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Esteban GUTIÉRREZ1 and Rodrigo F. CÁDIZ2,3
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ABSTRACT

This paper explores the application of stochastic reso-
nance, a phenomenon known for enhancing signal detec-
tion through the introduction of random noise or disorder,
to sound synthesis and processing. We detail the various
models of stochastic resonance described in the literature
and introduce a software implementation as an external for
Max/MSP. Through a series of examples, including sound
synthesis and processing, reducing the signal-to-noise ra-
tio of noisy sounds, and retrieving the missing fundamen-
tal, we demonstrate the efficacy and versatility of this ap-
proach in molding sounds from noise.

1. INTRODUCTION

Stochastic resonance is a phenomenon observed in nonlin-
ear systems where the introduction of random noise or a
moderate level of disorder enhances the detection or trans-
mission of weak or small signals. This implies that, al-
though it may seem counter-intuitive, the addition of noise
can improve the performance of a system in responding to
a weak input signal.

The phenomenon of Stochastic Resonance was first in-
troduced by Benzi, Parisi, Sutera and Vulpiani [1] in the
context of a particular stochastic dynamical system, and
was later formulated in many different contexts (e.g. [2],
[3], [4], [5] and [6]). This phenomenon should not be un-
derstood as a single model, but rather as a technique for
creating models that allows the study of different stochas-
tic dynamical systems.

In a typical stochastic resonance scenario, a system is ex-
posed to a weak input signal that may not trigger a response
on its own. However, when a certain level of random noise
is introduced into the system, it can help amplify and en-
hance the detection or transmission of the weak signal.
This occurs because the noise can help push the system
over its threshold, making it more likely to respond to the
weak input signal.

Stochastic resonance is not just a theoretical phe-
nomenon, as it has been observed in various fields, includ-
ing theoretical physics [6], signal processing [7], metrol-
ogy [8] and sensory biology [9]. Despite its clear potential
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as a signal processing tool, there are very few documented
uses of these ideas in sound synthesis and processing.

In the past, efforts have been made to study and apply
the Stochastic Resonance phenomenon in sound synthe-
sis [10], [11]. However, the models proposed in these
works lacked an easy-to-use interface or were impractical
for real-time use due to implementation limitations.

In this paper we present the package Stochastic
Resonance, a package for Max/MSP that implements
real-time algorithms based on Stochastic Resonance tech-
niques that we have found can be used in sound and music
applications. This package was written using the Min dev-
kit, a software development kit to develop Max/MSP exter-
nals using modern C++ code. Due to this, we were able to
take advantage of the raw power of C++ and ensured that
the externals in the package run as efficiently and fast as
possible.

This paper also contains a theoretical discussion for all
the algorithms in the package, a list of detailed sound and
music potential applications and several sound examples.
Thus, we believe this paper summarizes all known models
and applications of the Stochastic Resonance phenomenon
in the context of sound synthesis and processing.

In Section 2, we discuss all the algorithms included in
the package. In section 3, we introduce the package itself
together with all the implementation details. In section 4,
we discuss a series of potential uses for this package in the
context of sound synthesis and processing. Finally, in Sec-
tion 5, we present the details of a series of sound examples
that accompany this paper to demonstrate the potential of
these tools.

2. MODELS

This section discusses the algorithms implemented in the
Stochastic Resonance package. Some of them are
based on our previous works [10], [11], but they under-
went significant changes. Therefore, we will discuss these
changes in detail. Each model is built with very differ-
ent applications in mind. For a discussion on the different
applications of each model and our use suggestions, see
Section 4.

2.1 Threshold Stochastic Resonance

The Threshold Stochastic Resonance (TSR) algorithm,
first proposed in [10], is the simplest implementation of the
Stochastic Resonance phenomenon in signal processing. It
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involves adding noise to a signal and then successively ap-
plying a constant threshold function over time. The algo-
rithm is presented in Algorithm 1.

