PROGRAMMING FPGA PLATFORMS FOR REAL-TIME AUDIO SIGNAL
PROCESSING IN C++

Pierre COCHARD (pierre.cochard@insa-lyon.fr) !, Maxime POPOFF!, Romain MICHON', and

Tanguy RISSET!

'INSA Lyon, Inria, CITI, EA3720, 69621 Villeurbanne, France

ABSTRACT

Syfala is a toolchain aiming to facilitate the development
of real-time audio Digital Signal Processing (DSP) appli-
cations on Field-Programmable Gate Array (FPGA) plat-
forms. Since its introduction in 2021, the project has been
relying on the FAUST programming language as its pri-
mary programming interface. The resulting C++ code gen-
erated by the FAUST compiler can be easily translated into
Hardware Description Language (HDL) code using High
Level Synthesis (HLS), thereby facilitating integration into
FPGA designs. However, FPGA platforms may in some
cases require very specific tuning and optimizations in or-
der to reach their full potential, which FAUST can some-
times fail to provide, because of its platform-agnostic na-
ture.

In this technical paper, we present a new way of using
Syfala with C++ and HLS. This potentially allows for a
better control over parallelization and pipelining as well
as for potentially more optimized and efficient code for
AMD/Xilinx FPGA platforms. This method can greatly
facilitate the implementation of complex DSP algorithms
on FPGAs for C++ programmers. Finally, we highlight
the performance gains obtained by using this methodology
with respect to the original Syfala toolchain starting from
FAUST programs.

1. INTRODUCTION

Field-Programmable Gate Array (FPGA) platforms offer
unmatched performances and features in the context of
real-time audio Digital Signal Processing (DSP). With the
exception of Graphics Processing Units (GPUs) where
comparable results can be achieved [1,2], highly paralleliz-
able algorithms can be run more efficiently on an FPGA
than on most other computing platforms (i.e., Central Pro-
cessing Units, etc.). FPGAs don’t need buffering and can
run audio DSP algorithms at a very high audio sampling
rate (in the megahertz range), providing extremely low la-
tency [3]. They can also be interfaced with large numbers
of low-level hardware components (such as audio codecs)
through their numerous GPIOs.

Copyright: © 2024. This is an open-access article distributed under the terms

of the Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

FPGAs are very difficult to program for a software pro-
grammer. However, audio DSP programs can be expressed
using dedicated languages (i.e., FAUST [4]) and might be
easier to compile on FPGAs than general purpose pro-
grams because of their limited scope. This technical paper
has been written as a tutorial to help C++ audio program-
mers to efficiently compile their programs down to FPGA.
It takes advantage of the methodology that emerged from
the Syfala toolchain which compiles FAUST programs on
FPGA [3,5]. Syfala (which is open source !) is now able to
compile C++ audio programs on FPGA using AMD/Xilinx
High Level Synthesis (HLS) tools. In this paper, we ex-
plain the concepts that software programmers must know
to master HLS in order to compile efficient C++ audio pro-
grams on FPGA.

The next section presents a review of the use of FPGAs in
the audio industry as well as in academia. It also describes
how audio DSP programs should be compiled for FPGA.
Section 3 presents the Syfala toolchain and Sections 4-5
explain how to adapt existing C++ programs. Finally, Sec-
tion 6 presents some performance results obtained by this
new FPGA compilation flow.

2. AUDIO ON FPGA: A STATE OF THE ART

FPGAs can be found in a broad range of audio prod-
ucts: Dante audio interfaces, 2 digital mixers (e.g., Mi-
das M32?), audio processing modules (e.g., Antelope Au-
dio Synergy Core*), sound synthesizers (e.g., Novation
Summit Keybord5), etc. Similarly, they’ve been used in
academia for various applications, mostly targeting com-
putational performance [6—8] (to name a few).

2.1 Language and Architecture for audio DSP

The advantages offered by FPGAs come at the cost of ease
of programming. Indeed, FPGAs are considered as “hard-
ware” and are low-level in nature, making them extremely
hard to program by non-specialized engineers. They re-
quire the use of Hardware Description Languages such as
VHDL and Verilog, which work in a very different way
than programming languages aiming software and that are
traditionally used for real-time audio DSP such as C/C++.

'https://github.com/inria-emeraude/syfala/ — All
URLSs in this paper were verified on May 21, 2024.

nttps://www.audinate.com/
3nttps://www.midasconsoles.com/
4https://en.antelopeaudio.com/
Shttps://novationmusic.com/

389

Most FPGA manufacturers (i.e., Intel/Altera and
AMD/Xilinx) now provide High-Level Synthesis (HLS)
tools allowing for the programming of FPGAs using C or
C++ [9, 10]. Since programs written in these languages
are often not optimized to be run on an FPGA, directives
and pragmas can be used to provide additional information
to help the HLS tool make the right decisions in terms of
pipelining, parallelization, etc.

