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ABSTRACT

This paper presents the development of a classifier for real-
time flute Instrumental Playing Technique (IPT) recog-
nition. Our classifier, implemented using Convolutional
Neural Networks (CNN), shows a solid state-of-the-art ac-
curacy in detecting different flute IPTs, with enough re-
activity and steadiness to be accurate in real-time applica-
tions. In particular, we use our classifier’s output to guide
Somax2, a co-creative Corpus-Based Concatenative Syn-
thesis (CBCS) improvisation system developed within the
ERC project REACH, of which we are part of. By imple-
menting a new Label Feature in the corpus annotation and
in the output selection process of Somax2, we can drive
its musical generation through the flute IPT detected by
the classifier. Our real-time IPT recognition system of-
fers a new dimension to the Somax?2 interaction paradigm,
where its artificial agents are now able to responsively en-
gage with the recognized techniques. Contributing to the
broader field of human-machine interaction in computer
music, our results have potential applications in improvi-
sation, computer-aided composition and new interfaces for
musical expression.

1. INTRODUCTION

The paradigm of Corpus-Based Concatenative Synthesis
(CBCS) has significantly transformed real-time sonic ex-
ploration in live music performances and creative pro-
cesses. By exploiting extensive sound corpora, musicians
can manipulate and concatenate audio segments, leading
to the creation of entirely novel music pieces. This process
has been successfully exemplified by tools like CataRT [1],
now fully integrated into MuBu [2], or FluCoMa [3], pre-
senting comprehensive toolkits for corpus manipulation
that offer abundant possibilities for improvisers, sound de-
signers and composers.

Within the domain of computer music, interaction has
consistently played a crucial role in performance. Each
musician responds to performance gestures, generating a
sound influenced not only by the instrument - acoustic
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or computer - itself but also by the performance space
and the performer’s interaction with it. In the context of
human-machine improvisation, the challenge becomes one
of programming an environment with sufficient flexibility
to qualify as interactive in response to a performer. Inter-
action, at any level, signifies a mutually influential process
contributing to the ideas of Creative Instrument and Ma-
chine Musicianship [4].

The concept of musical agency assumes fundamental im-
portance for this [5]. While the idea of music agents
has evolved into a taxonomy of diverse applications [6],
in the realms of music improvisation and co-creation,
George E. Lewis’s Voyager system stands as an early
and successful embodiment of this concept [7]. Subse-
quent innovations such as Omax [8] and contributions
from the Raising Co-Creativity in Cyber-Human Musi-
cianship (REACH) project at IRCAM have further refined
the notion of co-creativity in cyber-human applications.
Introductions of temporal scenarios [9] and high reactiv-
ity [10] have breathed new life into the paradigm of co-
improvisation and CBCS applications. These systems are,
however, based on different models of musical interaction
which rarely take into account the timbral aspect of a par-
ticular instrument, and can hardly recognise a change in
instrumental techniques in real-time and act accordingly.

This work therefore presents an interactive and modu-
lar environment in which a particular flute Instrumental
Playing Technique (IPT) is identified in real-time and used
to guide the co-improvisation of a CBCS-based artificial
agent, responding to the technique in question and main-
taining stylistic consistency of improvisation thanks to its
generative model. We selected the flute as the instrument to
focus on because, to our knowledge, no research other than
our own in the field of real-time IPT recognition and co-
creative improvisation with Al musical agents has yet been
conducted on the flute. We chose Somax2 [10] to handle
the interactive co-creative part of our research as it is one of
the software developed in one of our teams and part of our
research area in the REACH project. In addition, although
Somax2 possesses efficient responsiveness and immediate
interaction capabilities with a real musician, it has no no-
tion of timbre or recognition of instrumental techniques,
being tied solely to pitch and chroma descriptors. Our re-
search therefore aims to extend the interaction paradigm
provided by its specific model and to explore general pos-
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sibilities of integrating real-time IPT recognition into co-
improvisation systems with artificial agents.

