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ABSTRACT

Machine learning techniques are commonly employed for
modeling audio devices, particularly analog audio effects.
Conditioned models have been proposed as well. The con-
ditioning mechanism utilizes the control parameters of the
modeled device to influence the sound alteration process.
Neural networks are shown to be capable of interpolating
between conditioning parameter values. This paper fur-
ther investigates the interpolation ability of neural audio
effects. In particular, we introduce additional conditioning
parameters to instruct the neural network to learn and pre-
dict different audio effects using Feature-wise Linear Mod-
ulation and the Gated Linear Unit. The resulting model is
a hybrid neural effect that can reproduce, depending on the
conditioning values, the audio-altering process of a spe-
cific audio effect or interpolates between them. We cre-
ated hybrid audio effects from a preamp circuit, an optical
compressor, and a tape recorder. The designed models are
able to learn the sound alteration processes for individual
effects and their combinations without producing audible
artifacts, and users can use the conditioning parameters to
navigate in a continuous space where each point represents
a different hybrid audio effect.

1. INTRODUCTION

Neural networks have been extensively used to model ana-
log audio effects. Starting from a distortion pedal, us-
ing a multilayer forward network [1], and continuing with
convolutional-based networks for vacuum-tube amplifiers
and various distortion pedals [2, 3]. Recurrent Neural Net-
works (RNNs), such as Long-Short Time Memory (LSTM)
and Gated recurrent unit (GRU) networks have been inves-
tigated as well for similar types of effects [4, 5]. Works in-
cluding control parameters exploited gated activation func-
tion when using convolutional-based networks, while for
the case of RNNs, the control parameter has been consid-
ered as an extra input to the network. Compressor audio
effects have been explored as well. Temporal Convolu-
tion Network (TCN) has been used for an optical compres-
sor [6] together with the Feature-wise Linear Modulation
(FiLM) method [7] as a conditioning method. In this case,
the network models also have two conditioning parame-
ters of the target device. A sequence-to-sequence model,
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based on recurrent networks, was used for another optical
compressor. In this case, the conditioning is incorporated
by exploiting the LSTM internal states [8]. Starting with
two control parameters, the work was later extended to a
fully conditioned model, including all four control param-
eters of the target device [9]. Delay-based effects could
present additional challenges due to the variable temporal
misalignment between input and output. In [10], a tape-
based delay is modeled using GRU networks. The de-
lay trajectory is first analyzed and extracted using impulse
train signals. This signal represents the variable delay in
samples over time. It is used to demodulate the signal be-
fore training the models or to directly guide a delay line
built using differentiable signal processing [11]. In this
way, the network can learn the saturation of the magnetic
tape and an arbitrary delay line can be added a second time.
LFO delay-based effects have been considered as well. In
[12], authors use as extra input the LFO signal represent-
ing the frequency response of a time-varying system over
time. By doing so, the model can theoretically produce
LFO delay-based effects with arbitrary modulations. Com-
bining the interpolation capability of the neural networks
and the possibility of creating hybrid analog audio effects
with a non-existent equivalent in the real world, we con-
ceived a multi-type effect combining three analog effect
types: a vacuum tube-based preamplifier, an optical com-
pressor, and a tape recorder. The conditioning process uses
the FiLM method, while the model inference is based on
RNNs. The design of a neural model that emulates vari-
ous analog audio and interpolates among them has not yet
been investigated in the literature. Here, we propose using
neural networks to create a hybrid between different sound
coloring audio effects. In particular, the proposed model
emulates the saturation-based coloring of tape recorders,
tube-based amplification, and optical-based compression.
These devices are based on three different and distant phys-
ical mechanisms. The resulting models navigate a one- or
multi-dimensional space between two or three sound color-
ings. The rest of the paper is organized as follows. Section
2 details the functioning of the effect considered in this
work. Section 3. describes the methodology and dataset
we collected for our studies. Section 4 reports and dis-
cusses the results, while Conclusions are included in Sec-
tion 5.
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2. SELECTED ANALOG EFFECTS

The first effect we selected for this experimentation is the
Universal Audio vacuum tube preamplifier 610-B 1 . In
this case, the device includes the Universal Audio 6176
Channel Strip, which also features a transistor-based lim-
iter amplifier 1176LN 2 .

