SPECULATIVE MACHINE LEARNING IN SOUND SYNTHESIS

Luc DOBEREINER (doebereiner@iem.at) and David PIRRO (pirro@iem.at)

Institute of Electronic Music and Acoustics, University of Music and Performative Arts Graz, Austria

ABSTRACT

This paper explores the intersection of technical, concep-
tual, and artistic aspects of an ongoing engagement with
machine learning (ML), specifically with generative ML in
computer music, emphasizing the dynamics of the learn-
ing process over its outcomes. Unlike most approaches
that prioritize generating “realistic” instrumental or vocal
sounds from large datasets, this work integrates the sound
synthesis model directly into the learning system, allow-
ing neural networks to produce sound in real-time by con-
tinuously adapting and predicting. This method treats the
learning process’s behavior as a generative sound synthe-
sis process, making it perceptible. The research delves into
how various parameters, such as learning rate and ridge
regularization, influence the generation of sonorous be-
havior, and speculates on the possibilities of a radical re-
formulation of standard learning functions with a particu-
lar interest in complex, chaotic, and relational properties of
adaptive computational processes. The paper outlines the
motivation behind this exploration, introduces the “Spec-
ulative Sound Synthesis” project as its context, presents
two case studies to illustrate the approach, describes sev-
eral experimental artistic applications, and concludes with
reflections on the findings and future research directions.

1. INTRODUCTION

Over the past decade, Al and in particular machine learn-
ing techniques and algorithms have gained a central role in
computer music and electronic music composition. Much
of the attention in machine learning in sound synthesis has
been focused on clearly defined processing tasks such as
source separation [1], timbre transfer [2], singing voice
synthesis [3], or parameter generation for synthesis us-
ing known methods, such as frequency modulation [4, 5].
While some approaches have utilized latent space repre-
sentations [6, 7] and recurrent neural network dynamics
in conjunction with granular synthesis and echo state net-
works [8] to explore novel approaches, the focus of most
research in this area has largely been on the simulative gen-
eration of “realistic” vocal or instrumental sounds.

As Jonathan Impett writes, ”An Al is essentially a mem-
ory machine” [9, p. 225]. One way to understand deep
learning systems is as a form of memory of certain past
givens. It then becomes an artistic question of how to
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inscribe, recollect, overwrite and navigate within such a
compressed memory. Current synthesis models leveraging
deep learning mostly utilize extensive datasets for training
and, crucially, they separate the training phase from the
inference or prediction phase. The memory is built and
later activated. The training phase is therefore regarded as
a preparatory step that is carried out with a view to opti-
mal generalization for another task. However, the train-
ing phase can also be seen as an adaptive computational
process, which itself harbors musically and sonically inter-
esting dynamics and potentials. The two approaches de-
scribed in this paper are technically and conceptually very
different, but both take the adaptive dynamic of machine
learning as their starting point. The approach described
first speculatively challenges common autoregressive tech-
nologies of time-series prediction, while the second ap-
proach embraces the emergent behavior or recurrent net-
works of interacting and independently learning neurons.
In both approaches, the learning process is not used for the
sake of some external optimization goal, but is itself part
of the synthesis process. In other words, we are interested
in the specific forms of continuous memory inscription and
reactivation as a form of computational performance.

1.1 Speculative Sound Synthesis

The systems and approaches described in this paper were
developed as part of the research project Speculative Sound
Synthesis, ! which aims to reconsider the relationship be-
tween technology in computer music and artistic practice.
It seeks to uncover the aesthetic possibilities of sound syn-
thesis that may go unnoticed if technology is viewed solely
as a functional tool for control and execution. In contrast,
the approaches described in this text aim to experimentally
and exploratively open up machine learning technologies,
speculate on their paradigms, and expose their computa-
tional materiality for aesthetic experience, musical perfor-
mance, interaction, and composition.

The models described in this text are speculative sound
models, which is a central methodological concept of this
project. They materially manifest speculations with tech-
nological constructs that challenge instrumentality, con-
trol, and representation. This is why hyperparameters,
such as network structure, learning rate, ridge parameters,
and activation functions, become central artistic material
instead of being merely subserviant functional components
for the realization of external and predefined tasks.