Audio DSP implies a broad range of constraints when it
comes to real-time implementation (e.g., buffering, control
vs. audio rate, interfacing with audio drivers, etc.). These
constraints — despite the potential use of HLS — add up
to the aforementioned difficulties related to programming
FPGA platforms. As far as we know, very few projects (not
to say only one [11]) used HLS on FPGA in the context of
real-time audio DSP as it is done in Syfala.

Since the inception of digital audio programs, special-
ized languages and architectures tailored for audio Digi-
tal Signal Processing (DSP) have been proposed. Audio
signal processing often demands significant computational
power, implementing mathematical concepts like FIR and
IIR filters, FFT, etc., at a high rate (i.e., audio sampling
rate). It’s important to note that a characteristic of audio
signal processing is that some computations are performed
for each sample, while others, like those used for audio
control, can be scheduled at a lower “control rate”.

In the early days of digital audio, dedicated DSP units
were employed in commercial systems. This trend persists
today, exemplified by the continued use of specialized DSP
units like Analog Devices SHARC DSPs. However, there
is a growing trend in utilizing regular multi-core CPUs for
audio purposes, as seen with ARM processors in Teensy °
microcontrollers.

The selection of hardware for implementing audio signal
processing is guided by two key metrics: computational
power and computation latency. Computational power
depends on the operations performed for each sample at
sample rate; the more demanding the computations, the
more powerful the hardware needs to be. Dedicated DSPs,
GPUs, or FPGAs may be employed if standard CPUs are
not sufficiently powerful. As for latency, it is often associ-
ated with the size of the sample buffer needed to perform
the DSP computation. The nature of the Von Neumann
processor architecture (i.e., a CPU connected to memory)
necessitates buffering audio samples to circumvent mem-
ory bottlenecks. A typical size for an audio buffer in
processing systems is 256 samples. At a sampling rate
of 48kHz, a 256-sample latency corresponds to approxi-
mately 5 ms. FPGA technologies can can help in provid-
ing much smaller latency. For instance a latency of 11us
(analog to analog) was reached in [3].

An important decision in the design of audio signal pro-
cessing involves selecting the programming language to
express these algorithms. Numerous computer languages
and environments have been dedicated to audio programs,
with today’s most popular choices including Max/MSP,
PureData, and Faust [4]. Conversely, many audio devel-
opments, particularly in the industry, use general-purpose

Shttps://www.pjrc.com/

languages, mainly C/C++, but also Python, Matlab, or
Java.

The Syfala toolchain allows us to map Faust programs
onto FPGAs [3, 5], leveraging C++ code generated by the
Faust compiler. It seems that many programmers express a
desire to program FPGAs directly in C++ since it serves as
their native audio programming language. In the follow-
ing sections, we present guidelines for writing C++ code
in a manner that facilitates efficient mapping onto FPGAs
using Syfala.

FPGAs present a programming model distinct from reg-
ular CPUs, as they can be regarded as “programmable cir-
cuits” in contrast to non-programmable digital circuits like
ASICs. An FPGA is composed of many small configurable
blocks, called Look-Up Tables (LUTs), capable of execut-
ing any logic function with 4 to 6 boolean inputs and stor-
ing the result in a 1-bit register. These LUTs are utilized
to implement diverse digital circuits. Additionally, FPGAs
incorporate various components such as embedded multi-
pliers, known as DSPs, that facilitate the implementation,
or BlockRAMs which can store several kilobytes of data.

Over the past decade, FPGAs have incorporated process-
ing systems, which are system-on-chip entities featuring
complete processors and associated peripheral drivers. For
example, the Digilent Zybo Z20 development board in-
cludes a dual-core ARM processor capable of operating at
600MHz. This processing system supports running a com-
plete operating system and facilitates communication with
the hardware design mapped onto the FPGA LUTs. This
processing system is used to offload the hardware compo-
nent from computationally less time-sensitive tasks.

2.2 Mapping audio DSP on FPGAs

The process of mapping an audio application onto an
FPGA involves making crucial design decisions, exten-
sively discussed in [5]. Typically, sample-rate computa-
tions are implemented on the FPGA LUTs, while control
rate computations are executed on the processing system.
Another important choice is the buffering of samples; one
can choose to compute one sample at a time (one-sample
strategy) or a buffer of samples at a time (multi-sample
strategy). Fig. 1 illustrates a generic architecture for an
audio application running on an FPGA.