The second selected effect is the TUBE-TECH CL1B
compressor 3 . This device is tube-based and optical,
where the audio signal feeds a lighting element that, in
turn, illuminates a light-sensitive resistor in the compres-
sion circuit. The resistance affects the compression circuit,
determining how much and how quickly it attenuates the
incoming audio signal. The CL 1B presents an output tube-
based push-pull amplifier with variable gain, which is used
to add harmonic distortion after the compression stage and
not to limit the dynamics.

Finally, the third selected effect is the Akai 4000D open-
reel tape recorder 4 . Tape recorder devices are based on
magnetic tapes, which store the signal [13]. These de-
vices typically consist of a recording amplifier, a record-
ing head, a moving tape medium, a playback head, and a
playback amplifier. The input signal first passes into the
amplifier circuit and into an eventual stage equalization to
compensate for the sound coloring introduced by magnetic
tape. The signal is then routed to the tape record head and
to the output, which is summed with its delayed replicas.
The recording head produces a spatial magnetic field deter-
mined by both the recording head’s properties and the input
current’s magnitude. The playback head restores the sig-
nal to electrical form, which process depends on the tape
speed. The resulting delay effect is given by the position
of the recording head on the tape loop and the distance
from the playback head. In the last stage, another amplifi-
cation is applied to the signal before the output. The tape
movement speed is not perfectly constant due to small fluc-
tuations produced by imperfections in the tape transport
mechanics. These imperfections include cyclical compo-
nents produced by the moving parts in the transport mech-
anism and stochastic behavior. These inconsistencies in
the movement can be heard as small fluctuations in pitch.
Magnetic tapes also generate noise due to the recording
and playback processes.

3. METHODOLOGY

In this paper, we explore the interpolation capability of-
fered by ANNs for modeling a hybrid audio effect based
on the sound-altering process of different devices. For
this experimentation, we have selected three significantly
different analog audio effects, such as a vacuum tube
pre-amplifier, an optical compressor, and a tape recorder.
When training the system, we use extra input parameters
to inform the neural network which of the three effects has

1 https://www.uaudio.com/hardware/mic-preamps/
solo-610.html

2 https://www.uaudio.com/hardware/6176.html
3 http://www.tube-tech.com/

cl-1b-opto-compressor/
4 https://reel-reel.com/tape-recorder/

akai-4000d/

generated the current input-output raw audio pairs. These
parameters are used to condition the model during infer-
ence, allowing for generating a mixture of processing char-
acteristics learned from the different effects, even when in-
cluding intermediate conditioning settings not encountered
during training. This allows the user to navigate between
the alteration characteristics of the three analog effects. To
evaluate to what extent the neural network can learn in such
a context, we utilize two or three different audio effects
to train the hybrid. After training the network, we ver-
ify whether the model can accurately replicate the sound
alteration process of individual effects using the same con-
ditioning input used during training and evaluate if varying
the conditioning parameters to new values generates audi-
ble artifacts or spurious responses.

3.1 Architecture

The model is based on an encoder-decoder LSTM-based
architecture as in [8]. RNNs offer advantages due to their
ability to capture time dependencies in the data by utiliz-
ing internal states rather than solely relying on the input
to generate each output prediction. This aspect is crucial
when the goal is to achieve low input-to-output audio la-
tency, which is essential in live interactive applications.

The network architecture used in this work is shown in
Figure 1. It consists of two LSTM layers, a linear fully
connected (FC) output layer, and the conditioning block.
The network utilizes the 64 most recent input audio sam-
ples to generate one output audio sample. The input is split
into 63 past samples [𝑥𝑛, ..., 𝑥𝑛−63] to feed the first LSTM
layer. The input sample 𝑥𝑛 at the current time step is first
sent to the second LSTM layer. The first LSTM layer acts
as an encoder and processes the 63 samples to compute the
internal states [ℎ, 𝑐], which are used by the second LSTM
layer. The latter uses the internal states to infer the output
sample. The output is sent to the conditioning block, which
is manipulated based on a continuous control parameter in-
dicating the perceptual of the type of effect to use. A lin-
ear FC layer with one unit computes the output sample.
The LSTM layers present 8 hidden units each, while the
FC layers inside the conditioning block have 16 each. The
architecture presents a maximum of 856 trainable parame-
ters, depending on the design of the conditioning strategy.

