with one unit. The dashed lines
indicate the possible placement of conditioning layers: af-
ter the linear projection, just before the output layer, or in
both positions.

the amount of information that should be passed. Our ap-
proach replaces the activation function with a Gated Linear
Unit (GLU) [16]. This layer is more stable than ReLU and
exhibits faster learning than sigmoid. Similarly to the pre-
vious step, the GLU layer consists of a linear FC layer that
takes the FiLM output vector as input and computes a vec-
tor twice its length. The resulting output is split equally
into two vectors: q1 and q2. A function is applied to q2,
and the resulting output is multiplied element-wise with
q1. The following equation describes the GLU layer:

oc
n = q1 ⊗ softsign(q2) (2)

The GLU layer determines the flow of information through
the network, acting as a logical gate. Typically, a sigmoid
activation function is used for this purpose. However, in
our approach, we introduce a softsign function instead.
The softsign function controls the extent to which the con-
trol parameters should positively or negatively influence
the final output. A value of 0 indicates a bypass, meaning
no influence on the output. This allows for more flexibility.

The gated activation (GA), instead, is described by the
following expression:

oc
n = tanh(hn)⊗ sigmoid(hn). (3)

where
hn = xn ∗ Wf + pn ∗ Wg (4)

with Wf , Wg representing the learned convolution
weights. Lastly, a modification of the GLU, named Gated
Convolutional Unit (GCU), is proposed by adding two par-
allel convolutional layers instead of the linear FC layer.
The primary objective of this study is to explore and extend
the conditioning methods to investigate how effective they
are in influencing inferring networks based on the condi-
tioning information. For this reason, we applied and com-
pared the previously mentioned methods, the GA, FiLM-
GLU, and FiLM-GCU, placing them at different stages of
the architecture (post, pre, pre-post). All the conditioning
layers are designed to have a similar number of parame-
ters. Finally, when using the FiLM layer, we experiment
also with the following nonlinear transformations:

f(pn) = η1pn
3 + η0

f(pn) = η1pn
5 + η0 (5)

2.3 Dataset

For this study, we selected two different audio effects:
overdrive distortion and dynamic range compression.
These types are representative of the effects already suc-
cessfully modeled using black-box neural network tech-
niques. For each effect unit, we selected only two variable
control parameters. Our primary goal is to evaluate the
prediction accuracy of the networks when influenced by
control parameters used as conditioning information. We
collected data from effects implemented as software plu-
gins to have enough flexibility. The data were collected
using a tool that facilitates and speeds up the collection of
reproducible datasets from audio effects 2 . The parame-
ters were sampled with 3 equally spaced values across the
ranges.

The selected effects are FabFilter Pro-C 2 (C1) 3 ,
SphereComp (C2) 4 , Auditory Dr Drive (OD1) 5 , Otto8
Overdrive (OD2) 6 . The selected variable parameters are
the ratio and threshold for the compressor, drive, and tone
levels for the overdrive. The ratio range is [1.5:1, 10:1],
while the threshold is between [-3, -36] dB. The over-
drive effect’s parameters are percentages that do not re-
late to measurable quantities. The selected range is [10%,
100%]. For both effects, the selected range determines
at least some compression or distortion (i.e., no settings
generating a fully dry output signal). Table 1 summarizes
the ranges and values for each audio effect. The dataset
from the selected audio effects was developed by record-
ing the effect’s output for different combinations of the
selected control parameters. Three equally spaced values
were recorded for each parameter, resulting in 9 combi-
nations for each effect. The audio data was recorded at a

2 https://github.com/stefanofasciani/DGMD
3 https://www.fabfilter.com/products/

pro-c-2-compressor-plug-in
4 https://www.waproduction.com/plugins/view/

spherecomp
5 https://www.audiority.com/shop/dr-drive/
6 https://www.pluginboutique.com/products/

8864-OTTO8-OVERDRIVE
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Figure 2. Conditioning layers. Gated Activation (left): the vector representing the conditioning information pn and
the input vector on are passed to two convolutional layers which to the outputs are applied the sigmoid function and
the hyperbolic tangent, separately. Their results are element-wise multiplied together. FiLM-GLU (middle): the vector
representing the conditioning information pn fed an FC. The outcome is the vector with a length double the input size.
This output vector is then split into two vectors that are used to apply a transformation (Equation 1 or 5) indicated with f()
to the vector on. Subsequently, the transformed vector passes through another linear FC layer, producing another output
vector double the length of its input. This output is split into two halves: the first one is applied to the softsign function, and
the second one is multiplied element-wise. FiLM-GCU (right): similar to the FiLM-GLU case, but after the transformation
f(), the vector is passed to two convolutional layers.