The hardware/software partitioning is shown on Fig. 1.
It distinguishes the control-rate and the sample-rate com-
putations. The control part runs on the processing system
(refered to as app.elf on Fig. 1). It is itself interfaced
with the FPGA board DDR memory and also to the host
computer (or any computer on the network) in order to pro-
vide a way to control the audio DSP computations. The
sample-rate computation are implemented on the FPGA
(refered to as DSP IP on Fig. 1). This represents the core
computation of the DSP kernel. It is interfaced with the
FPGA board DDR memory, but it can also communicate
directly with the app . e1f application (i.e., the DSP IP is
usually seen as a peripheral driver on the processing sys-
tem). Finally, the IP is interfaced with one or several audio
codecs via the I2S protocol.

The next section explains how the system presented on

390

//Rudio C++ program
Control

ComputeDSP () {

/sample rate
[...]
}

/ FPGA Board\

I \

K FPGA (LUT, DSP, etc

ARM Prog¢essing
Audio N System (}/S)
—— 3 SPI/UART/Eth.
JT DSP 1P A ’
45

6
3 -
! {h
3 1 9
Codec &> 125 0 10
Host Controls

] DDR \

Figure 1. Overview of the deployement of audio programs
on FPGA:s.

Fig. 1 has been implemented in the Syfala toolchain, which
compiles FAUST programs down to FPGA.

3. FROM FAUST TO FPGA: THE SYFALA
TOOLCHAIN

Syfala was introduced in [3, 5]. It is a tool to facilitate
the development of real-time audio DSP applications on
FPGAs using the FAUST programming language [4]. Pro-
grams written in FAUST can be exported to AMD/Xilinx
FPGAs on Digilent boards such as the Zybo Z7 or the
Genesys.

3.1 Using FAUST as an Input to Syfala

Among the features provided by Syfala, one can cite the
following ones:

* Many kinds of audio codecs are supported;

e The DSP IP can be used as a hardware accelerator on
embedded Linux running on the FPGA board [12];

e SPI [3], MIDI, HTTP, and OSC control are available
on the processing system [12];

e Ethernet can stream audio in and out from the
FPGA [13];

It is compatible with dedicated multichannel audio
interfaces providing unique specific features such as
low latency and low-cost spatial audio.

The “traditional” way of using the Syfala toolchain is to
call the FAUST compiler on a . dsp file (i.e., a FAUST pro-
gram) in order to generate its C++ code equivalent, which
is then going to be translated into Hardware Description
Language (HDL) code using High Level Synthesis tools.

The resulting code describes the DSP computations as a
flow (or circuit) of hardware-level logic operations and in-
terconnections, forming an ensemble that we call an IP (for

Thttps://digilent.com/reference/
programmable—-logic/zybo-z7/

Intellectual Property). In this context, an IP can be viewed
as a higher-level "block’ abstraction that can be connected
to different other blocks through a variable number of input
and output ports, as shown on Fig. 2.

start [1]]
audio_in 0 [24])

from ([24] audio_out_0

128 to IS
audio_in_1 [24] j ([24] audio_out_1
from arm ok [1]) DSP IP
PS DDR (read) [64]] [[64] DDR (write) to PS
from bypass [1]
switches

Figure 2. A logic view of the DSP IP as generated in the
Syfala compilation toolchain.

When running, the data-flow design can be described as
follows: audio data will be sent from the codec(s) to the
I?S at a predetermined rate (called audio-rate or sample-
rate), and then transmitted to the DSP IP, alongside a ’start’
signal, which will enable the computations. Once these
computations are done, the output samples are sent back to
the IS, and in turn to the audio codec(s), bit-by-bit.

Since this is all done at a hardware level, there is no addi-
tional latency introduced in the system (from, for instance,
an operating system or any other hardware/software com-
ponent), which makes real-time sample-by-sample pro-
cessing possible in this context. The main requirement is
that the computations are still done within the time limits
set by the audio clock, otherwise making the flow discon-
tinuous and hence degrading the resulting audio signal.

In order to guarantee that the latency stays below this
limit, FPGAs can rely on their great parallelization po-
tential, which on the other hand will be limited by the
available on-board logic resources. Indeed, since multiple
signals are processed simultaneously on parallel branches,
with the same chain of operations, it also means that the
logic operators used on the FPGA are duplicated instead
of being sequentially re-used. This can in some cases lead
quite rapidly to resource saturation.

Therefore, when programming an FPGA, having control
over this latency/resource trade-off is key. The program-
ming language that is used should in this context provide
flexible ways and tools to reach optimal balance for a given
program.

3.2 Using C++ as Input to Syfala

While FAUST is undoubtedly a nice and easy way to create
complex and fully-controllable audio DSP IPs on FPGA,
in some cases — where, for instance, balancing resource
utilization and computation latency becomes a critical is-
sue — bypassing FAUST and programming the IP directly
in C++ can become a more suitable solution.