Algorithm 1 TSR
Input: Let x be an audio signal, α,Θ,σ ∈ R the attenu-
ation, threshold and standard deviance constants, and η a
noise signal with E(η(n)) = 0 and V(η(n)) = σ2 for all
time indexes n.
Output: Processed signal y.

1: Attenuate the audio signal xα = αx.
2: Add the noise to the attenuated signal xη = xα + η.
3: Apply the threshold Θ

y = |xη|>Θxη.

For this algorithm to make sense in the context of stochas-
tic resonance phenomena, it is important to choose α such
that at least most of the signal xα falls below the threshold
Θ (see Figure 2), that is,

P (|xη| > Θ) ≈ 0.

2.2 Multi-unit Threshold Stochastic Resonance

Due to the stochastic nature of the algorithm, applying it
to a given signal multiple times will result in different out-
puts each time. Therefore, averaging all these outputs can
provide a less noisy representation of the expected result.
In the field of sensory biology, this is known as an N -unit
model (see [9]). Inspired by this concept, taking the aver-
age of multiple TSR algorithm outputs will be referred to
as the Multi-unit Threshold Stochastic Resonance (MTSR)
algorithm. A version of this algorithm with a different
name was also proposed in [10]. The algorithm is pre-
sented in Algorithm 2.

Algorithm 2 MTSR
Input: Let x be an audio signal and N ∈ N.
Output: Processed signal y.

1: Make N copies of the original signal, that is, xk = x,
for k = 0, . . . , N − 1.

2: Apply the TSR algorithm to each copy using the same
parameters yk = TSR(xk).

3: Compute the average of all the new signals

y =
1

N

N−1∑

k=0

yi.

2.3 Spectral Threshold Stochastic Resonance

Applying noise and a threshold function to the spectrum of
a signal requires careful consideration. On one hand, the
perception of loudness is strongly dependent on frequency
(see e.g., [12], [13]), so the addition of noise must be done
with attention to this fact. On the other hand, applying
a threshold function requires an ordering notion that is

not inherent in the complex numbers, which is the natural
space for the spectrum. An easy solution for this problem
would be applying the threshold to the real or imaginary
part of the spectrum, but this lacks perceptual interpreta-
tion. Another way of solving this would be applying the
threshold function to either the magnitude spectrum or the
phase spectrum. Since our goal is to implement these al-
gorithms in real-time, we encounter the challenge of deal-
ing with spectrum frames. Manipulating the phase while
noise is involved can lead to crackling sounds due to the
inconsistency of the phase across frames. Because of the
latter, the only candidate left is the magnitude spectrum,
however there is still a problem: it is built-in in the na-
ture of the Fourier Transform that the magnitude spectrum
of a periodic signal will show at least some decay. This
outcome is a consequence of the Riemann-Lebesgue Theo-
rem, suggesting that a constant threshold function may ex-
hibit a preference for the lower part of the spectrum in cer-
tain sound contexts. Additionally, the threshold function
must depend on the input signal’s nature. In order to solve
these issues, the Spectral Threshold Stochastic Resonance
(spectral TSR) algorithm adds noise balanced according
to an equal-loudness contour, and replaces the threshold
constant for a function that can be built by the user (see
subsection 3.2 for implementation details). The algorithm
itself is presented in Algorithm 3.

It is important to note that this algorithm is very different
to the one presented in [11]. In such work, the Spectral
Stochastic Resonance algorithm presented generates com-
pletely random resonances. More precisely, given a set of
parameters, the SSR algorithm applies plain noise to the
magnitude spectrum and then independently applies a ran-
dom threshold to each bin. As a result, it does not account
for the equal-loudness effect of the added noise or the char-
acteristics of the sound when determining the threshold.

2.4 Spectral Multi-unit Threshold Stochastic
Resonance

Similar to the time domain, the Spectral TSR algorithm
can be applied multiple times and the average can be com-
puted to reduce the noisy nature of the expected output.
The algorithm itself is presented in Algorithm 4.

