
110

ARPEGGIATORUM: AN AUDIO CONTROLLABLE MIDI ARPEGGIATOR

Axel BERNDT(axel.berndt@uni-paderborn.de)1 and
Davide Andrea MAURO(davide.mauro@uni-paderborn.de)(0000-0001-8437-4517)1

1KreativInstitut.OWL, Paderborn University, Detmold, Germany

ABSTRACT

An arpeggiator is a system that takes in input notes (or
chords) and breaks them up into sequences, so-called
arpeggios. While typical MIDI arpeggiators receive and
produce MIDI messages Arpeggiatorum allows for an au-
dio signal to be the input of the system, performing mono-
or poly-phonic pitch estimation. Arpeggiatorum is also
specifically designed to work with pipe organs. In this
contribution we present the architecture of Arpeggiatorum,
highlighting the design choices that lead to the develop-
ment of specific features, and its strengths and current lim-
itations. We will focus our attention on the possibility to
use an audio input, for example a voice, or multiple voices,
to control the system, and the new musical possibilities that
emerge. We discuss the impact that of some of the most
crucial parameters, namely accuracy and delay of the au-
dio input have on the performances and suitability of the
system.

1. INTRODUCTION

Modern pipe organs no longer have exclusively mechan-
ical actions, but are more and more often equipped with
electromechanical actions. This allows organ consoles to
be placed more freely and be equipped with a MIDI in-
terface to control keys, stops, swells etc. However, these
organs offer barely more new features than the possibility
to record and replay performances, define mixtures, trans-
pose and route keyboards to certain works. As part of a
larger activity we began to evaluate the musical and techni-
cal possibilities of modern organs that lie untapped. These
unfold their full potential when a computer (or more gener-
ally speaking, a programmable MIDI device) is connected
between the console and the organ. Thereby, the computer
can act as a mapping device for input from the console (ef-
fectively an ordinary MIDI input device), translate, enrich
or react on it. Other input devices can also be utilized to
play the organ. The computer can even become an input
device in itself.

One of the mechanisms that we have specifically devel-
oped to expand the playing possibilities is an arpeggiator,
called Arpeggiatorum. It came as a surprise that, although
it would have been technically possible for decades and

Copyright: © 2024. This is an open-access article distributed under the terms

of the Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

well-proven in the world of synthesizers (see for exam-
ple [1]), arpeggiators so far never made it onto the organ.
In contrast to many other software and hardware arpeg-
giators available Arpeggiatorum is conceived specifically
for organs. This is reflected by some of its unique fea-
tures and design decisions discussed here. For a review
of sequencers, a class of systems that include arpeggiators,
see [2]. For a discussion on the possibilities of an Arpeg-
giator as a compositional tool, see [3].

The paper is structured as follows: in Section 2 we pro-
vide an overview of the system. In Sections 3 and 4 we
present the implementation details, and discuss the current
limitations. Finally, in Section 5 we highlight the future
steps for Arpeggiatorum and possible directions for this re-
search.

2. AN OVERVIEW OF ARPEGGIATORUM

Arpeggiatorum is a Java application that implements a
MIDI software arpeggiator, and it can also be controlled
with audio as its input. It is released Open Source (with
the GPL-3.0 license) utilizing the following libraries: JSyn
[4], Tarsos DSP [5], and (optional) PortAudio [6].

The main GUI for Arpeggiatorum is presented in Fig-
ure 1. Three different tabs provide access to settings for
MIDI (e.g. Input and Output Channel), Audio (e.g. De-
vice, Channel, Pitch Tracking algorithm) and Arpeggiator
(e.g. Enrichment Pattern, Tempo).

One of the most common scenarios for the use of
Arpeggiatorum involves a musician performing on a MIDI
equipped organ while controlling the software. For this
reason a special performance mode GUI has been pro-
posed. All relevant information should be readily available
and easy to reach in a single screen and a touch-compatible
interface (see Figure 2).

Settings are automatically saved and loaded from a text
file upon opening and they include the Sample Rate (de-
fault 44100), parameters for pitch detection algorithms,
and the state of the GUI.