3.2 Conditioning

The conditioning block, shown in Figure 2, consists of a
Feature-wise Linear Modulation (FiLM) layer followed by
a Gated Linear Unit (GLU) [14] layer. The FiLM layer ap-
plies an affine transformation to the vector 𝑝𝑛 representing
the conditioning information:

𝑜𝑛 = 𝜂𝑎𝑜𝑛 + 𝜂𝑏 (1)

where 𝜂𝑎 and 𝜂𝑏 are two vectors obtained from splitting
the output of a linear FC layer fed with 𝑝𝑛. A GLU layer
follows the FiLM block to determine the amount of infor-
mation that should be passed. The GLU layer consists of a
linear FC layer that takes the FiLM output vector as input

https://www.uaudio.com/hardware/mic-preamps/solo-610.html
https://www.uaudio.com/hardware/mic-preamps/solo-610.html
https://www.uaudio.com/hardware/6176.html
http://www.tube-tech.com/cl-1b-opto-compressor/
http://www.tube-tech.com/cl-1b-opto-compressor/
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Figure 1. Architecture: the input is an array of the last
64 input audio samples [𝑥𝑛, ..., 𝑥𝑛−63], which is used
to produce the output sample 𝑦𝑛. The input samples
[𝑥𝑛−1, ..., 𝑥𝑛−63] are used as input of an LSTM layer, act-
ing as an encoder. The input sample at the current time
step 𝑥𝑛 is first transformed by another LSTM layer acting
as a decoder using internal states from the encoder. The
output of the decoder LSTM layer is processed by the con-
ditioning block followed by a linear FC layer with one unit,
which produces the output audio sample 𝑦𝑛.

and computes a vector with twice its length. The result-
ing output is split equally into two vectors: 𝑞1 and 𝑞2. The
softsign function is applied to 𝑞2, and the resulting output
is multiplied element-wise with 𝑞1. Hence, the GLU block
is described by the following:

𝑜𝑐
𝑛 = 𝑞1 ⊗ 𝑠𝑜𝑓𝑡𝑠𝑖𝑔𝑛(𝑞2) (2)

The GLU layer determines the flow of information through
the network, acting as a logical gate. The softsign activa-
tion function controls the extent to which the control pa-
rameters should influence the final output.

3.3 Datasets

The microphone tube preamplifier datatset 5 was recorded
from a 6176 Vintage Channel Strip unit [15]. The preamp
was overdriven, setting the gain to +10dB, the output level
to 6, and both high and low boost/cut to 0 dB. This config-
uration resulted in high harmonic distortion.

The compressor dataset 6 originally included 5 equal-
spaced values for the threshold, ratio, attack, and release
parameters. For this work, we limited to only the recording
with the threshold set to −10 dB, ratio to 4:1, attack to
0.5 ms, and release 0.05 seconds.

Lastly, the tape delay dataset is from [10]. In particular,
we used the MAXELL, 7

2 inches per second configuration.
Since the audio files in the dataset present time delay, they

5 https://zenodo.org/records/3562442
6 https://www.kaggle.com/datasets/

riccardosimionato/tubetech-cl-1b
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Figure 2. Conditioning Block: the conditioning informa-
tion vector 𝑝𝑛 fed a linear FC layer that produce an output
with double its input length. This output vector is split
into two vectors used to apply an affine transformation on
the vector 𝑜𝑛, which represents the current input sample of
the network. Subsequently, the transformed vector passes
through another linear FC layer, producing another output
vector double the length of its input. This output is also
split into two halves. To one half is applied the softsign
function, and the result is multiplied element-wise to pro-
duce the final output.

were also time-aligned using the delay trajectory, which
was included in the datasets before the training.

We limited the datasets to 3 minutes and 20 seconds,
which is the length of the shortest dataset, specifically the
CL1B compressor dataset. By doing so, we ensure an
equal amount of recordings from the two different effects
in the datasets used for this study. In addition, 3 minutes at
44.1 kHz is shown as sufficient data for training [4]. We
experimented with training 4 different hybrid neural audio
effects. We utilize the three different pairs of datasets with
a single conditioning parameter and the three datasets with
a triplet of individual conditioning parameters, as detailed
in Table 1. We also train three separate models with only
one effect dataset as a baseline for modeling accuracy.