3. IMPLEMENTATION IN MAX

To implement our algorithm efficiently within a friendly
environment, we opted to utilize the Min dev-kit, a soft-
ware development kit containing an example package with
the current best practices for package creation using mod-
ern C++ code. Specifically, with the Min dev-kit, we suc-
cessfully built a comprehensive package for Max/MSP that
is very user-friendly and can be freely downloaded from
our GitHub repository 1 .

The resulting package was named Stochastic
Resonance, and it encompasses all the algorithms pre-
sented in Section 2, implemented as independent externals.

1 The GitHub repository can be accessed here: https://github.
com/cordutie/Stochastic-Resonance.git
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Algorithm 3 Spectral TSR
Input: Let x be an audio signal, α,σ ∈ R the attenuation
and standard deviance constants, Θ the threshold function,
S the sampling rate, {ηj,k}j,k∈N a sequence of random
variables with E(ηj,k(n)) = 0 and V(ηj,k(n)) = σ2 for
all j, k, n, ω a window function and m,h the frame and
hop sizes respectively.
Output: Processed signal y.

1: Attenuate the audio signal xα = αx.
2: Define each frame of the signal by the sequence xk

given by

xk(j) = xα(j + kh)ω(j), j = 0, . . . ,m− 1.

3: Compute the magnitude and phase spectrum of the
frame using the DFT

F(xk)(j) = Mk(j) exp(iPk(j)).

4: for each frame k and j ∈ {0, . . . ,m− 1} do

5: Compute the frequency of the bin fj = j · S
m

.
6: Correct the loudness of the noise according to the

frequency of the bin using a contour curve C

η̃j,k = ηj,kC(fj).

7: Add the corrected noise to the magnitude spectrum

Mk,η(j) = Mk(j) + η̃j,k.

8: Apply the threshold function

M̃k(n) = Mk,η(n)>Θ(fn)Mk,η(n).

9: end for
10: Build new frames using the IDFT and the new magni-

tude spectra and the same phase spectra

yk = F−1(M̂k exp(iPk).

11: Overlap and add the new frames yk to obtain a new
signal y.

Algorithm 4 Spectral MTSR
Input: Let x be an audio signal and N ∈ N.
Output: Processed signal y.

1: Make N copies of the original signal, that is, xk = x,
for k = 0, . . . , N − 1.

2: Apply the Spectral TSR algorithm to each copy using
the same parameters yk = Spectral TSR(xk).

3: Compute the average of all the new signals

y =
1

N

N−1∑

k=0

yi.

Figure 1. sr.timedom object running on Max. The pa-
rameters of the algorithm are passed to the object using the
attrui object for clarity.

Figure 2. Example patch using the sr.timedom∼ object
loaded with the bpatcher object. All the parameters are
controllable using knobs. The threshold and attenuation
are visualized in the input signal and a pair of knobs that
control the filters were placed in the bottom right of the
patch.

A concise explanation of the usage for each object within
the package is provided here.

3.1 sr.timedom: Stochastic Resonance in the time
domain

Since the TSR algorithm can be thought of as applying
the MTSR algorithm with N = 1, we decided to imple-
ment both in only one object called sr.timedom. The
left inlet is designated for the input signal, while the right
one receives parameters as a list of numbers (see Figure 1).
Additionally, the object has a built-in method to print the
parameters used to the console when it receives a bang.

For an easy-to-use experience, we highly recommend
opening the help of the object. Inside, we’ve included a
subpatch read through bpatcher to provide a simple but
intuitive GUI that implements a visualization of the atten-
uation factor, threshold function and both a low pass and a
high pass filter to reduce noise (see Figure 2).
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Figure 3. sr.freqdom∼ object running on Max. The
parameters of the algorithm are passed to the object us-
ing the attrui object for clarity. The auxiliary objects
sr.windowing∼ and sr.util are used to apply win-
dows and compute the threshold function for plotting.