3. IMPLEMENTATION

An arpeggiator’s basic functionality involves an input de-
vice providing pitches (in this case noteOn and noteOff
messages from a MIDI device) and the arpeggiator logic
(see Figure 3). Since MIDI input devices are not neces-
sarily limited to classic keyboards and organ consoles we
were also striving for alternative input modalities. Singing
is particularly relevant for church music, thus we have also
added an audio input to Arpeggiatorum that determines

111

Figure 1. The GUI for Arpeggiatorum.

Figure 2. The GUI for Performance Mode.

112

sung pitches described in Section 3.1. The arpeggiator
logic then enriches the pitch pool and plays them in se-
quences according to certain patterns, as detailed in Sec-
tion 3.2.

Figure 3. Functional diagram for Arpeggiatorum.

3.1 Audio Pitch Tracking

A novel feature of Arpeggiatorum is the possibility to use
an audio input signal to control the arpeggiator. Various
different algorithms are currently implemented, with the
possibility to easily add other ones in the future thanks
to the modular architecture of JSyn. In particular two
classes of algorithms are currently implemented: mono-
phonic and polyphonic pitch trackers. Monophonic pitch
algorithms currently include: 1. Autocorrelation Function
2. Harmonic Product Spectrum and Cepstrum 3. FFT-YIN.
Polyphonic pitch algorithms currently include: 1. Constant
Q Transform.

Table 1 summarizes the lowest tracked frequency and de-
lay introduced by each proposed algorithm.

Algorithm Min Freq (Hz) Delay (ms) FFT Size
JSyn ACF 40 P + 8 samples -
HPS/Cepstrum 86.13 12 512
FFT-YIN (Tarsos) 86.13 12 512

CQT (Tarsos)

41.21 743 32768
82.41 372 16384
164.82 186 8192
329.64 93 4096
659.28 46 2048
1318.56 23 1024

Table 1. Lowest frequency, delay, and FFT size (where
relevant) for various algorithms. P is the period of the tar-
get frequency. 8 samples is the buffer size of the internal
scheduler of JSyn.

3.1.1 JSyn ACF (Monophonic)

JSyn includes a pitch detector that estimates the fundamen-
tal frequency of a monophonic signal. It utilizes the auto-
correlation function and outputs the frequency as well as
a confidence value. A new output is generated at every
update of the internal engine (8 samples) so this value is
further processed as follows:

3.1.2 Harmonic Product Spectrum (HPS) and Cepstrum
(Monophonic)

JSyn also includes an implementation of the FFT. Two sim-
ple monophonic algorithms have been implemented based

Figure 4. The workflow of the ACF pitch detector.

on the FFT. These methods work best for an input signal
that is monophonic and has an harmonic pitched content.

The Harmonic Product Spectrum method was presented
by Noll in [7]. The main idea is that the spectrum con-
sists of a series of peaks corresponding to the fundamental
frequency and harmonic components positioned at integer
multiples of the fundamental. So by downsampling and
multiplying the spectrum several times the strongest har-
monic peak should emerge. E.g. by downsampling the
spectrum by a factor of two, the second peak in the origi-
nal spectrum will line up with the fundamental.

The use of “cepstrums” was introduce by Noll in [8] in
the context of vocal pitch detection. The FFT of the input
signal is computed and then its spectrum, in log scale, is
treated as a periodic signal itself. The periodicity of this
new signal is linked to the spacing between the different
peaks. In our implementation we compute the Cepstrum
as:

Cp = |F{log(|F{f(t)}|2)}|2 (1)

The same post-processing used for JSyn ACF is applied
here.

Parameters include the chosen method, the FFT Size (de-
fault 1024 samples), which in turns determines the Lowest
Frequency, and the Highest Frequency (default 1567.98 Hz
MIDI Pitch 91 - G6).

3.1.3 FFT-YIN (Monophonic)

The implementation comes from the Tarsos DSP library.
The library includes 6 pitch detection algorithms. It is
a faster implementation of the YIN algorithm described
in [9] and implemented by Matthias Mauch (Queen Mary
University, London). The YIN algorithm is a modified ver-
sion of the autocorrelation method.

A pitch is triggered when it exceeds a confidence thresh-
old.

Parameters include the FFT Size (default 1024 samples)
and the Confidence Threshold (default 0.98).