Ihttps://speculative.iem.at
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1.2 Speculative Propositions

With these aesthetic, technological and methodological
considerations in mind, we formulate a set of basic spec-
ulative propositions that inform the two approaches de-
scribed in the remainder of this paper:

1. The adaptive training stage is an essential element
of the audible dynamics (online learning) and does
not exclusively occur before sound synthesis. Train-
ing, learning, and inference all happen during per-
formance. The aim is to create a machine learning
model that is perceivable and tangible in both sonic
and performative terms. It is a memory in touch with
its input and output, learning while it is performing.

The sound synthesis model is an integral part of the
machine learning system, with the neural network
directly producing time-domain signals in “real-
time”. The synthesis method is thus not external to
the model, it is not controlled by the model but what
is audible is itself and output of the model.

. In line with the previous presuppositions, the input
data is intentionally kept small. The usage of big
data is entangled with structures of power and eco-
nomic exploitation, with interpolating reproduction
of memorized data points. In contrast we regard the
small data approach as a form of artistic reappropri-
ation of technology and as a method to expose its
learning dynamics rather than to generalize as well
as possible with regard to input data. Small datasets
can be influenced by the biases and tendencies of
musicians and composers, which can be part of the
compositional process, and the agency of training
datasets can thus become more tangible.

2. AUTOREGNN: AUTOREGRESSIVE
FEED-FORWARD NEURAL SYNTHESIS

AutoRegNN? is an autoregressive feed-forward neural
network that predicts the value of the next sample based on
previously generated samples. In principle this method is
similar to the seminal WaveNet [10] architecture, although
it works with much smaller amounts of input data, does not
use convolutional layers and is intended for online training
while generating sound. It is implemented as a unit gen-
erator (UGen) for SuperCollider. It consists of an input
layer of variable size, a hidden layer also of variable size,
and an output layer, which is always of size one. At each
data point, the network utilizes a sequence of previous data
points and predicts a single output sample. Autoregression
involves using the network’s own past predictions as inputs
to predict subsequent time steps, thus creating a feedback
loop. For each audio sample AutoRegNN performs two
separate forward passes, one using external input data, i.e.
an input signal whose dynamics are to be learned, and as
second pass using its own past output data, the output of
which is used as the direct audible output of the system.

2The code can be downloaded here:
lucdoebereiner/autoregnn

https://git.iem.at/

The output of the first pass, using the external input, is
used to compute the loss and thus to adjust the weights and
biases using backpropagation. In addition to the squared
error the loss function also contains a ridge regression reg-
ularization term proportional to the square of the magni-
tude of the coefficients. This form of regularization penal-
izes large weights and thus draws them closer to zero. This
stabilizes the learning phase and serves to prevent explod-
ing gradients, which is especially important if the learning
rate is modulated and may intentionally be used to generate
chaotic behavior. The loss function is:

L

M
N2
=9+ _wj
=1
Where:

e L is the loss function, combining squared error with
an L2 regularization term.

 y is the actual value for the single sample (external
input).

e ¢ is the predicted value by the neural network for the
single sample.

e )\ is the regularization parameter, controlling the
strength of the weight penalty.

* M represents the total number of weights in the neu-
ral network.

* w; denotes the j-th weight in the neural network.

The weights are adjusted after the production of each sin-
gle sample in order to minimize the loss using backpropa-
gation. At initialization the size of the input layer and the
size of the hidden layer (number of perceptrons) can be set.
There are two activation functions used throughout the net-
work: ’tanh” and "’sine” (for details, see subsection 2.1.2).
The size of the input layer determines the number of pre-
vious samples considered. This also conditions the tempo-
ral relationships and frequencies that the network learns to
model. In place of the convolutional layers in WaveNet,
we have tried various methods of downsampling and filter-
ing the input in order to allow for temporal relations and
lower frequencies to be learned, while keeping the input
data small. The present iteration employs a cascade of one-
pole low pass filters that process the input before it is fed
into the input layer. The coefficients for the filters are cal-
culated using the formula e=/(2*) where k ranges from
1 to n (n represents the input size). Each succeeding filter
is fed into the following one which has proven to increase
sensitivity across a wide range of frequencies while reduc-
ing the input size.