3.2 sr.freqdom: Stochastic Resonance in the
frequency domain

Again, both algorithms Spectral TSR and Spectral MTSR
are implemented in the same object named sr.freqdom.
Since any implementation of the overlap-and-add algo-
rithm requires precise use of a buffer and we wanted to
make this package as easy to use as possible, we decided
to utilize the built-in Max/MSP environment created by the
pfft∼ object. This object is capable of applying a given
window, computing the both the FFT and IFFT, and ap-
plying the overlap and add algorithm. Thus, the only part
left to correctly implement our algorithms is to add the cor-
rected noise and apply the threshold function.

To correct the noise, we applied a contour curve using
the C-weights [14], known for its effectiveness in measur-
ing loudness for noisy sounds. For the threshold function,
we decided to implement a method in the sr.freqdom∼
object that builds a threshold function that behaves as a
line in the range from 100Hz to the Nyquist frequency
when viewed as a function from the log-frequency domain
to amplitude measured in decibels, and that behaves as a
constant for frequencies under 100Hz (see Figure 4). This
convention allows the user to rapidly create threshold func-
tions that suit the input signal and also add a component
that can be used creatively.

The object itself has two signal inlets and outlets for mag-
nitude and phase spectra, and a third inlet for receiving
parameters (see Figure 3). Additionally, it has a built-in
method to print the parameters used to the console when it
receives a bang.

Like its time-domain counterpart, we included a subpatch
in the repository. When read through bpatcher, it pro-
vides a simple yet intuitive GUI that implements a visual-
ization of the attenuation factor and threshold function to-
gether with the magnitude spectrum of both the input and
output (see Figure 4).

4. SOUND AND MUSIC APPLICATIONS

The sr.timedom∼ and sr.freqdom∼ objects are ver-
satile tools capable of processing various signal types,
making them suitable for both creative and analytic en-
deavors. In this section, we will briefly discuss some in-

Figure 4. Example patch using the sr.freqdom∼ object
loaded with the bpatcher object. All the parameters are
controllable using knobs. The threshold and attenuation
are visualized in the magnitude spectrum of the input sig-
nal and a couple of filters are implemented in the bottom
right of the patch.

triguing ways of employing these objects. For specific ex-
amples, refer to Section 5.

4.1 Sound Synthesis

While the sr.timedom∼ and sr.freqdom∼ objects
function as signal processors, when a simple signal such as
a sine, saw, square, triangle, pulse wave, or white noise is
used as input, we conceptualize the result as a novel form
of sound synthesis. In such case, one must consider the
type of input signal as an extra parameter together with
all the parameters of the algorithms implemented. A vast
array of sound types can be generated using this method.
For some examples, see Section 5.1

4.2 Recovering Weak Signals

Recovering weak signals represents a prominent applica-
tion of the Stochastic Resonance phenomenon in signal
processing. To be more specific, empirical evidence has
demonstrated that introducing noise alongside the applica-
tion of a detection function can result in the identification
of signals that are typically undetectable (see [8]). How-
ever, this phenomenon represents more of an analog appli-
cation of Stochastic Resonance, given that issues related to
the detection and measurement of signals are not a problem
in the digital domain. Consequently, this application falls
outside the scope of our implementation. Nevertheless,
empirical validation has shown that this procedure can en-
hance the signal-to-noise ratio under certain circumstances
(see [7]). This capability finds particular relevance in mu-
sic applications, making our package suitable for such pur-
poses. It is important to note, however, that the results
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achievable through these techniques in this context signif-
icantly lag behind the outcomes attainable with contempo-
rary denoising and source separation methods. For specific
examples, refer to sub-section 5.2.

4.3 Missing Fundamental Retrieval/Ghost Stochastic
Resonance

The missing fundamental is a well-known psychoacoustic
phenomenon where the listener can perceive the pitch of
a harmonic signal with an absent first harmonic. Given its
psychoacoustic nature, grasping this phenomenon involves
understanding how our brain processes information trans-
mitted by our auditory system. In this context, Stochastic
Resonance models have been proposed to understand our
pitch perception in certain scenarios. Specifically, empir-
ical evidence has shown that for a signal made of a har-
monic complex of pure tones with a missing fundamen-
tal, the application of Stochastic Resonance techniques can
lead to the sudden emergence of the fundamental [15].
Given that the Stochastic Resonance phenomenon is used
to model the emergence of a pitch that was not originally in
the signal, this effect has also been termed Ghost Stochas-
tic Resonance.