The C++ code generated by the FAUST compiler is a
translation of the data-flow graph representation of its in-
put program. Due to the compiler inherent structure, the
code translation will try to express the maximum level of
parallelization that its graph naturally possesses. While the
FAUST compiler has a few options that allow us to tune its

391

code-generation process, it still in essence stays platform-
agnostic, and will not — at least not for the time being
— make any FPGA-specific optimizations. Furthermore,
since the compiler already carries out several transforma-
tion and optimization passes, the resulting code is difficult
to apprehend and optimize manually.

On the other hand — since Syfala is already relying on
HLS — programming the DSP IP directly in C++ is entirely
possible, as it does not introduce any overhead and very lit-
tle change to the rest of the compilation flow. While being
more time consuming than writing the equivalent FAUST
program, writing directly in C++ offers a few advantages
that are not negligible:

* better control over the generated HDL code output
(lower-level language);

* more potential for micro-optimizations and balance
control between FPGA resource utilization and com-
putation latency, through the use of various direc-
tives and pragmas. ®

On the other hand, this approach requires to be familiar
with the Vitis HLS programming environment and guide-
lines, which includes, among other things:

e use of a limited version of C++ (up to C++14), as
well as a few strict rules on the use of the language’s
features (such as types, data structures, casts, etc.);

» implement complex HLS interfaces, using pragmas,
with a potentially steep learning curve;

¢ handle manually data exchange with ARM executa-
bles through Memory bus interfaces.

4. DSP IP GENERATION FROM C++

In practice, writing a custom C++ DSP IP implies the same
steps as writing a regular C++ program: all the code can
be written in one or multiple C/C++ source or header files,
and it should be C++ 14 compliant (meaning it should also
compile using a regular C++ compiler) and have an ‘entry
point’ function (called a ‘top-level function’ in Vitis HLS),
which we will describe in the following sub-sections.

4.1 Top-Level Function Interface

The top-level function of a custom C++ IP can be seen as
the equivalent of the ‘main’ function in a regular C or C++
program, and its arguments should be considered as the
declaration of the IP’s input and output ports, with:

* non-pointer arguments representing input (read)
ports only;

* pointer or array arguments representing input or out-
put ports (read, write, or both).

The listing in Fig. 3 shows a basic example of a DSP
IP top-level function, made out of two audio input ports,

8 Directives and Pragmas are provided by Vitis HLS to fune paral-
lelization and allow for a balance between FPGA resource utilization and
computation latency of the DSP IP design.

void syfala (
sy_ap_int audio_in[2],
sy_ap_int audio_out([2],
int arm_ok,
float+ DDR,
bool bypass,
bool mute
) |
#pragma HLS array_partition variable=audio_in
type=complete
#pragma HLS array_partition variable=audio_out
type=complete
#pragma HLS INTERFACE s_axilite port=arm_ok
#pragma HLS INTERFACE m_axi port=DDR
latency=30
[...]

Figure 3. Example of a kernel DSP top-level function used
to generate the DSP IP with Vitis HLS.

two audio output ports, two additional ‘bypass’ and ‘mute’
input ports, as well as a few memory bus interfaces (the
arm_ok, and DDR ports). As one can see, all of these
interfaces are specified with a set of HLS-specific prag-
mas, which can themselves be configured with a few addi-
tional parameters. These top-level function arguments are
explained below.

4.1.1 Audio Input/Output Signal Types

In standard Syfala designs, audio signals are conveyed
from and to the audio codecs as streams of 24-bits integers,
by default (16 or 32 bits can be used as well). The top-level
argument type sy_ap_int, which is used for audio input
and output ports, is a specialization of a generic fixed-point
integer type defined by Vitis HLS in its core libraries. Its
width can be changed using the ~sample-width flagin
the syfala command line interface, but it cannot be changed
to single or double precision floating point types.

Since audio DSP programs are usually processing float
or double-based signals, a few convenience functions
(ioreadf and iowritef) and types for making the
proper conversions have been added in the Syfala API
headers, which can be directly included in the target C++
file. From these header files, it is also possible to access
some useful compile-time data, such as the project’s sam-
ple rate, sample width, or targeted board model.

4.1.2 PS-PL Memory Interfaces

The two following top-level function arguments (arm_ok,
DDR), and their respective pragma settings, show the use
of Advanced eXtensible Interface (AXI4) memory buses,
in order to create and enable shared memory areas between
the DSP IP (which dwells on the Programmable Logic, or
PL) and the Processing System (PS). This will allow us,
among other things, to share data between the DSP IP and
an ARM CPU-based executable, both running simultane-
ously on the same System on Chip (SoC).

In this context, data can either be shared using the DDR
memory controller (through an AXI4 bus), or smaller inter-
mediate PL Block RAMs (BRAM), using a lighter subset
of the protocol (AXI4-Lite). In Syfala, these interfaces are
implemented by default on standard designs, and may be
used for multiple purposes (see Section 5.1). The arm_ok

392

argument is used in this context as a synchronization point
between the DSP IP and the ARM executable while the
DDR pointer is used to store and retrieve floating-point data
in DDR memory.