Software Parameters Range
Compressors Ratio [1.5:1, 4:1, 10:1]

Threshold [-3, -20, -36] dB
Overdrives Drive [10%, 45%, 100%]

Bright/Tone [10%, 45%, 100%]

Table 1. Software effects selected for the experiments, with
parameters and their respective ranges.

sampling rate of 48 kHz. For each combination, the ef-
fects were fed with a mono input signal with a duration of
2 minutes. The input signal includes a variety of sounds,
such as frequency sweeps covering a range of 20 Hz to 20
kHz, white noises with increasing amplitudes (both linear
and logarithmic), recordings of instruments such as guitar,
bass, drums (both loops and single notes), vocals, piano,
pad sounds, and sections from various electronic and rock
songs. The control parameters of each effect are mapped to
the range [0, 1] before using them as network conditioning
information.

The C1 and OD1 datasets were used for the experiments
investigating the conditioning methods and the placements,
while the latter two were employed for further experiments
aiming to confirm the findings of the previous experiments.

2.4 Experimenting and Learning

The models are trained for 60 epochs and use the Adam
[17] optimizer with a gradient norm scaling of 1 [18]. The
training was stopped earlier in case of no reduction of vali-
dation loss for 10 epochs. We design a time-based schedule
for the learning rate as follows:

lr =
LR

e4
(6)

with LR the initial learning rate, that in our case is 3 · 10−4

and e the number of the current epoch. The loss function
used is the mean square error (MSE) and is computed us-
ing the model’s weights that minimize the validation loss
throughout the training epochs. The input signal is split
into segments of 600 samples (equivalent to 12.5 ms) to
be processed before updating the weights. The models are
evaluated using the MSE, error-to-signal-ratio (ESR), and
multi-resolution short-time Fourier transform (STFT) error
with resolutions of [256, 512, 1024] samples.

Finally, the dataset is split into 80% for the training set,
10% for the validation set, and the remaining 10% for the
test set. The data was divided into an 80− 10− 10% split
at the individual recording level, ensuring that all control
parameter combinations were equally represented in each
subset and that they were used consistently for both train-
ing and evaluating the model. The test set includes audio
unseen during training, while all parameter combinations
are included in the training set. We do not evaluate the
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models’ ability to predict audio for conditioning parame-
ters never seen during training. Minor manual adjustments
are made to ensure that splitting points for audio record-
ings fall within segments of silence.

3. RESULTS

Tables 2 and 3 report the prediction errors related to dif-
ferent types of conditioning layers and placements. These
errors relate to models trained using the C1 and OD1
datasets. In both cases, the baseline model, as expected,
shows lower performances. When considering the com-
pressor, in Table 2, the GA method presents larger errors
in all cases. The affine transformation of the FiLM method
results is beneficial, especially if placed after the S4D
layer, and even if with smaller differences, using fully-
connected layers in the gated unit leads to generally better
prediction accuracy. These performances can also be ob-
served in Figure 3, where the compression curves of the
target and the model’s predictions are shown. In particu-
lar, the curves refer to the three different ratios against a
threshold set to −20 dB. The FiLM layer shows the best
performance, especially when encountering heavier com-
pression. On the other hand, GA particularly underesti-
mates the compression in all the cases. Conversely, for the
overdrive, the GA performs generally better than when ap-
plied to the compressor. In addition, using convolution in
the gated unit after the FiLM operation leads to the best
results in all cases, indicating convolution is particularly
beneficial in overdrive modeling. The best accuracy is
found in the FiLM-GCU case when placed before the S4D
layer, but it presents a small gap with the post placements.
In addition, placing the conditioning after the S4D layer
led to general improvements when considering the other
methods. This suggests that also, in the overdrive case, it
is more beneficial for the networks to use the information
given by the control parameters to project the output of the
S4D layer and determine the extent to which this informa-
tion influences the final output rather than influencing the
inference of the recurrent layer based on the control param-
eters. Lastly, we note that the pre-post configuration leads
to the worst performance for the overdrive dataset. From
Figure 4, we observe that the three methods perform simi-
larly, predicting the conditioning case in the middle of the
range. GA improves when encountering heavy distortion
and degenerates in the light distortion case, while FiLM
shows the opposite trend. FiLM-based layers showed the
best overall modeling accuracy in both cases, especially if
placed after the S4D layer. GLU and GCU performance
depends on the dataset. The overdrive type works better
when convolutional layers are used, while the compressor
shows better accuracy using a linear FC layer. The same
trend is evident when training models with C2 and OD2
datasets, as visible in Table 4. These experiments are per-
formed only in the post configuration. Again, convolution-
based conditioning resulted in more benefits for the over-
drive, while GLU remains a better candidate for compres-
sors. The choice may depend on the influence of the vari-
ous parameters on the output sound, particularly their non-
linear relationship between control parameters and their