The model depends strongly on its random initialization,
especially if A, the regularization paramter, is small. A
significant parameter to consider is the learning rate. High
learning rates can result in chaotic dynamics and rapidly
changing timbral output, whereas very small learning rates
can generate very gradual changes in pitch and timbral de-
velopment. The learning rate is thus not treated as hyperpa-
rameter to be optimized with regard to the model’s ability
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Figure 1. Learning a 200 Hz sine wave signal.
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Figure 2. Learning a frequency modulated sine wave.

to generalize, but much rather as a parameter that dyan-
mically influences the musical and timbral behavior of the
synthesis process. Hence, the learning process merges with
the actual sound synthesis, and its artifacts and material-
ity, including chaotic and periodic behavior, serve as both
artistic and musical material.

2.1 Examples and Artistic Experiments

This section presents several examples and artistic exper-
iments that illustrate the capabilities of AutoRegNN. The
code and audio and video recordings for each of these are
available online. 3

2.1.1 Examples

Fig. 1 shows 120 ms of the input and output of a sine wave
with a frequency of 200 Hz fed input an AutoRegNN with
and input size of 12, a hidden layer of size 8, a learning rate
of 0.1 and a ridge parameter of 0.0001. It demonstrates the
initial adaptation as the output is initial somewhat unsta-
ble but progressively takes on the input frequency. Lower
learning rates lead to longer phases of initial adaptation.

Fig. 2 shows 40 ms of a frequency modulated sine wave.
The main difference with regards to the example show in
fig. 2 is that the learning rate is much higher (0.6) and the
ridge parameter is also much higher (0.01). This leads to a
very quick and stable adaptation.

Fig. 3 shows 20 ms of using a 180 Hz sawtooth wave as
input. In this example, the learning rate is also modulated
using a 180 Hz sawtooth wave with values between 0.01

3https://speculative.iem.at/docs/speculations/
Experiments_thoughts/autoregnn/
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Figure 3. Learning a 180 Hz sawtooth wave with modu-
lated learning rate.
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Figure 4. Interpolating between two sets of learned net-
work parameters.

and 1. The ridge parameter is relatively small at 0.00001
in order to allow for a higher degree of unstable and chaotic
behavior. Modulating the learning rate can create interest-
ing rich timbres that are still coupled to the input, while
exhibiting a certain independence.

There are a number of slightly different variants of Au-
toRegNN, one of which takes two audio inputs and learns
two sets of network parameters (weights and biases), while
using a linear interpolation between both sets of parame-
ters for the generation of the output. Fig. 4 shows 20 ms of
such an interpolation between sets trained on a sine wave
and a pulse wave, both with a frequency of 500 Hz. In this
example, the output is generated with the mean values of
the trained weights and biases. The learning rate is 0.5 and
the ridge parameter is 0.001.

2.1.2 Artistic Experiments

The artistic experiments sketched in this sections serve
to document discoveries made during the conceptual and
technological deveopment of AutoRegNN. However, the
are to be understood as speculative starting points. They
point towards possible experimental artistic scenarios and
warrant further exploration, expecially with regard to their
unique performative affordances and musical potential.
There are several variants of the AutoRegNN SuperCol-
lider ugen that read and write their model parameters form
and into external buffers. This allows an interaction with
the weights and biases during training and prediction. Any
external process that manipulates buffers can be used to

517




interfere, couple or process the learned paramemeters. It
thus further exposes the inner workings of the neural net-
work and can be used to turn it itself into an instrument for
sound performance. In one artistic experiment, we have
created a multi-slider graphical user interface that exposes
all weights and biases as indiviual faders. The direct ma-
nipulation of the internal parameters allows for specula-
tive exploration of the network. One can find thresholds at
which the system jumps from one type of behavior to an-
other. In conjunction with the control of the learning rate
and the ridge regression, one can thus explore the possi-
bilities of the neural network by changing the individual
weights. One can find neighboring states while negotiat-
ing between manual manipulation and the counterforce of
learning (controlled by the learning rate). This creates a
kind of speculative co-agency between machine learning
and manual exploration.