3.4 Experimenting and Learning

The models are trained for 60 epochs and use the Adam
[16] optimizer with a gradient norm scaling of 1 [17]. The
training was stopped earlier in case of no reduction of vali-
dation loss for 10 epochs. We design a time-based schedule
for the learning rate as follows:

𝑙𝑟 = 𝐿𝑅 * 0.25𝑒. (3)

LR represents the initial learning rate, which is 3 · 10−4,
and 𝑒 represents the current epoch’s number. The loss
function used is the mean square error (MSE) and is com-
puted using the model’s weights that minimize the valida-
tion loss throughout the training epochs. The input signal
is split into segments of 600 samples (equivalent to 13.6

https://zenodo.org/records/3562442
https://www.kaggle.com/datasets/riccardosimionato/tubetech-cl-1b
https://www.kaggle.com/datasets/riccardosimionato/tubetech-cl-1b


Model Dataset composition p
P preamplifier -
C compressor -
T tape recorder -
TP tape recorder 0.0

preamplifier 1.0
CP compressor 0.0

preamplifier 1.0
CT compressor 0.0

tape recorder 1.0
CTP compressor [1.0, 0.0, 0.0]

tape recorder [0.0, 1.0, 0.0]
preamplifier [0.0, 0.0, 1.0]

Table 1. Models and datasets composition with the respec-
tive conditioning parameter values (p) used for the training.

ms) to be processed before updating the weights. The mod-
els are evaluated using the MSE, ESR, and multi-resolution
STFT with [256, 512, 1024] as resolutions.

Finally, the dataset is split into 80% for the training set,
10% for the validation set, and 10% for the test set. The
80 − 10 − 10% split was carried out at the individual
dataset level, which ensures that both effects examples are
included with an equal share in each subset and are equally
used for training and evaluating the model. Minor man-
ual adjustments are made to ensure that splitting points fall
within segments of silence.

4. RESULTS

Table 2 details the errors for all the cases. Specifically,
when considering models trained with a mixture of audio
effects, the error refers only to the segment of the test set
representing a specific effect. In this way, we assert how
much the model accuracy drops when including more ef-
fects compared to a model that includes only one of them.
We can see how, as expected, all the errors particularly in-
creased in the case of CTP. In CTP, we can note a drastic
drop in performance for the tape recorder test set. CTP
represents the most complex case, where a single model is
expected to emulate significantly different audio alteration
processes. Considering the case with two effects, the em-
ulation of the tape recording when the preamplifier dataset
is included is less accurate. At the same time, a minor
drop in accuracy happens if the compression is learned to-
gether with the tape delay. Even if there is significantly less
performance drop, the same happens with the preamplifier.
Learning the compression is more difficult when it needs to
be learned in combination with the tape recorder. This sug-
gests that it is particularly challenging for the model to add
and remove time misalignments between input and output
and, in turn, the time shifting during the process. The TP
model resulted in more challenges during the learning pro-
cess, likely due to their effect on the sound: the preampli-
fier generates a significant harmonic distortion in the sig-
nal, while the tape recorder introduces time fluctuations.
The compressor, on the other hand, requires less alteration

Dataset MSE ESR STFT
P 4.34 · 10−2 1.55 · 10−1 3.94 · 10−1

C 1.52 · 10−4 1.07 · 10−1 3.10 · 10−1

T 3.46 · 10−4 1.44 · 10−1 2.51 · 10−1

TP (T) 1.36 · 10−3 5.66 · 10−1 8.11 · 10−1

TP (P) 5.05 · 10−2 1.81 · 10−1 3.83 · 10−1

CP (C) 4.11 · 10−4 2.91 · 10−1 5.42 · 10−1

CP (P) 5.00 · 10−2 1.79 · 10−1 3.78 · 10−1

CT (C) 1.03 · 10−3 7.31 · 10−1 9.63 · 10−1

CT (T) 4.52 · 10−4 1.88 · 10−1 3.02 · 10−1

CTP (C) 3.93 · 10−4 2.78 · 10−1 3.44 · 10−1

CTP (T) 2.16 · 10−2 9.02 · 10−1 1.80
CTP (P) 5.54 · 10−2 1.98 · 10−1 4.37 · 10−1

Table 2. MSE, ESR, and STFT errors referring to the mod-
els trained detailed in Table 1. In this latter case, the errors
also refer to the segment of the test set considering the con-
ditioning cases separately. Specifically, T refers to the case
of Tape, P to preamplifier, and C to compressor mode.