4.2 DSP Kernel Code

Inside the top-level function, the code dedicated to signal
processing can be written like standard C/C++ DSP code.
The only requirement is to switch back and forth between
float and sy_ap_int in order to read the input signal argu-
ments, and write back to the outputs, which can be easily
done by taking advantage of some of the API functions, as
shown below.

for (int n = 0; n < 2; ++n) {

// Read audio inputs

float s = Syfala::HLS::ioreadf (audio_in[n
// Do something with s

s = 0.5s;

// Write audio outputs
Syfala::HLS::iowritef (s, audio_out[n]);

1)

4.2.1 Sample-Block Configuration

By default, Syfala implements the one-sample stategy. It
is nonetheless possible to configure the DSP IP to process
a buffer of samples instead, for potential optimization pur-
poses. Using the multi-sample strategy may succeed in
decreasing the latency per sample performance of the DSP
IP, taking advantage of the pipelining optimizations offered
by Vitis HLS, which might be useful in some cases.

The multi-sample strategy is simply activated by adding
the —multisample <N> flag to a syfala command. How-
ever, the DSP IP code also needs to be adapted, since it
requires replacing the single-valued input and output ports
of the top-level function by first-in-first-out (FIFO) arrays,
which should be declared as C multidimensional arrays in
the HLS context, as shown below.

void syfala (
sy_ap_int audio_in[2
sy_ap_int audio_out [

[...]

] [SYFALA_NSAMPLES],
2] [SYFALA_NSAMPLES],

) {

#pragma
#pragma
#pragma
#pragma

HLS
HLS
HLS
HLS

INTERFACE ap_fifo port=audio_in
INTERFACE ap_fifo port=audio_out
array_partition variable=audio_in
array_partition variable=audio_out

4.2.2 Internal Loops Pragmas

Finally, code optimization in the HLS environment is usu-
ally done using various sets of pragmas, which can be
viewed as higher-level hints or instructions given to the
compiler to process a specific part of the code in a certain
way. These pragma declarations usually target an individ-
ual variable, function or loop, and can often be tuned with
various parameters.

The complete mastering of all Vitis HLS pragmas is out
of the scope of this paper, but one needs to know that
many adjustments can be done with loop unrolling and
loop pipelining. Loop unrolling (HLS unroll pragma
as below) is used to to increase parallelism by using addi-
tional resources. If a loop is not unrolled, it will be im-
plemented sequentially (i.e., no additional resources) and

Vitis HLS will try to pipeline the loop, i.e., overlap succes-
sive iterations without using additional resources.

In the code below, 4 iterations of the first loop will be
executed in parallel and the second loop will be pipelined.
Increasing the unroll factor will reduce the overall latency

and increase resource usage:
for (int i = 0; i < NMODES; i++){
#pragma HLS unroll factor=4
for (int n 0; n < SYFALA_NSAMPLES;
#pragma HLS pipeline
[....]

++n) |

}

4.3 Additional HLS Programming Environment Tools

Depending on the actual code and machine it is running
on, using the Syfala toolchain to build a project based on
a FAUST or a C++ file can take quite some time: one can
expect a total build duration somewhere between 15 and
60 minutes. Hence, before running hardware synthesis, the
two following points have to be checked, at least:

1. the DSP IP code is valid (it produces the outputs it
is supposed to, from the inputs that it is given);

its implementation fits on the targeted platform, both
in terms of FPGA resources and computation la-
tency.

Fortunately, Vitis HLS offers tools that can make this
kind of verification much faster (i.e., few seconds): C sim-
ulation (CSIM) and synthesis reports, which are also both
well-integrated to the Syfala toolchain workflow.

4.3.1 Verifying Code With C Simulation (CSIM)

C simulation is an important Vitis HLS feature that al-
lows us to test a C-written custom IP without having to
get through the full synthesis process. Vitis HLS guar-
antees (with a few exceptions) that the outputs produced
during simulation are going to be the same as what would
happen in a “real” context of execution (implemented as
hardware).

In Syfala, this simulation process can be directly ran from
the command-line interface, and the Syfala documentation
website offers in its tutorials a few templates and guide-
lines on how to write a custom CSIM program.