The activation function variation is a productive feature
for sound and behavior. AutoRegNN currently allows in-
terpolation between two activation functions: tanh and
sine. Tanh produces more predictable and stable results,
while sine is used similarly to a sine map and exhibits
chaotic dynamics, but remains derivable and compatible
with gradient descent and backpropagation for optimiza-
tion. It is possible to interpolate between the two activa-
tion functions independently for each neuron of the net-
work. This allows for the production of adaptive sounds
and sound dynamics that are both chaotic and highly com-
plex in terms of timbre.

Another promising application that produces complex,
chaotic, emergent sound textures with intriguing gestural-
ity can be produced by constructing feedback networks of
multiple AutoRegNN units. For example, we constructed
circular networks of four AutoRegNN units, one of which
is initialized with and external signal (noise, e.g.) at the
beginning. The initial signal fades out and the generators
continue to excite and imitate each other. With different
ways of mixing, filtering and delaying the feedback signal
between the four generators, a wide variety of distinctive
sonic and musical dynamics are created.

We also extended the idea of feedback networks of
AutoRegNN generators and conducted experiments with
models that incorporate acoustic feedback, where micro-
phone signals provide the input training signal. We also
conducted experiments with different interconnected mod-
els that interact through microphones in space and by at-
taching transducers and contact microphones to percus-
sion instruments, especially drums and cymbals. Very
small learning rates have been shown to produce interest-
ing gradual changes in pitch and timbre. The ability to
mimic their input depends on the type of physical instru-
ment to which each generator is connected via playback
through a transducer. For example, when certain resonant
frequencies are reached, the gradually evolving timbre can
suddenly fall into unstable transients and destabilize the
whole network of generators. Moreover, the physical setup
enables interactions between materials where the algorith-
mic, the object and a musician’s agency are intertwined,
such as through the damping, striking, and wiping of a

drum.

Moreover, AutoRegNN has recently been employed by
the composer Farzaneh Nouri in an octophonic interac-
tive sound installation titled. Embedded/Embodied* In
conjunction with several layers of Al sound recognition,
generation, and communication, the work uses multiple
instances of AutoRegNN as a multi-agent system fed by
microphone inputs located in different parts of the installa-
tion’s environment. The agents capture and process sounds
from their environment and are used to generate emergent
responses that shape and reveal their understanding. Nouri
describes the work as an acoustemological exploration.

3. FORGET LEARNING

Most machine learning systems based on neural networks
share a few similar paradigms that vary depending on the
specific implementation. The experimental system we de-
scribe below is the result of a speculative approach that
questions some of these paradigms and seeks alternative
approaches to the use of neural networks. In its implemen-
tation, we followed both scientific and aesthetic criteria.

It is crucial to understand that this case study does not
aim to produce a novel system that successfully performs
a set of predefined tasks. The system we describe here does
not successfully learn patterns or produce categorizations
of some input signals. The neural network we develop here
is studied in terms of a sound generator that perceptually
reveals a specific temporality of the learning process. The
dynamics arise from the evolution of the whole system,
seen as a collection of individual neurons, each following
the same set of rules.

The starting point for this speculative system has been
the exploration of the connection between neural net-
works, as they are interpreted and implemented in ma-
chine learning applications, and the computational mod-
eling of their physiological counterparts, biological neural
networks, whose organization and structure serve as inspi-
ration for the former. Specifically, from the similarities
and, especially, the differences in the understanding of the
concepts of learning and adaptation, ideas and inspirations
are derived that are at the center of this speculative sound
model. These inspirations are further put to the test and
refined in the practical implementation.