This paper is structured as follows: Section 2 briefly sum-
marises existing approaches to the detection of ITPs and
describes our proposed model for real-time recognition of
flute IPTs. Section 4 describes the integration of our model
in Somax2, and Section 5 explains the implementation of
the proposed system. Section 3 details the results obtained,
Section 6 discusses them and Section 7 presents the con-
clusions.

2. REAL-TIME IPT RECOGNITION
2.1 Existing Systems

Several studies tackle IPT identification based on principal
component analysis [11] and onset detection [12]. These
methods need a set of audio descriptors designed only to
detect one specific IPT and cannot detect other IPTs. Thus,
they are not sufficient for our task. Different research fo-
cusing on violin [13], electric guitar [14], Chinese bam-
boo flute [15], drums [16], cello [17], guitar [18] and flute
[19] tackle IPT identification as a multi-class classification
task using machine learning algorithms. A few of them
have suggested using IPT classification for real-time per-
formance [17-19]. To our knowledge, only the study on
the cello [17] has tested their system in real-world situa-
tions. However, the proposed system has yet to reach suf-
ficient accuracy and is not ready for practical application.

As mentioned above, MuBu [2] and FluCoMa [3]
Max/MSP libraries can perform real-time machine listen-
ing. They provide several real-time audio signal analysis
tools and machine learning algorithms. However, the avail-
able tools do not allow a thorough parametrization of the
neural networks. Therefore, these tools are not adapted for
our real-time IPT recognition task.

2.2 The Flute Playing Techniques

The flute can produce a chromatic scale thanks to the keys,
from medium (C3=261 Hz) to treble pitch (C6~/2093 Hz),
and has a wide range of playing techniques. The sound
of the flute is produced by the friction of the air on the
mouthpiece and different changes in the velocity and char-
acteristics of the blown air allow playing different tech-
niques [20]. Some playing techniques of the flute are based
on articulations, such as the staccato, pizzicato, and flutter-
tongue techniques. Some are based on the air flux blown
by the performer, such as the ordinario, aeolian, and whis-
tle tone techniques. Some are based on fingering, such
as the multiphonics and trill techniques, whereas some in-
volve singing while blowing, play and sing, or hitting the
keys hard, key click [21].

The flute can play many other techniques, but existing
study [19] has shown that some should not be utilized as
they strongly confuse classifiers because of their similar-
ity to other techniques (i.e. the aeolian and ordinario,
harmonics, discolored fingering techniques among others).
Additionally, our preliminary experiments show that, de-
spite the very good overall accuracy, the real-time recogni-
tion of short-time duration playing techniques, such as the

key click, pizzicato, staccato, and tongue ram techniques, is
very challenging for the classifier. Thus, for the sake of sta-
bility when used with Somax2, we decided not to train our
classifier on short-time duration playing techniques. The
aim of our real-time IPT recognition system is to identify
the different flute playing techniques as audio data in real
time. Therefore, we use a total of 7 playing techniques, as
shown in Table 1.

aeolian flatterzunge ordinario

trill

multiphonics

play and sing whistle tone

Table 1. Flute playing techniques in 7 categories.

2.3 Datasets

We use the audio files of the GFDatabase [22] to train our
model. The database includes five types of recordings (A,
B, C, D, and E) from seven microphones placed at differ-
ent distances from the source. This microphone set has
recorded 11 flute playing techniques pitch by pitch within
the respective register for each flute IPT. Our preliminary
experiments show that using the A, B, C, and D record-
ings brought better performances than using all of them.
As mentioned in 2.2, we do not use the key click, pizzicato,
staccato, and tongue ram techniques.