of the signal. Looking at the spectrograms, as can be seen
in Figure 3, the prediction of the CTP model, referring to
the compressor, is the least affected by the mixture of ef-
fects, while the preamplifier and the tape recorder present
more mismatch in the high-frequency content respect to
the singular cases represented by the T and C model. In ac-
cordance with the STFT errors, the preamplifier is the least
affected among the cases considering two effects, while
the compressor presents more mismatch CTP, although the
CTP model presents lower errors. The tape delay presents
the most mismatch in frequency content in CTP. This could
be because tape delay time shifting is present in a smaller
percentage, considering the total amount of data. The time
shifting in the TP and CP cases represents half of the seen
examples. Additionally, as shown in Figure 4, the T and
CT models similarly emulate the time misalignment intro-
duced by the tape recorder dataset, while the TP model,
modeling also the preamplifier, is less accurate with this
aspect. Also, the TP model underpredicts the amplitudes.
The CTP model, even if it still mispredicts the amplitude,
better models the time fluctuations. On the other hand,
all models still capture the time shifting. Figure 5 shows
the predictions of CP, CT, and TP models when the pa-
rameter is set at the middle of the navigable space, such
as 0.5. In this scenario, the model generates a hybrid ef-
fect between the two analog effects, representing situations
that are not reproducible in the real-world and, in turn,
are not comparable with real recordings. The plots show
how the model creates the hybrid effects. For example,
looking at the time plot, the CP model amplifies a com-
pressed version of the input signal. Additionally, Figure 6
shows the spectrograms of the output models when con-
tinuously changing the conditioning parameters by modu-
lating it using sine waves at 0.05 Hz. From the spectro-
gram, we can see that no visible artifacts were introduced
in the process. Similarly, Figure 7 shows the predic-
tions in the case of the CTP model considering various
parameter values, such as [0.3, 0.3, 0.3], [0.5, 0.25, 0.25],
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Figure 4. Input, target, and prediction referring to a segment of the tape recorder test set for the case of T, CT, TP, CTP, and
TCP models. The plots show the time fluctuations present in the tape recorder dataset.
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Figure 5. Waveforms and spectrograms (normalized) of 20 seconds included in the test sets, resulted from the CP (left), CT
(middle), and TP (right) models when the parameter is 0.5.

[0.25, 0.5, 0.25], and [0.25, 0.25, 0.5]. The conditioning
vectors were chosen to have a norm not greater than 1.. On
the other hand, in the CP, TP, and CT models, where the pa-
rameters switch continuously between the effects, the con-
ditioning is designed differently in this case. In particular,
CTP has 3 different parameters governing the amount of
the effects to add to the input signal. With these condition-

ing values, all the waveforms present visible compression,
enhanced in the case with [0.5, 0.25, 0.25] as the condi-
tioning vector, as expected. Analogously, when the con-
ditioning vector is [0.25, 0.25, 0.5], the model amplifies
more than the other cases. To further explore the model
behavior, Figure 8 presents extreme conditioning cases,
such as [0.0, 0.0, 0.0] and [1.0, 1.0, 1.0]. When the val-
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Figure 6. Normalized spectrograms of a 20 second signal resulted from the CP (left), CT (middle), and TP (right) models
when the parameter is continuously changed by modulating it using a sine wave at 0.05 Hz.

0

5000

10000

15000

20000

Fr
eq

ue
nc

y 
[H

z]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [sec]

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

0

5000

10000

15000

20000

Fr
eq

ue
nc

y 
[H

z]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [sec]

1.0

0.5

0.0

0.5

1.0
Am

pl
itu

de

0

5000

10000

15000

20000

Fr
eq

ue
nc

y 
[H

z]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [sec]

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

0

5000

10000

15000

20000

Fr
eq

ue
nc

y 
[H

z]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [sec]

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

Figure 7. Waveforms and normalized spectrograms of a 20 second signal resulted from the CTP model when the parameter
is [0.3, 0.3, 0.3] (top-left), [0.5, 0.25, 0.25] (top-right), [0.25, 0.5, 0.25] (bottom-left), and [0.25, 0.25, 0.5] (bottom-right).