Learning, in the context of neural dynamics is understood
as a process of adaptation [11, 12] to stimuli that each
neuron in a network undergoes. Neurons learn by adapt-
ing their activity pattern in response to the input stimuli
they receive: in particular, neurons adapt by reducing their
response to repeated stimuli. The well-known auditory
masking effects can be seen as an example of this adapta-
tion mechanism: contrary to some understandings of neu-
ral network learning, this means that repeated stimuli are
masked or “filtered” by the neurons. Thus, when a neuron
(or a network) recognizes a learned stimulus, it does not as
one might expect, indicate this with a peak of activity or a
strong response. That is, “any adaptive system converges
to a state in which any kind of stimulation ceases” [13].

4https://2024.sonicacts.com/programme/
embedded-embodied
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Thus, from the perspective of neural dynamics, for one
neuron learns or adapts by finding a configuration of its in-
ternal behavior that is less sensitive to the recurrent stimuli
and thus more sensitive, i.e. producing a stronger response
to input signals that deviate from known patterns.

This mechanism is further developed in recent advances
in neuroscience, particularly in the context of the theory
of predictive coding. This theory sees the brain as essen-
tially a predictive machine, constantly generating “mental
models” of the environment: these models are used to in-
fer or predict input sensory signals, and are then compared
with the actual signals received to construct a new model.
It has been proposed to apply this perspective not only to
the brain as a whole, but also to individual neurons. Thus,
learning for a single neuron means adapting the weights
it applies to its inputs in order to be able to predict fu-
ture inputs. Predicting in this context means minimizing
the “surprise” defined as the difference between the actual
and the predicted or adapted inputs [14]. This learning rule
theory seems to be supported by neural metabolic mecha-
nisms and in particular by the so-called “lazy neuron prin-
ciple”. This principle states that the activity and adaptation
mechanisms adopted by neurons are aimed at maximizing
their impact on the whole network, while at the same time
minimizing their power consumption [15]. That is, each
neuron seems to be interested in eliciting maximum activ-
ity in the surrounding network, since this means maximiz-
ing blood flow and thus nutrient and energy supply, while
at the same time minimizing its own energy expenditure
in producing electrical signals. In short, neurons seem to
want to have a positive energy balance. In mathematical
terms (generalizing from [14]):

Bi(wi) = —fO_wikxr) + 90 ;) (1)
k=1 j=1

Here E; is the energy balance dependent on w; the vector
of all weights of neuron i, f is the activation function of
that neuron, w; ; is the weight for input signal z;, to the
neuron and g is function of the output signals of all neurons
in the vicinity.

Another critical aspect of these studies is that learning or
adaptation is a process that emerges from the behavior of
individual neurons. It is a behavior that affects both how
each neuron responds to its environment (the surrounding
neurons in the network), but also how that neuron interacts
with its environment, i.e., how it “injects” its own activity
into it. Learning is thus a global dynamic of a network,
resulting from the behavior of each of its constituent units.

This auditory case study explores the dynamics of a
network of neurons that behave according to the above-
mentioned “lazy neuron principle”. In this network learn-
ing or adaptation to external input signals is the result of
the interaction of all neurons in the network and is not
controlled and governed by an external function of error
minimization.

3.1 Implementation

In this case study, we speculatively simulate the temporal
behavior of a recurrent neural network that is constantly
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Figure 5. Sketch of the implemented network. Connec-
tions in the network are recurrent, the input signal affects
one neuron only, while the output signal is read only one
other neuron in the network

Figure 6. Sketch of the neurons structure in the net-
work. Input signals from other neurons are delayed by a
fixed time d;, multiplied by the respective weight w; and
summed and passed as argument to the activation function.

adapting to its own dynamics or to some input signal, as in
the previous understanding. The neurons are modeled ac-
cording to the “lazy neuron principle”, and learning is un-
derstood here as a global process of the whole network that
emerges from the behavior of the neurons and is thus not
governed by an external optimization process to achieve
a predetermined goal. The simulated network is recurrent
and consists of a small number of neurons that exchange
their output signals. Only one neuron receives the external
signal input and the signal produced by one other neuron
in the network is taken as the output of the system and au-
dified (see figure 5). We pose that neurons in this network
have a defined spatial relationship, and thus, as in biologi-
cal networks, given the finite conductance of physiological
neurons, output signals are delayed differently before be-
ing input to other neurons in the network (see figure 6).
That is, including the delay factors dj, for the inputs, the
above equation 1 becomes:

Ei(w;) = =Y wigar(t —dp)) + 9> z;(t) @)
k=1 j=1

In this case study, neural networks are implemented as
dynamical systems composed of many interacting ele-
ments. We are not interested in “successful” learning, but
rather in the temporal dynamics of the learning system. By
simulating the network and directly translating its output
into sound, we aim to make its behavior audible. Further-
more, since we are not trying to find the best parameters
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for a given task, we keep most of the system’s parame-
ters flexible, allowing them to be modulated even while the
system is running. Thus, the space of behaviors formulat-
ing this specific understanding of learning and adaptation
is exposed to exploration or composition and also perfor-
mance as a sound synthesis instrument. Learning rates,
delays, and even the shape of activation functions are pre-
served as real-time parameters.

The departure of this implementation is thus the maxi-
mization of the energy balance function E; of each neu-
ron ¢ (see equation 1) with respect to that neuron’s weights
w; ;. We formulate this process of gradient ascent in dif-
ferential form as:

GZQ(VVJ

A
+ Guad

w; ;(t) = 3)

Here, w; ;(t) is the time derivative of the weight w; ; of
neuron ¢, and A is the so-called learning rate. The sign
is positive in this case, as the system tries to maximize its
energy balance. In typical backpropagation processes, the
exact mathematical form of this derivative is determined
prior to the start of the process. In this case study, how-
ever, since the choice of the particular form of the acti-
vation function is left as a parameter of the system, and
since the dependence of the input signals on the weights of
each neuron is not known beforehand, an exact mathemat-
ical form of the function to be maximized by ascent cannot
be derived a priori. Thus, we have to find another way to
numerically compute the gradient ascent.

As we focus on the temporal dynamics of the system,
we compute the gradient of the energy balance in equation
3 using the temporal delays of the weights. The partial
derivative in equation 3 can be approximated numerically
with

OE(w;) _

E(wilw;;(t —1)) — E(w;)
wi j(t—1) —w;;(t)

“
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Where w;|w; ;(t — 1) is the vector of all weights for neu-
ron ¢, where only it j-th has taken one step (audio sample)
before the current one. It can be seen that the above sys-
tem works very well in finding the local minimum for the
function E as long as the difference w; ;(t — 1) — w; ;(¢)
is not 0. This means that, if the weight w; ; has converged
and therefore the above difference is zero, the weifth will
not adapt anymore and move to a new minimum when the
function or the input signals change.

To solve this problem, we introduce an additional slow
dynamics into the optimizing system, which induces very
slow (with respect to the dynamics of the input signals)
and small (with respect to the values of the weights) oscil-
lations around the local minimum. That is, we made the
system third-order and introduced a small limit cycle:

OE(w)
() = — My + i)
v;(n) w wi, 5
+ s(r —\/(w; — u;)? + v?)v; — av;
ul(n) =w; — u;

Where r is the radius of the limit cycle (typically r <
w;.;), s is the strength of the limit cycle attractor, and the
u; component of the dynamical system acts as a leaky in-
tegrator of the w; dynamics. The resulting behavior of the
weights w; is to converge to the local minimum of the func-
tion f with rapidly decreasing oscillations and then remain
in a kind of hovering behavior, slowly oscillating around
the converged point. In a way, this hovering behavior al-
lows the neuron to continuously “sense” variations in its
inputs and its environment and whenever there is a change
in either be able to react and adjust its weights accordingly,
finding a new optimal configuration.

This system was programmed and simulated using the
henri> programming language developed by David Pirrd.
henri is an experimental programming language, devel-
oped using the LLVM compiler infrastructure, ® and origi-
nates mainly from the programmer’s artistic practice. henri
is a programming language designed specifically for the
formulation and execution of dynamical systems (in the
form of systems of ordinary differential equations) using a
variable-order symplectic integrator ( [16,17]). Dynamical
systems programmed in henri are simulated (integrated) in
audio rate and thus can be used directly for sound synthe-
sis.