4.3.2 Monitoring Latency & Resource Usage

Once it is established that the DSP IP code is valid, the
other essential information to obtain is whether the design
fits on the targeted board, both in terms of FPGA resource
usage and latency. For the latter, it is also important to
make sure that the DSP computations are within the time
limits set by the FPGA clock rate, as well as the project’s
sample-rate constant. For instance, the DSP IP computa-
tions should last less then 2604 FPGA clock cycles for the
computation of a single sample, for a sample rate of 48kHz
and a FPGA clock rate of 125MHz.

https://inria-emeraude.github.io/syfala/

393

After running the high-level synthesis step, the Syfala
command-line interface automatically displays in the ter-
minal an overview of Vitis HLS resources and latency es-
timates for the current program. If a more accurate report
is needed, the —accurate-use flag can also be added to the
command, which runs the implementation step of the de-
sign on the targeted platform. The —accurate-use flag usu-
ally adds a few more minutes to the HLS process to com-
plete.

5. ARM EXECUTABLE INTERFACES

In some cases, it may be necessary to provide Syfala with a
custom ARM executable in order to address specific needs,
such as:

1. Using memory buses to share custom data and com-
putations, as mentioned in Section 2.1;

. Overriding the default configuration of the plat-
form’s peripherals (when using new external
codecs);

. Adding external software components, or imple-
menting custom control interfaces, using for in-
stance the Musical Instrument Digital Interface
(MIDI) or Open Sound Control (OSC) protocols.

Custom ARM executables can easily be interfaced with
the DSP IP and the system peripherals through a set of
modules provided by the Syfala ARM API, which have
separate implementations in baremetal and embedded-
Linux build contexts.

An example of code for a minimal ARM executable, in
embedded Linux context, can be seen in Fig. 4, in which
a few different API modules are included, configured and
initialized, all within the scope of the main function. This
custom program can be added as a replacement to the de-
fault one provided by Syfala using the —arm-target
<file.cpp> option in the command-line interface.

#include
#include
#include
#include

<syfala/arm/audio.hpp>
<syfala/arm/gpio.hpp>
<syfala/arm/uart.hpp>
<syfala/arm/dsp.hpp>

using namespace Syfala::ARM;
int main ()
{
XDSP
UART

dsp_ip;
::data udata;

GPIO::initialize();
UART::initialize (udata);
Audio::initialize();
DSP::initialize (dsp_ip);
DSP::set_arm_ok (&dsp_ip, true);
Status::ok ("Application ready, now running");
// Main event loop:
while (...) {

/)
}
return 0;

Figure 4. Example of minimal control program running on
the ARM processor (i.e., arm.elf on Fig. 1).

The Syfala ARM API documentation, which describes in
details all of the available modules and their interface, can
be browsed on the Syfala documentation website. '° Since
the DSP and Memory modules constitute special cases in-
sofar as they can be used to ensure interoperability between
the ARM and the FPGA, we will also describe in the fol-
lowing subsections how they work and the benefits they are
able to provide.

5.1 ARM/FPGA Interoperability

Sharing data and processing between PS and PL can prove
essential for making the load lighter on the DSP IP. Hence
the ARM executable can be used with specific strategies in
mind, such as:

* The initialization of data arrays (wavetables) or con-
stant expressions, by the ARM executable;

¢ Storing long delay-lines in DDR memory, instead of
BRAM,;

e Computing control-rate signals.

In order to implement these different strategies, sharing
data between the DSP IP and the ARM executable is key,
and can be easily achieved by leveraging the Advanced Mi-
crocontroller Bus Architecture (AMBA) interfaces set up
on the System on Chip, specifically the AXI4 bus systems,
which are natively supported in Vitis HLS.

5.1.1 AXI4-Lite Interfaces

The AXI4-Lite bus protocol is the quickest and simplest
way to setup data exchange between a custom-made IP
and an ARM executable. When adding an AXI4-Lite-
registered argument to the top-level function of a custom
C++ IP, Vitis HLS will automatically generate its match-
ing ‘driver’ getter and setter functions in a C header/-
source file during synthesis. An example of the generated
Set /Get function prototypes for the arm_ok argument
seen in Fig. 3 is displayed below. The registered argument
(arm_ok here) can either hold a single value, or an array
of multiple values.
// xdsp.h
typedef struct {

u64 Control_baseAddress;

u32 IsReady;
} XDSP;

void XDSP_Set_arm_ok (XDSP *InstancePtr, u32 Data);
u32 XDSP_Get_arm_ok (XDSP =xInstancePtr);

From the ARM executable point of view, the generated
functions and their common C-struct handle (such as the
one above) can then be accessed and called. Syfala will
then take care of automatically including and linking the
generated C sources when building the executable.

5.1.2 AXI4 Memory Interfaces

In order to read and write through the AXI4 bus, the pro-
cess is somewhat similar, since it relies on the same Vitis
HLS function-generation mechanism, but the data that is
passed to the generated functions now consists in pointers:

Ohttps://inria-emeraude.github.io/syfala/

394

// xdsp.h
u64 XDSP_Get_DDR(XDSP *InstancePtr);

For convenience, the Syfala ARM Memory module can
be called to take care internally of passing valid and ex-
clusive DDR memory addresses to the DSP 1P, which can
then be retrieved in the DDR pointer argument in the HLS
code (as seen in Fig. 3).