Figure 3. Compression curves of targets and predictions
using the three different conditioning methods: GA, FiLM-
GLU, and FiLM-GCU. The set threshold is −20 dB, while
the ratio is 1.5:1 (top), 4:1 (middle), and 10:1 (bottom).
The target example was not present in the training set. The
plots refer to the C1 dataset.

impact on the effect’s sound alteration process. To further
investigate this aspect, we extend the transformation inside
the FiLM layer with equations of order greater than one
and odd. Even orders are discarded because of their sym-
metrical nature. The applied transformations are listed in
Equation 5. Table 5 reports the errors, and as expected, in
the case of the overdrive, a nonlinear transformation of or-
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Method Stage MSE ESR STFT
Baseline - 8.27 · 10−3 2.98 · 10−1 6.84 · 10−1

GA Post 7.23 · 10−3 2.60 · 10−1 5.51 · 10−1

FiLM-GLU Post 2.00 · 10−3 7.24 · 10−2 1.82 · 10−1

FiLM-GCU Post 2.70 · 10−3 9.73 · 10−2 3.15 · 10−1

GA Pre 7.92 · 10−3 2.85 · 10−1 8.41 · 10−1

FiLM-GLU Pre 4.49 · 10−3 1.62 · 10−1 5.02 · 10−1

FiLM-GCU Pre 4.42 · 10−3 1.59 · 10−1 4.81 · 10−1

GA Pre-Post 6.81 · 10−3 2.45 · 10−1 7.34 · 10−1

FiLM-GLU Pre-Post 3.37 · 10−3 1.21 · 10−1 4.00 · 10−1

FiLM-GCU Pre-Post 5.51 · 10−3 1.98 · 10−1 6.23 · 10−1

Table 2. MSE, ESR, and STFT errors referring to the different conditioning methods and placements, if applicable, and for
the compressor C1 case. In bold are indicated the best results for each method and placement.

Method Stage MSE ESR STFT
Baseline - 2.99 · 10−2 4.59 · 10−1 7.17 · 10−1

GA Post 7.41 · 10−3 1.13 · 10−1 3.79 · 10−1

FiLM-GLU Post 7.92 · 10−3 1.21 · 10−1 3.13 · 10−1

FiLM-GCU Post 7.17 · 10−3 1.10 · 10−1 3.31 · 10−1

GA Pre 7.93 · 10−3 1.21 · 10−1 4.01 · 10−1

FiLM-GLU Pre 8.24 · 10−3 1.26 · 10−1 3.77 · 10−1

FiLM-GCU Pre 6.86 · 10−3 1.05 · 10−1 3.28 · 10−1

GA Pre-Post 9.24 · 10−3 1.41 · 10−1 4.05 · 10−1

FiLM+GLU Pre-Post 8.39 · 10−3 1.28 · 10−1 3.97 · 10−1

FiLM-GCU Pre-Post 8.00 · 10−3 1.22 · 10−2 3.65 · 10−1

Table 3. MSE, ESR, and STFT errors referring to the different conditioning layers and placements, if applicable, and for
the overdrive OD1 case. In bold are indicated the best results for each method and placement.

Dataset Method Stage MSE ESR STFT
C2 GA Post 8.31 · 10−4 8.71 · 10−2 3.49 · 10−1

FiLM-GLU Post 6.72 · 10−4 7.04 · 10−2 2.76 · 10−1

FiLM-GCU Post 7.11 · 10−4 7.45 · 10−2 2.75 · 10−1

OD2 GA Post 1.82 · 10−3 1.87 · 10−1 3.92 · 10−1

FiLM-GLU Post 2.01 · 10−3 2.06 · 10−1 4.46 · 10−1

FiLM-GCU Post 1.71 · 10−3 1.76 · 10−1 4.06 · 10−1

Table 4. MSE, ESR, and STFT errors referring to the C2 and OD2 datasets, with the different conditioning layers and post
configuration. In bold are indicated the best results for each method and placement.

ders 3 and 5 results beneficial. A nonlinear function more
accurately represents the distortion introduced as a func-
tion of the two parameters. However, when an equation of
the fifth order in the opposite degenerates the performances
in the model trained with the OD1 dataset, a fifth-order
transformation may provide excessive steepness in the re-
sponse of the conditioning layer for the OD1. Still, the be-
havior is the opposite for the OD2 dataset, which improves
when increasing the order. Differently, the compressors do
not benefit from nonlinear transformations, which is con-
sistent with the previous results where GLU showed the
best modeling accuracy.