To thoroughly assess our classifier, we evaluated it on a
separate test dataset (heterogeneous datasets). We used the
FullSOL sound bank [23] for our test dataset because it has
the same flute playing techniques as in the training dataset.
To ensure that the flute playing techniques in the Full-
SOL sound bank match those in the training dataset, we
removed the unused techniques. The GFDatabase merged
the highly similar playing techniques into the same cate-
gories. For example, minor and major second trills fall
under the #rill category. Similarly, playing a whistle tone
with a glissando or not is considered performing a whis-
tle tone. Playing and singing at the same pitch or not is
considered performing a play-and-sing technique. There-
fore, we applied this same methodology to the flute playing
techniques of FullSOL.

2.4 Data format

To prepare our data, we follow an existing methodol-
ogy [19]. We downsampled the audio files sample rate
to 24kHz considering 12kHz (the Nyquist frequency) is
sufficient to cover most flute harmonics. We trimmed
the silence in the audio files because it is irrelevant. We
then sliced the audio files into 15-frame-long sequences
(= 320ms). The sequences are analyzed with a Log-Mel-
Spectrogram (LMS) analysis from the Torchaudio library
[24]. The LMS is computed on 128 bins, the FFT window
is fixed at 2048 samples, and the hop size is set to 512 sam-
ples (= 21.3ms). The minimum frequency is set to 150Hz
because lower frequencies are irrelevant for the flute. Each
sound file is sliced into a maximum number of data sam-
ples according to the number of frames used. When the
sequence length is shorter than 15 frames, we pad the au-
dio sample with zeros. The data is then normalized.
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2.5 Data Augmentations

For audio classification problems, data augmentation is
frequently used to compensate for the lack of training data,
and previous studies have demonstrated a notable increase
in accuracy [25]. It consists of increasing the amount of
data by applying several transformations to the data we al-
ready have. To do so, we utilized these three audio trans-
formations: pitch shift, Gaussian noise addition, and time
stretch.

For the pitch shifting, the original recording tuning is
shifted randomly within a range of +100 Hz compared to
the original tuning of 440 Hz. This is based on the as-
sumption that the instrument’s tuning can change between
performances. Additionally, it would provide pitches out
of the tonal scale, which can help the classifier generalize
on unseen data. Gaussian noise is added to each file of the
original recording. This is based on the assumption that
noise is generated when the microphone signal is ampli-
fied. For the time stretching, we modify the audio sample
length of £20%. This is based on the assumption that play-
ing techniques can be performed at different speeds.

2.6 Model Architecture

To perform the real-time IPT recognition, we chose to im-
plement a deep Convolutional Neural Network (CNN) ar-
chitecture since several studies have shown its efficacy for
instrument-related audio classification tasks [17,18,26,27].
In the field of IPT automatic recognition, existing research
proposed several design strategies to build CNN architec-
tures [17]. We first tested the suggested configurations
by adapting their capacity to our data. Nevertheless, our
preliminary tests have shown poor accuracy results on our
dataset. Therefore, we propose augmenting the capacity of
the suggested CNN architectures by adding several layers
and selecting the hyper-parameters that increase accuracy.
Figure 1 shows a schematic representation of our architec-
ture.
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Figure 1. Schematic representation of the proposed archi-
tecture.

In our proposed architecture, convl, conv2, and conv3
use a kernel size of 2x3, while conv4, conv5, and conv6
use a kernel size of 2x2. Our preliminary experiments have

shown that using a rectangular-shaped kernel size of 2x3
on convl, conv2, and conv3 led to better accuracy than
square-shaped kernel sizes.

We add batch normalization and dropout layers after each
convolutional layer. This is because the batch normal-
ization layer fastens the training [28], while the dropout
(fixed to 0.25 between each module) prevents overfitting
[29]. After the sixth convolutional layer module, we con-
nect three fully connected layers (fc7, fc8, and fc9). We
use the identity activation function after these layers be-
cause our preliminary experiments have shown better re-
sults. Padding is “same” and strides equal to 1 on every
convolutional layer.

2.7 Training

The weights of the neural network are initialized with the
Xavier Normal Initialization [30]. The training is per-
formed by minimizing the cross-entropy loss function.
Mini-batch gradient descent is performed with ADAM op-
timization with an exponential decay of the learning rate
(starting at 1r=0.001 with patience of 10 epochs). The clas-
sifier is trained for 100 epochs with a V100 GPU machine.