3.1.4 CQT (Mono- and Poly-phonic)

Utilizes the Tarsos DSP implementation of the Constant Q
Transform, based on the work of Brown and Puckette [10]
and Blankertz [11]. This transform is particularly well
suited for musical applications given its frequency-varying
resolution that more closely resembles our auditory sys-
tem. By selecting its starting frequency to match one of
the MIDI pitches, and 12 as the number of bins per octave
each bin will correspond to a MIDI pitch. This results in

113

a significant reduction of the number of output bins when
compared to FFT.

A notable drawback is the amount of delay introduced.
Let us assume that for a Sampling Rate of 44100 we are in-
terested in tracking the pitches starting from E1 (41.21 Hz).
If we want to be able to discriminate E1 from F1 (43.65 Hz)
a resolution of 2.44 Hz is required. This results in an FFT
of at least 18074 samples. The current implementation
search for the next power of 2 in order to optimize the
computation. So a resulting FFT of length 32768 needs
to be computed. Such an FFT introduces a delay of 743
ms, which might not be suitable for real-time audio appli-
cations.

An effective solution to mitigate this problem, at the ex-
penses of a larger memory consumption, and setup time,
is to compute multiple CQTs with different starting fre-
quencies. By doing so each CQT will have a different
delay, decreasing as the frequency increases, as the reso-
lution needed is also decreasing. This means that higher
frequencies can be detected faster than lower frequencies.
Even for a single note this might mean that the first pitch
triggered would be one octave higher than the actual note.
In our application this does not cause particular problems
as notes are added to the pool, possibly contributing to a
new lowest note (sent to the bass channel), or enriching
the arpeggio with new lower octaves.

Two other parameters are available for the CQT: Thresh-
old and Spread. Threshold governs how the pre-computed
kernels are truncated. A greater sparsity of the kernel ma-
trices results in fewer operations to be computed. Finally,
Spread effectively alters the resolution of the transform. A
smaller Spread might result in a bigger FFT to be com-
puted. For the previous explanation a value of 1.0 was
used.

The current implementation utilizes 1 CQT per oc-
tave. Parameters include Lowest Frequency (default
41.205 Hz MIDI Pitch 28 - E1), Highest frequency (de-
fault 2637.02 Hz MIDI Pitch 100 - E7), Threshold (default
0.01), Spread (default 0.55, which is the smallest value that
does not increase the FFT size compared to a Spread of
1.0).

The lower portion of the GUI depicts in real-time the
CQT bins and their amplitude. Bins are colored green
when they exceed the threshold (red line) set by the
Threshold Slider, resulting in output pitches to be trig-
gered.

A flag parameter called Auto-Tune engages a mode
where if up to N contiguous bins (configuration parameter)
are active only the one with the highest magnitude triggers
an output. This can be useful if the audio input is not in
tune with the CQT bins, or if the Spread is increased to
reduce the delay resulting in a “blur” between consecutive
bins. If more than N consecutive bins are active we con-
sider it a “cluster” and all the pitches are activated.

The magnitude of a bin in relationship with the threshold
is used to determine the Velocity of the noteOn MIDI mes-
sage. Two parameters for minimum and maximum veloc-
ity are mapped with a linear interpolation to the threshold
and a value corresponding to 2 ∗ threshold. The use of a

Velocity based on the strength of the audio input can be
further expanded by using the Aftertouch MIDI message
(as opposed to a Channel Pressure message as it does not
carry the Note information) to alter the volume of a note
that is already playing, without triggering the notes in the
arpeggio again.

3.2 Arpeggiator Logic

Arpeggiatorum’s arpeggiation logic has been designed
with flexibility in mind and the possibility to define and
play rich arpeggios. Hence, it offers a number of param-
eters, all editable in the GUI (see Figure 1) and via MIDI
control change messages.

A typical arpeggiator takes a number of pitches (MIDI
noteOn messages, respectively) into a pool and plays
them in repeating sequence as long as they are not re-
moved from the pool (via corresponding noteOff). So does
Arpeggiatorum. It collects the input pitches in a list sorted
in ascending order, the note pool. A real-time thread (using
the JSyn scheduler) traverses the note pool in a specified
pattern (upward, downward, up and down, randomly with
and without tone repetitions) and in a specified tempo, thus
creating the arpeggiation sequence. The note pool is more
than a sorted list of notes. The traversal pattern is part of its
functionality, thus offering a handy getNext() method.
Notes can be added to and removed from the pool while the
sequence is generated. The traversal functionality ensures
that the pattern stays intact.