[...]

#include <syfala/arm/memory.hpp>
using namespace Syfala::ARM;

#define WAVETABLE_LEN 16384

static void
initialize_wavetable (Memory::data& m) {
int w = WAVETABLE_LEN;
for (int n = 0; n < w; ++n) {
mem. f [n] sin((float) (n)/w = M_PI * 2);

}

int main() {

[...]

Memory::data mem;
Memory::initialize (dsp_ip, mem,
initialize_wavetable (mem) ;
[...1]

Status::ok ("Application ready, now running");
while (...) {}

return 0;

0, WAVETABLE_LEN) ;

The code above shows an example of using the Syfala
Memory module in order to setup a basic sinewave table
on a custom ARM executable. Since the computations for
the initialization of the wavetable are only made once, it
is best to let the CPU handle them, instead of using FPGA
resources. The resulting data is then shared internally with
the DSP IP through the AXI4 bus, and handled in the HLS
code using the DDR pointer.

5.1.3 AXI4 vs. AXI4-Lite

Although AXI4-Lite is usually faster when sharing a re-
stricted amount of data, due to that fact that it does not
implement all of the AXI4 bus features, it can also poten-
tially lead to bottlenecks when this amount significantly
increases. Unlike AXI4, AXI4-Lite does not support burst
reads or writes, which means that multiple data cannot be
retrieved in a single transfer. Consequently, and since read
and write accesses are sequential, they can, by accumulat-
ing, rapidly catch up the latency penalty inherent to AXI4,
which, on the other hand, will take advantage from its par-
allel data access capabilities when a large memory zone is
involved.

Conversely, AXI4 will be less efficient at handling
smaller data sets, which is amplified by the fact that it
does not benefit from a higher-level interface to manage
allocation offsets for individual or fragmented data, which
should for now be manually handled by the user, as it has
not yet been implemented either in the Syfala API.

Finally, AXI4-Lite adapters are always implemented in
the Programmable Logic with Vitis HLS, alongside the
DSP IP, meaning that it uses a lot more resources than its
AXI4 counterpart, for which the actual memory is in the
external DDR.

5.2 Adding External Control Interfaces

One additional reason to provide a custom ARM exe-
cutable would be to bridge the DSP application with the
rest of the system, both in terms of hardware and soft-
ware components. In a baremetal context, this could mean
for instance using the Serial or SPI interfaces to control
DSP parameters or, on embedded Linux, taking advantage
of USB or Ethernet interfaces to implement MIDI and/or
OSC control.

[...]

static int gain_handler (
[...]
lo_arg+* argv
voidx user_data

XDSP* dsp = (XDSPx)user_data;

float gain = argv[0]->f;
XDSP_Set_gain(dsp, *(u32x) (&gain));
return 0;

int main() {

[...]
auto osc = lo_server_thread_new("8888", error_hdl);
lo_server_thread_add_method(osc, "/gain",
"f", gain_handler, &dsp
)i
lo_server_thread_start (osc);
[...]
Status::ok ("Application ready, now running");
while (...) {usleep(5000);}
return 0;

The code above shows a basic implementation of OSC
control in a custom ARM executable, running in an embed-
ded Linux context, using the liblo library.'! As one can
see, the AXI4-Lite data exchange (which can be consid-
ered as ‘control-rate’ here) occurs in this context directly
in the OSC callback function gain_handler.

6. RESULTS AND PERFORMANCE

We were able to conduct experimentation on a few com-
plex audio programs, which were initially difficult to im-
plement on the Zybo Z20 development board using FAUST.
These examples include Wave Field Synthesis [14] algo-
rithms, capable of supporting up to 10 sources for 256
output channels, biquad-based modal Reverb [15] (up to
18,000 modes), FIR filters (10 filters with 4000 coeffi-
cients).

It is difficult to assess the performance improvements be-
tween the design yield by FAUST and the design obtained
from C++ as it heavily depends on the way the Faust and
C++ programs have been optimized. In general, the per-
formance can be improved by a factor of 10 (in terms of
resource usage or latency).

This significantly helped us with the prototyping of com-
plex spatial audio systems. For this, we took advantage
of the FPGAs reprogramming capabilities and large num-
ber of GPIOs to interface them with large speaker arrays.
In this context, using C++ allowed us to make significant
optimizations, which would not have been possible us-
ing FAUST, especially when targeting small FPGA boards,
such as the Zybo Z7, which have limited logic resources.