2.8 Measurements

To evaluate the performance of our model, we performed
four kinds of measurements. We first measured the accu-
racy after the training was completed. Then, we computed
a confusion matrix to observe how well our classifier iden-
tified the playing techniques. These measurements are pro-
cessed by evaluating the model on successive 15-frame se-
quences of LMS separated by 15 frames (= 320ms).

For a comprehensive assessment of the performances of
our model, we conducted a reactivity and steadiness study.
For that purpose, we generated a random sequence of two
test samples of different playing techniques. The end of
the first sample is randomly truncated to create an abrupt
change in the IPT. The aim of this test is to determine if
the model can detect the change and maintain accurate pre-
dictions over time. These measurements are processed by
evaluating the model on successive 15-frame sequences of
LMS separated by 1 frame (= 21.3ms), simulating a real-
time situation.

We also measure the total delay time. This was defined
by the sum of the audio sample gathering time (=~ 21.3
ms), the audio samples processing time and the time in-
duced by the classifier’s prediction [19]. To ensure proper
performance, the total delay time should not exceed the
time of two frames (= 42.6ms). If the system exceeds this
limit, the delay will accumulate infinitely. We conducted
10 tests in real-time to measure the audio processing time
and classifier-induced prediction time. We then calculated
the average and the standard deviation.

3. RESULTS

In this section, we present the results of the evaluation of
our model.
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3.1 Accuracy and Confusion Matrix

Our model shows a consistent accuracy with a score of
92.56%. The confusion matrix in Figure 2 shows that the
model identifies all the playing techniques well. The #rill
technique is the most accurately identified, with an accu-
racy score of 99.47%. The multiphonics technique is the
least identified, with an accuracy score of 78.61%.

Figure 2. Confusion matrix (%).

3.2 Reactivity and Steadiness Study

We studied how our model reacts and remains steady in its
predictions in a real-time situation. The graph in Figure 3
shows that it is reactive to changes and maintains consis-
tency over time. However, two peaks represent misiden-
tifying. The first is between the two techniques, and the
second is at the end of the second technique. We think our
model may be confused when encountering the first sam-
ples of a new technique or when a technique fades out to
silence. On this specific test, it had an overall accuracy of
98.66%.
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Figure 3. Reactivity and steadiness study: label prediction
over time.

3.3 Total Delay Time

To measure the delay time induced by our model and the
audio sample processing time, we measured the delay time
for each prediction made on the sequence 10 times. We
then computed the average and the standard deviation. We
found an average of 6.56 ms and a standard deviation of
1.30 ms. With the sample gathering time (= 21.3 ms)
added, we found a total delay time of 27.86 ms, which is
below the limit fixed in 2.8 (= 42.6 ms).

4. INTEGRATION WITH SOMAX2

Somax2, developed in the Music Representation team at
IRCAM as part of the ERC REACH project, serves to
generate stylistically coherent musical interactions, partic-
ularly focused on the reactivity aspect of non-idiomatic im-
provisation. This is achieved through a generative model
constructed via statistical learning from a designated cor-
pus in either audio or MIDI format, while interacting with a
human improviser. The system, comprehensively detailed
in [10], is trained on user-selected musical material to es-
tablish a corpus tailored for improvisation purposes. In
the following sections, we will give a brief overview of
its fundamental concepts and describe the implementation
process that resulted in the integration with our real-time
IPT recognition system.