The articulation of the notes can be set from staccato over
tenuto up to an overlapping legato play. This is particu-
larly useful when the actions of an organ are rather sluggish
and would prevent very fast arpeggios from ever creating a
sounding tone. Typical organ keyboards and pedals have a
further limitation: They do not offer the full range of 128
MIDI pitches. This applies to most other instruments as
well. Hence, we added a two-pole range slider to delimit
the pitch values in the note pool that are included in the
arpeggiation sequence.

So far, arpeggio sequences have only been created from
manually triggered notes. A further functionality of the
note pool is tonal enrichment, i.e. for each manually trig-
gered note it can add up to 15 further notes. These are de-
fined by interval relations with the triggered note. While
the GUI of Arpeggiatorum allows users to specify their
own series of intervals, it is also possible to choose from a
list of presets such as “Octaves and Fifths”, “Major Triad”,
“Minor Triad”, “Fourths”, and “Series of Overtones”. A
slider also allows to modulate on-the-fly how many of the
enrichment notes should be added to the note pool, thus
offering a further dimension for creative interaction during
performances.

A final element of Arpeggiatorum’s logic is aimed di-
rectly at the organ with its multiple manuals and pedals.
These are typically accessed via different MIDI channels.
The arpeggios are sent to one of these. Arpeggiatorum,
however, also allows sending the triggered notes (i.e. with-
out arpeggiation) to another channel. And the lowest of the
triggered notes is automatically transposed down (as bass
note) and sent to a third channel, typically the pedals. Each

114

of the three channels (arpeggio channel, held note channel,
and bass channel) can be muted. An organist who has used
Arpeggiatorum in concerts emphasized this as a particu-
larly useful feature. It allowed him to perform on a short
2-octaves MIDI keyboard in the middle of the nave (WiFi
connection to the organ console) but effectively playing on
two manuals and pedals.

4. AUDIO INPUT EVALUATION

For testing purposes the application is set to receive au-
dio input from a virtual interface (VB-Cable 1) connected
to a DAW (Reaper 2). The generated MIDI messages are
sent to a software synthesizer (Java’s Gervill), and the out-
put is then sent to another virtual interface that is recorded
in the DAW. All test input files have the same structure:
3 s of silence as the head and tail of the samples. All sam-
ples are normalized at -6dB FS. This allows us to conduct a
preliminary evaluation measuring the accuracy of the CQT
algorithm. Regarding delay the current setup (with virtual
interfaces) introduces 40 msec to the measurements. For
each test signal 5 measurements have been recorded.

The use of CQT for pitch-tracking is not in itself new,
but in our implementation, aimed at real-time tracking, we
use multiple CQTs for different octaves, thus mitigating
the delay problem. For this reason we focus our attention
to this method. In Table 2 we see the results for a sine wave
of 440 Hz. We can observe that in Run 3 the correct bin has

Run Pitch Velocity

1 [69] 440Hz 127
[69] 440Hz 34

2 [69] 440Hz 127
[69] 440Hz 35

3
[69] 440Hz 121
[69] 440Hz 127

[68] 415Hz, [70] 466Hz 41, 39

4 [69] 440Hz 127
[69] 440Hz 34

5 [69] 440Hz 127
[69] 440Hz 34

Table 2. 5 Runs of the CQT Algorithm without Auto-Tune
on a -6 dB FS sine wave. Spurious pitches have been de-
tected in neighbouring bins.

been detected first with the strongest velocity, followed by
the 2 neighbouring bins. For this reason the introduction of
the Auto-Tune mode seems a promising approach to miti-
gate these occurrences. In Table 3 we show the results for
the same input, with Auto-Tune activated.

In both examples, the second pitch, with a lower velocity,
is triggered at the end of the sine wave.

In Figure 5 we show the view from the DAW of 5 takes
for a polyphonic input. We can see that different runs have
different delays. Delay depends on the actual frequency
content, as a result of running multiple CQTs, and the po-

1 https://vb-audio.com/Cable/
2 https://reaper.fm

Run Pitch Velocity

1 [69] 440Hz 123
[69] 440Hz 30

2 [69] 440Hz 127
[69] 440Hz 37

3 [69] 440Hz 127
[69] 440Hz 34

4 [69] 440Hz 127
[69] 440Hz 34

5 [69] 440Hz 127
[69] 440Hz 34

Table 3. 5 Runs of the CQT Algorithm with Auto-Tune on
a -6 dB FS sine wave.

sition within the internal buffer when the input is captured.