ues are set to [1.0, 1.0, 1.0], the model significantly am-
plifies the amplitude’s input signal, as though three differ-
ent predictions are added separately. Interestingly, when
the parameter vector is set to [0.0, 0.0, 0.0], the model sig-
nificantly compresses the signal instead of replicating the
input signal. This latter behavior suggests that the three
parameters do not simply indicate the amount of the sin-
gular effects added to the input signal; instead, they de-
scribe a more complex transformation. Figure 8 shows
two other cases with conditioning vectors having a norm
greater than 1., such as [0.5, 0.5, 0.5] and [0.3, 0.8, 0.5].
Also, in these cases, the signal is still significantly ampli-

fied and presents amplitudes greater than 1.. Finally, Fig-
ure 9 shows the spectrogram of the CTP model when con-
tinuously changing the conditioning parameters by mod-
ulating it using three sine waves at 0.05, 0.07, and 0.09
Hz. The figure presents the case of musical and sawtooth
waves. Also here, as in all of the presented examples, as
can be seen, do not introduce visible artifacts, nor when
listening to the audio sample that can be found in 7 .

7 https://github.com/RiccardoVib/
Hybrid-Neural-Audio-Effects

https://github.com/RiccardoVib/Hybrid-Neural-Audio-Effects
https://github.com/RiccardoVib/Hybrid-Neural-Audio-Effects
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Figure 8. Waveforms and normalized spectrograms of a 20 second signal resulted from the CTP model when the parameter
is [0.0,0.0,0.0] (top-left), [1.0,1.0,1.0] (top-right), [0.5,0.5,0.5] (bottom-left), and [0.3,0.8,0.5] (bottom-right).

5. CONCLUSION

Machine learning nowadays integrates digital signal pro-
cessing to model physical systems, such as analog audio
effects. In this context, the models must be conditioned
based on the user control parameters to control how to al-
ter the sound modification process. Neural networks are
capable of interpolating between seen data. This paper in-
vestigates this interpolating ability to create hybrid models
mixing different audio effects and navigating a space not
directly existing in the physical world. With this goal, we
defined continuous parameters with the range [0.0, 1.0] to
condition the network and emulate different analog effects,
such as a compressor, a preamplifier, and a tape recorder.
We used three datasets from a real audio device and ex-
perimented with 4 different hybrid neural effects. Three
were trained utilizing different pairs of datasets with a sin-
gle conditioning parameter, and one was trained using all
datasets conditioned with a three-dimensional vector. The
conditioning layer is based on Feature-wise Linear Modu-
lation and Gated Linear Unit. The final models can nav-
igate between amplification, compression, and saturation
types of effect, although with less accuracy than the model
trained for a specific effect only. The hybrid models do not
introduce visible or audible artifacts when changing across
different sonic characteristics. The proximity in the 1D

space of the preamplifier or the tape recorder, the first cre-
ating harmonic distortion and the latter introducing time
fluctuations, interferes more with learning the other effect.
We showed two conditioning cases: the first uses a param-
eter to navigate a 1D space and interpolate among the two
learned effects; the second uses three parameters to deter-
mine the amount of the individual effects to add to the hy-
brid mixture of effects. The design of the parameters and
how to associate them with the different effects influence
the user’s morphing control. Different designs offer differ-
ent interaction affordances. We demonstrate that specific
neural network architecture, even with a small number of
parameters, can learn different nonlinear sound alteration
characteristics, such as those of distortion and compres-
sion, and temporal profiles of such effects, such as the
time-variant characteristics of the compression and time
shifting of the tape delay. Moreover, the approach can be
expanded to other effects, but the selected model must be
able to learn each effect separately in a black-box manner.
In addition, selecting effects with similar sound altering
characteristics can result in more accurate hybrid neural
effects, such as modeling multiple distortion devices.

In future work, the interoperability of the models will be
further investigated by including control parameters of in-
dividual audio effects as additional conditioning parame-
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Figure 9. Normalized spectrogram of a 20 second music
signal (top) and a 90 second sawtooth waves at 262.5, 525,
and 1050 Hz (bottom), produced by the CTP model when
the parameter is continuously changed by modulating it us-
ing a sine wave at 0.05, 0.07, and 0.09 Hz.

ters. This requires working with a homogeneous set of
audio effects that present similar or compatible control pa-
rameters. Introducing user-control parameters to further
condition the network can expand and enrich the sonic al-
teration capability of the hybrid audio effect.
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