4.1 Somax2 Concepts

As described in [10], there are three main processes in the
Somax2 system: building and modeling a corpus, influ-
encing, and generating output. Diverging from pure gen-
erative methodologies, Somax2 generates improvisational
material directly from the original musical data without re-
course to an independent model. This genre-agnostic ap-
proach involves segmenting the musical corpus into frag-
ments and subjecting each to a multilayer analysis based
on various musical features, such as harmony (chroma)
and melody (pitch). The resultant multilayer representa-
tion forms the foundation of a navigation model, facilitat-
ing non-linear exploration of the original data. Thanks to
this, Somax2 stands apart from other generative systems
by preserving the intrinsic qualities of a specific musical
corpus, integrating them directly into the model, and pre-
senting a highly reactive take on generative music tools.
In real-time interactions with a musician, Somax2 per-
forms a similar segmentation and multilayer analysis on
the input stream, generating activation peaks in the sequen-
tial memory when the analysed input matches the infor-
mation stored in a specific segment of the corpus. These
peaks, resembling probability distributions, signify poten-
tial output candidates. When a live input audio or MIDI
stream arrives, this is sliced according to either the pitch
or the onset and then analysed with pitch and chroma de-
scriptors. The result is a rendition of the input stream in
a symbolic domain, called influences, for any of the dif-
ferent layers. Each incoming influence is compared, at a
given point in time, with the material stored in the cor-
pus (which was previously built with a similar analysis,
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but offline) in order to assess a possible match in the struc-
ture of the musical events produced. If this correspondence
between internal and external multilayer classification oc-
curs, a trigger peak is generated. At each new time step
(after each new event generated) the peaks derived from
each layer of the analysis are merged and scaled, depend-
ing on whether they are reinforced or not, and at this point
the peak with the best score is chosen as the candidate for
output.

The interplay of corpus segments, influences and peaks
delineates the co-improvisation process. The system’s ca-
pacity to dynamically balance its internal logic, thanks to
self-listening, with external input from the musician re-
sults in a coherent yet complex musical output. This co-
improvisation process effectively simulates the presence
of an active agent in a collaborative musical experience,
providing a mixture of coherence and unpredictability, and
shows typical aspects of emergence and non-linear dynam-
ics in improvisation, where the apparition of non-linear
regimes of structure formation lead to rich musical co-
evolution of forms [5].

4.2 Output Selection

Somax?2 has up to this point mainly been operating on two
musical dimensions when selecting its output: chroma and
pitch. In later releases (from Somax 2.5) a number of so
called scale actions were introduced to give the user some
degree of control over other musical dimensions and vari-
ous temporal aspects of the generated output. These scale
actions operate as gaussian filters by scaling the score of
the selected peak according to a parameter v € Ry 1.
Thanks to this, a peak p, as previously defined in [31], can

©)
now be detailed as: p = Fyy} , where y is a score (height)

designated to each peak by the model, ¢(°) the temporal
position of the corresponding slice’s onset, and ~y can be
described as a scale action function operating on a specific
trait 6 defined in the corpus.

4.2.1 Region Mask

The Region Mask scale action allows the user to specify
a region of indices within the corpus that the output
should be selected from, i.e. to select only one of multiple
sections in a structured corpus. More specifically, the user
specifies an interval [a,b], a,b € Zj; ), a < b where U
denotes the size of corpus C, and applies a parameter -y
(according to the new peak definition) defined as:

|

where S]SC) denotes the slice in the corpus C' correspond-

1 ifa<u (S,SC)> <b
0 otherwise.

ing to the time ¢ of the peak p and the function u(S,(,C))
returns the index u € [1, ..., U] of this slice.

In spite of this, the need to have an indefinite number of
events corresponding to any instrumental class while be-
ing able to efficiently switch from one class to another are
missing points in favour of our design idea, detailed in later
sections.

4.2.2 General Output Selection Mode

There are other methods in Somax2 to handle the selec-
tion of the generated output, but they all rely on filtering
and selecting peaks based on the pitch and chroma descrip-
tors the model works with. Since this implementation does
not allow working on the detection and handling of differ-
ent [PTs, we found it necessary to create a label filter that
works as a kind of dynamic region filter. The output of this
filter we implemented will then make use of the available
output selection methods, thus working on the pitch and
chroma levels, and the peak selection and decay processes
illustrated above.