4. CONCLUSION

Artificial neural networks have been used to model various
audio effects, showing sufficient accuracy in most cases.
At the same time, real-time and low-latency capability is
still a challenge as many proposed models use large ar-
tificial neural networks. Most models are also limited in
emulating the variable response of an audio effect, which
generally occurs when tuning the parameters exposed to
users. How to feed parameter-related information into the
modeling networks is fundamental to achieve an accurate
fully-conditioned emulation. In this study, we investigated
this aspect, starting from an architecture based on a state-
space layer. We compared two conditioning methods, the
first based on gated activation and the other on feature-
wise linear modulation. The latter is commonly used for
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Dataset Method Order MSE ESR STFT
C1 FiLM-GLU 1 2.00 · 10−3 7.24 · 10−2 1.82 · 10−1

- FiLM-GLU 3 2.21 · 10−3 7.99 · 10−2 2.15 · 10−1

- FiLM-GLU 5 2.51 · 10−3 9.05 · 10−2 2.64 · 10−1

- FiLM-GCU 1 2.70 · 10−3 9.73 · 10−2 3.15 · 10−1

- FiLM-GCU 3 3.98 · 10−3 1.43 · 10−1 4.65 · 10−1

- FiLM-GCU 5 5.20 · 10−3 1.87 · 10−1 4.44 · 10−1

C2 FiLM-GLU 1 6.72 · 10−4 7.04 · 10−2 2.76 · 10−1

- FiLM-GLU 3 8.88 · 10−4 9.31 · 10−2 3.39 · 10−1

- FiLM-GLU 5 8.69 · 10−4 9.11 · 10−2 3.40 · 10−1

- FiLM-GCU 1 7.11 · 10−4 7.45 · 10−2 2.76 · 10−1

- FiLM-GCU 3 7.77 · 10−4 8.15 · 10−2 3.03 · 10−1

- FiLM-GCU 5 9.19 · 10−4 9.64 · 10−2 3.60 · 10−1

OD1 FiLM-GLU 1 7.92 · 10−3 1.21 · 10−1 3.13 · 10−1

- FiLM-GLU 3 7.32 · 10−3 1.12 · 10−1 3.10 · 10−1

- FiLM-GLU 5 9.08 · 10−3 1.39 · 10−1 3.23 · 10−1

- FiLM-GCU 1 7.17 · 10−3 1.10 · 10−1 3.31 · 10−1

- FiLM-GCU 3 7.57 · 10−3 1.16 · 10−1 3.55 · 10−1

- FiLM-GCU 5 8.96 · 10−3 1.23 · 10−1 3.67 · 10−1

OD2 FiLM-GLU 1 2.01 · 10−3 2.06 · 10−1 4.46 · 10−1

- FiLM-GLU 3 1.30 · 10−3 1.34 · 10−1 3.07 · 10−1

- FiLM-GLU 5 1.38 · 10−3 1.42 · 10−1 3.24 · 10−1

- FiLM-GCU 1 1.71 · 10−3 1.76 · 10−1 4.06 · 10−1

- FiLM-GCU 3 1.28 · 10−3 1.31 · 10−1 3.07 · 10−1

- FiLM-GCU 5 1.19 · 10−3 1.22 · 10−1 3.05 · 10−1

Table 5. MSE, ESR, and STFT errors referring to FiLM-GLU and FiLM-GCU conditioning methods, with different
transformations as listed in Equation 5. In all cases, the conditioning layer is placed after the S4D layer.

conditioning neural networks in other application domains.
The technique includes performing an affine transforma-
tion via learnable coefficients based on conditioning infor-
mation. We improved the methods by adding gated linear
and gate convolutional units. The study is based on two
types of audio effects, distortion, and compression, which
have proven to be accurately modeled using artificial neu-
ral networks. Distortion and compression have been cho-
sen due to their significantly different sound-altering char-
acteristic. Results showed the FiLM outperforms other
approaches, and its placement after the S4D layer leads
to more accurate emulations of the audio effect response.
Both are compared when placed at different stages of the
architecture and used as baseline feeding the condition-
ing information concatenated to the input samples. The
gated linear unit is beneficial in the compressor case, while
the convolutional counterpart is more suitable for the over-
drive. In addition, the FiLM layer considering nonlinear
transformations is beneficial for the overdrive effect, which
parameters may present a stronger nonlinear relationship
with the associated sonic response of the effect. In par-
ticular, a nonlinear transformation of the third order led to
better results for the overdrive dataset, while no improve-
ments were noted for the compressor.

The study will be extended to various effects in future
work, incorporating control parameters with different char-
acteristics. In particular, this study does not include pa-
rameters changing the temporal profile of the compression,
namely the attack and release time. In addition, nonlinear

mappings in the conditioning layer have been found ben-
eficial when modeling overdrive. Future studies will be
extended to include more refined transformations.
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