Figure 5. Example of 5 takes for a test sound, showing
different delays.

Synthesized sounds, as well as recordings, mono- and
polyphonic, have been employed for testing. Test mate-
rials, as well as the settings used for the application, are
available on GitHub.

5. CONCLUSIONS AND FUTURE WORKS

With the development of Arpeggiatorum we wanted to pro-
vide a tool that can be readily employed by organ players,
expand playing techniques on organs (ultimately also for
other instruments), and foster cooperation and future col-
laborations. Arpeggiatorum is scheduled to be used in con-
certs and other performances. The valuable feedback pro-
vided by musicians will determine how the tool will evolve
and what features will be introduced.

The next phase for Arpeggiatorum includes both an ex-
tension of its core features to address requests received

115

during the preliminary evaluation, and a more thorough ex-
amination of the affordances that are granted by this appli-
cation. In terms of functionalities we plan to introduce an
audio feature extractor that would allow to map input pa-
rameters (e.g. roughness) to arpeggiator parameters (e.g.
pattern).

The source code for the project is available on GitHub:
(https://github.com/axelberndt/Arpeggiatorum).

Acknowledgments

This research is supported by KreativInstitut.OWL 3 : a
consortium consisting of OWL University of Applied Sci-
ences and Arts, Detmold University of Music, and Pader-
born University, funded by the Ministry of Economic Af-
fairs, Industry, Climate Action and Energy of the State of
North Rhine-Westphalia, Germany.

6. REFERENCES

[1] J. W. Robinson and S. L. Howell, “Automatic
arpeggiator,” The Journal of the Acoustical Society
of America, vol. 74, no. 5, pp. 1666–1666, 1983.
[Online]. Available: https://doi.org/10.1121/1.390092

[2] R. Arar and A. Kapur, “A history of sequencers: In-
terfaces for organizing pattern-based music,” in Sound
and Music Computing Conference, Stockholm, Swe-
den, 2013.

[3] M. Lozej, “The Arpeggiator: A Compositional tool
for Performance and Production,” Master’s thesis,
York University, Canada, 2016. [Online]. Available:
http://hdl.handle.net/10315/32712

[4] P. Burk, “JSyn-a real-time synthesis API for Java,” in
Proceedings of the 24th International Computer Music
Conference (ICMC), 1998.

[5] J. Six, O. Cornelis, and M. Leman, “TarsosDSP, a
Real-Time Audio Processing Framework in Java,” in
Proceedings of the 53rd AES Conference (AES 53rd),
2014. [Online]. Available: http://www.aes.org/e-lib/
browse.cfm?elib=17089

[6] R. Bencina and P. Burk, “PortAudio - an open source
cross platform audio API,” in Proceedings of the 27th
International Computer Music Conference (ICMC),
2001.

[7] A. M. Noll, “Pitch determination of human speech
by the harmonic product spectrum, the harmonic surn
spectrum, and a maximum likelihood estimate,” in
Symposium on Computer Processing in Communica-
tion, ed., vol. 19. University of Broodlyn Press, New
York, 1970, pp. 779–797.

[8] ——, “Short-time spectrum and “cepstrum” tech-
niques for vocal-pitch detection,” The Journal of the

3 https://kreativ.institute

Acoustical Society of America, vol. 36, no. 2, pp. 296–
302, 1964.

[9] A. De Cheveigné and H. Kawahara, “YIN, a
fundamental frequency estimator for speech and
music,” The Journal of the Acoustical Society
of America, vol. 111, no. 4, pp. 1917–1930,
2002. [Online]. Available: https://doi.org/10.1121/1.
1458024

[10] J. C. Brown and M. S. Puckette, “An efficient algo-
rithm for the calculation of a constant Q transform,”
The Journal of the Acoustical Society of America,
vol. 92, no. 5, pp. 2698–2701, 1992.

[11] B. Blankertz, “The Constant Q Transform,” 1999,
TU-Berlin, unpublished notes. [Online]. Available:
https://www.user.tu-berlin.de/blanker/drafts.html