3.2 Examples and Artistic Experiments

The networks developed in this case study have been used
to synthesize sound in live-electronics performance set-
tings. Each simulated network runs in real-time, and the
temporal dynamics of the continuously changing outputs
of their neurons are directly used to synthesize sound. Im-
plemented with henri, the temporal behavior of the net-
work is directly made audible, while it is still possible to
influence the network parameters in real-time during the
simulation. This allows the system to be used as a gen-
erative sound synthesis engine. The parameters exposed
to external interaction, rather than eliciting immediate re-
sponses, can influence the system’s temporal behavior at
different scales. Choosing and exploring different learning
rates for the neuron’s own energy consumption, the influx
of surrounding neuron energies, the attraction of the limit
cycle part, the “friction” value, and the shape of the activa-
tion functions are part of the performance.

The networks realized so far consist of a small number of
neurons, typically 16 to 32, with a small number of con-
nections each (e.g., 3 to 5). The delays used are either
randomly chosen or modified while the simulation is run-
ning, with durations close to 50 milliseconds. Some sound

Shttps://git.iem.at/davidpirro/henri
Shttps://1lvm.org/
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examples are collected on the public web page accompa-
nying this paper.’ In addition, the henri code (a C version
is planned) used to generate these examples is also made
available. 8

Engaging with these networks requires navigating a com-
plex landscape of behaviors, many of which are challeng-
ing to control or “tame.” It involves dedicating time to ex-
plore subtle changes in parameters and allowing the system
to settle into a particular mode. During interaction, these
networks exhibit a form of “resistance,” a distinct agency
of the system that is readily perceptible, making the inter-
action even more sensible.

With some parameter sets, networks can enter complex
self-oscillatory behavior, with different spectral patterns
and temporal articulations. These depend strongly on the
number of simulated neurons, the chosen activation and
energy functions (see equation 1), and the selected delay
values. At the same time, the network is open to being
influenced by or adapting to external input signals. Exter-
nal sound sources, such as microphone signals or sounds
produced by other performers, can be used as input to neu-
rons in the system, and the adaptation behavior to these
signals can be modified. Exploring the threshold between
a “solipsistic” mode of self-oscillation and a more reactive,
input-dependent mode has proven to be one of the most re-
warding areas of behavior to explore during performance.
The ability to both produce individual sounds and be in-
fluenced by external signals is aesthetically and musically
inspiring.

As a counterpart to the exploratory attitude of the perfor-
mative setting, one of the next artistic case studies involves
realizing a sound installation for a public space using mul-
tiple boards with simple STM32 microcontrollers,® a mi-
crophone, and a small loudspeaker. Each unit will embody
a simplified instance of a neuron in a network, connected
through their microphones.

4. CONCLUSIONS

In this paper, we have presented innovative approaches to
sound synthesis that leverage the adaptive dynamics of ma-
chine learning, not as a means to an end but as an integral
part of the creative process. Through the methodologi-
cal approach of the Speculative Sound Synthesis project,
we have explored the aesthetic and performative poten-
tials of speculative sound models, challenging traditional
notions of instrumentality and control in computer mu-
sic. We have described two experiment machine learning
systems developed in ways that that diverge from conven-
tional paradigms of neural network applications. The Au-
toRegNN model demonstrates the richness of incorporat-
ing the learning process into sound generation, allowing
for real-time, dynamic interactions between the algorithm
and its output. The second model described follows the
”lazy neuron principle,” emphasizing the global dynam-
ics of learning and adaptation as emergent from individual

Thttps://speculative.iem.at/docs/speculations/
Experiments_thoughts/unlearn/

8https://git.iem.at/davidpirro/unlearn
https://www.st.com

neuron interactions, rather than being driven by external
optimization or error minimization.

Our artistic experiments highlight the vast possibilities
for future research and artistic exploration, underscoring
the significance of small data approaches and the reappro-
priation of technology for creative expression. These find-
ings open new pathways for understanding and utilizing
machine learning in sound synthesis, emphasizing contin-
uous interaction, adaptation, and the exploration of com-
putational materiality as musical and artistic material.
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