4.3 Label Feature Formalisation

As previously described in Section 4.2, the output selection
modes currently available in Somax2 are not sufficient for
integration with our real-time IPT classifier. We have thus
defined and implemented a new scale action, called Label
Feature, designed to enhance the capabilities of output se-
lection modes in Somax2 when integrated with our system,
enabling the user to selectively extract musical segments
from a corpus based on the IPT class, resulting in a spe-
cific dynamic region masking.

4.3.1 Label Filter Parameter

To enable dynamic region selection based on label classi-
fication, we introduce a label filter parameter (L) defined
as:

if L € Sy, (filter active)

=1
T =9 0 otherwise (filter inactive),

where Sy, is a user-defined set of labels corresponding to
the recognized IPT, determining the criteria for inclusion
(and thus providing flexibility to it), and L denotes the clas-
sifier output, representing distinct labels corresponding to
the recognized IPT, such as staccato, pizzicato, etc.

This filter parameter serves as a binary indicator for in-
clusion or exclusion of musical slices based on their asso-
ciated labels. If the detected label L is in the specified set
S, the filter is turned on as a switch v(L) = 1, allowing
slices associated with that label to be included in the out-
put. Otherwise, the switch is off as (L) = 0, excluding
slices with labels outside the set Sy,.

4.3.2 Label Filter Function

To define a Label Filter, where the label of each slice de-
termines which slices are selected for playback, we can de-
fine the set of slices associated with label [ as \S;, keeping
in mind that L represents the label output by the classifier.
The filter can be represented as F'(L) = |J, Si,, where
F(L) represents the filtered set of slices based on the clas-
sifier output L, and U denotes the union operation, which
combines all sets S; corresponding to the labels detected
by the classifier.

In particular, giving a set of N possible labels, S; can
be defined for each label [, and the filter function becomes
F(L) = Uljil S;, where F(L) is the set of all slices that
have labels matching the classifier output.
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The overall filter function F'(L) can then be expressed,
considering the filter parameter, as:

N
F(L.A) = {8 170) = 1},
=1

where S; represents the set of musical slices associated
with label {. In particular, F'(L,~y) is the union of sets
S1, where each set \S; contains slices from the corpus as-
sociated with label . Only sets S; for which y(L) = 1
are included in the union, ensuring that slices are selected
based on the presence of the label in the predefined set S.

At this point, the output slice S, at time step w is a func-
tion of the peak matrix P,, (which contains the peaks com-
bined with previous influences, shifted and decayed corre-
sponding to the time passed since the previous influence
according to the regular output selection mode), the cor-
pus C and the history of previous output slices H,,. More
specifically, we can define a set = = {p1, ..., py } of viable
peak candidates with the corresponding set of slices £ =
{s}f), L85 } where ) = F(L,7), vS{ e¢.

As shown in Figure 4, this formulation allows for the dy-
namic selection of slices based on the presence of specific
N labels [ in the predefined set .S;. Thus, the system adapts
its output to focus on musical segments characterized by
the recognized IPT. This combination of label filter param-
eter and label filter function results in the new implemented
Label Feature.
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Figure 4. Result of the label filter function on two different
IPTs (ord for ordinario, trill) annotated on the same audio
corpus. The blue highlights show the output selected by
the filter according to the correspondence with the various
labels.

5. IMPLEMENTATION

In this section, we describe the implementation of the real-
time IPT recognition system with Somax2 improvisation
agents, called players. For the real-time IPT recogni-
tion system part, we use a Python back-end that runs in
the background. The same principle applies for Somax2,
where Max/MSP works as a front-end providing audio fea-
tures, UIs and tools to interact in real-time with the applica-
tion, but the whole generative core is handled by a Python

back-end [10]. Therefore, our implementation ensures ar-
chitecture consistency and the possibility of integrating our
real-time IPT recognition system into the more complex
Somax2 architecture.
‘ Flute ‘
l Audio"S\tream i

CNN Classification Somax Audio
Model Influencer
IPT class Influences [onset, pitch, chroma]
Label Feature ‘ Navigation Model
-New Scale Action— Peak
[ Region Filter Somax
| Player

Best match within the IPT class
‘ Audio Out ‘

Figure 5. Detailed logic workflow derived from our imple-
mentation. The items in red represent the audio elements,
those in green are the current modules and objects in the
Somax2 model, while the ones in blue represent imple-
mentations of our modules.