Wnttps://liblo.sourceforge.net/

395

7. CONCLUSION AND FUTURE WORKS

This paper presents a method for writing C++ audio pro-
grams to map them efficiently on Xilinx FPGAs using the
Syfala toolchain. It can help C++ programmers to take
advantage of FPGA capabilities in terms of performances
and latency. It also enables the implementation of costly
algorithms such as modal reverbs, which are generally too
computationally expensive to be run on a CPU in real time.

Finally, being able to use Syfala with C++ will allow us to
interface the toolchain with other C++ based frameworks
or programming environments (e.g., JUCE, SuperCollider,
PureData with Heavy, Max/MSP with gen or Rnbo, etc.).

One of our research direction is to abstract the way prag-
mas are used in the C++ program so as to include them in
the FAUST compiler.

Acknowledgments

This project has been partially funded by the French ANR
(Agence Nationale de la Recherche) through the FAST
project ' (ANR-20-CE38-0001) and the Inria/Stanford
Plasma Associate Team. '3

8. REFERENCES

[1] T. Skare and J. Abel, “Gpu-accelerated modal pro-
cessors and digital waveguides,” in Proceedings of
the 2019 Linux Audio Conference (LAC-19), Stanford,
USA, 2019.

[2] A. HajiRassouliha, A. J. Taberner, M. P. Nash, and

P. M. Nielsen, “Suitability of recent hardware accel-

erators (DSPs, FPGAs, and GPUs) for computer vision

and image processing algorithms,” Signal Processing:

Image Communication, vol. 68, pp. 101-119, 2018.

[3] M. Popoff, R. Michon, T. Risset, Y. Orlarey, and

S. Letz, “Towards an FPGA-Based Compilation Flow

for Ultra-Low Latency Audio Signal Processing,” in

Proc. Int. Conf. in Sound and Music Computing, SMC-

22, Saint-Etienne, France, Jun. 2022.

[4] Y. Orlarey, S. Letz, and D. Fober, New Computational

Paradigms for Computer Music. Paris, France: De-

latour, 2009, ch. “Faust: an Efficient Functional Ap-

proach to DSP Programming”.

[5] M. Popoff, R. Michon, T. Risset, P. Cochard, S. Letz,

Y. Orlarey, and F. de Dinechin, “Audio DSP to FPGA

Compilation: The Syfala Toolchain Approach,” Univ

Lyon, INSA Lyon, Inria, CITI, Grame, Emeraude,

Tech. Rep. RR-9507, May 2023.

[6] C. Wegener, S. Stang, and M. Neupert, “Fpga-

accelerated real-time audio in pure data,” in Proceed-

ings of the International Conference in Sound and Mu-

sic Computing, SMC-22, 2022.

2https://fast.grame.fr
Bhttps://team.inria.fr/emeraude/plasma/

(10]

(11]

[12]

[13]

[14]

[15]

[7] T.C. Vannoy, “Enabling rapid prototyping of audio sig-
nal processing systems using system-on-chip field pro-
grammable gate arrays,” Master PhD, 2020.

C. Dragoi, C. Anghel, C. Stanciu, and C. Paleologu,
“Efficient FPGA Implementation of Classic Audio Ef-
fects,” in Proceedings of the 2021 13th International
Conference on Electronics, Computers and Artificial
Intelligence (ECAI). Pitesti, Romania: IEEE, Jul.
2021.

[9] S. Lahti, P. Sjovall, J. Vanne, and T. D. Himildinen,
“Are we there yet? a study on the state of high-level
synthesis,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 38, no. 5,

pp. 898-911, 2018.

R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Ca-
nis, Y. T. Chen, H. Hsiao, S. Brown, F. Ferrandi et al.,
“A survey and evaluation of fpga high-level synthesis
tools,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 35, no. 10, pp.
1591-1604, 2015.

P. P. de Garanderie, “Traitement du signal audion-
umérique a partir des modulations sigma-delta et pcm,”
Master’s thesis, Ecole Nationale Supérieure Louis-
Lumiere, 2015.

P. Cochard, M. Popoff, A. Fraboulet, T. Risset, S. Letz,
and R. Michon, “A programmable linux-based fpga
platform for audio dsp,” in Proceedings of the 2023
Sound and Music Computing Conference (SMC-23),
2023, pp. 110-116.

P. Cochard, J. Weber, R. Michon, T. Risset,
and S. Letz, “Open Source Ethernet Real-time
Audio Transmission to FPGA,” INRIA, Tech. Rep.
RR-9542, Feb. 2024. [Online]. Available: https:
/finria.hal.science/hal-04491503

J. Ahrens, Analytic methods of sound field synthesis.
Springer Science & Business Media, 2012.

J. S. Abel, S. Coffin, and K. Spratt, “A modal archi-
tecture for artificial reverberation with application to
room acoustics modeling,” in Audio Engineering So-

ciety Convention 137. Audio Engineering Society,
2014.

396