5.1 Python back-end

On the real-time IPT recognition system side, the Python
back-end processes the flute audio stream and runs the
model in real time. We describe the processing flow step
by step. The incoming audio signal is downsampled to
24 kHz and stored in a 7680 samples-length (15 frames)
buffer. The stored samples are analyzed using the LMS
before being normalized. Our model predicts the resulting
15 frames-long sequence, and an argmax function identi-
fies the class with the highest probability. The class name
is sent to Max/MSP through OSC protocol. The last 512
samples are removed, and the buffer is refreshed with the
new 512 samples (1 frame). This process repeats. On So-
max?2 side, since its generative core lies in its Python code,
the label feature mentioned in Section 4.3 has been im-
plemented here as a new scale action [10] available to the
somax.player.

5.2 Max/MSP front-end

The Max/MSP front-end serves multiple roles: it handles
the flute audio stream from the audio interface, sends it
to the Python back-end, receives the predicted IPT, and
runs Somax2 and its improvisation agents. To send the
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audio signal of the flute to Python back-end, we use the
BlackHole ! audio routing device. The predicted IPT is
received through the OSC protocol and processed in So-
max2 through messages corresponding to the label feature
scale action, driving in real-time the selection of the corre-
sponding IPT class. The complete workflow of interaction
derived from our implementation can be seen in detail in
Figure 5.

6. DISCUSSION

Our model has shown a solid state-of-the-art accuracy
score of 92.56%, and the confusion matrix in Figure 2 il-
lustrated its performance by classifying the various flute
playing techniques. The reactivity and steadiness study
has shown that our model can be accurate in real time. The
misidentification issue can be alleviated by implementing
a moving average on the probability distribution outputted
by the classifier. However, this sacrifices reactivity. The
calculation of total delay time showed that our model can
be run in real-time without exceeding the limit (=~ 42.6
ms). As mentioned in section 2.2, the short time duration
playing techniques such as key click, pizzicato, staccato
and tongue ram techniques have been removed from the
datasets for our experiment. Indeed, our CNN-based clas-
sifier model did not provide enough stability for identify-
ing these techniques during preliminary tests. We think
adding audio descriptors [32] to Log-Mel-Spectrograms
data samples may help the classifier, as they would bring
better audio representations.

Future work will include testing and perfecting our sys-
tem in studio with professional improvisers. We intend to
expand the model to other instruments, starting with the
clarinet and electric guitar, thus building specific datasets.
Thanks to the future conception of a specific Max/MSP
object, which would also improve the architectural aspects
of the current implementation, the system could also be na-
tively accessible in Max. In this way, user utilisation would
also be simplified and a hybrid, multi-level training system
could be conceived, in which in addition to providing spe-
cific datasets, the user can carry out new training stages on
their own database to calibrate the system to their instru-
ment.

7. CONCLUSIONS

This paper presented the application of a state-of-the-art
model to recognize flute instrumental playing techniques in
real time and to guide the interaction of improvisational ar-
tificial agents through this detection, using the co-creative
system Somax2.

By exploring playing technique possibilities of a musical
instrument, our implementation contributes to the domain
of immersive sound, giving new perspectives to work on
real-time recognition of IPT and their integration with dif-
ferent human-machine co-creativity frameworks. At the
same time, by working on new strategies to engage with
sound and music in real time, our research falls within

'https://existential.audio/blackhole/

the domain of immersive computing, providing new in-
sights for human-computer interaction in the context of
improvised music but potentially extending to computer-
assisted-composition scenarios and new interfaces for mu-
sical expression.
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