The Ghost Stochastic Resonance effect can be easily uti-
lized to create new pitches that are consonant with the input
signal, as in the case of the missing fundamental described
before. Due to this, we believe it has immense creative
potential, and our package can be successfully used to im-
plement it. For some examples, see sub-section 5.3.

5. EXAMPLES

Alongside this article, we have created some videos 2 ,
demonstrating a series of sound examples built using the
Stochastic Resonance package. A brief explana-
tion for each of the sound examples can be found in this
section.

5.1 Sound Synthesis and Sound Processing

For the examples in this subsection, we created two Max
for Live devices. One of them is a MIDI synthesizer
that wraps a sound wave generator processed through the
sr.timedom∼ object and an amplitude envelope mod-
ule (see Figure 5). The other one is simply a wrapper for
the sr.freqdom∼ object (see Figure 6). Both Max for
Live devices can be found in our repository.

Figure 5. Max for Live device using the sr.timedom ∼
object as a MIDI synthesizer.

2 All videos are available in the GitHub repository https://
github.com/cordutie/Stochastic-Resonance

Figure 6. Max for Live device using the sr.freqdom ∼
object as a sound effect.

5.1.1 Stochastic Resonance-Based Bass Synthesizer

In this example, a bass sound is synthesized using a saw-
tooth sound wave processed with the sr.timedom∼
object. Initially, a simple sawtooth can be heard, fol-
lowed by aggressive processing with our object. Then, the
sr.freqdom∼ is used to add distortion. Finally, the syn-
thesized sound is contextualized with a drum set and an
electric piano.

5.1.2 Pushing Dynamics and Resonances of an Electric
Piano

A sound effect customary for electric pianos since the
1970s is the tremolo. In this example, an electric piano
sample with a tremolo is processed using the Max for Live
wrapper for the sr.freqdom∼ object. The sample is
first played, then processed with our object using a thresh-
old function with decay. This process pushes the dynam-
ics of the tremolo effect with a gate-type model in the fre-
quency domain. Noise is then added in the frequency do-
main, introducing stochastic resonances in the higher har-
monics of the sound. Finally, all elements are combined
with a drum set and a electric bass guitar.

5.2 Recovering Weak Signals

5.2.1 Sawtooth + Noise

In this example, a signal created by summing a sawtooth
wave with a frequency of 220Hz and amplitude −12dB,
and white noise with an amplitude of 0dB, is processed us-
ing the sr.timedom∼ object and a specific set of param-
eters to increase the signal-to-noise ratio. Additionally, a
low-pass filter is applied to both the original and processed
signals for a fair comparison. The result shows that the
processed signal has a noticeably lower noise floor.

5.2.2 Street Recording

In this example, a reasonably noisy street record-
ing is processed using a compressor together with the
sr.timedom ∼ object and a specific set of parameters to
increase the signal-to-noise ratio. Additionally, a low-pass
filter is applied to both the original and processed signals
for a fair comparison. The results show that the processed
signal has a distinct noise floor. Specifically, the gain of the
noise floor seems to have decreased, but several crackling
noises have appeared as a trade-off. As mentioned in Sec-
tion 4, the results obtained using this method significantly
lag behind the outcomes attainable with contemporary de-
noising and source separation methods.
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5.3 Missing Fundamental Retrieval/Ghost Stochastic
Resonance

5.3.1 Recovering missing fundamental for a complex of
sinusoids

In this example, a complex of 8 sinusoids is processed in
real-time using the sr.timedom∼ object. The frequen-
cies of the complex of sinusoids follow a harmonic dis-
tribution with a missing fundamental, i.e., 2f, 3f, . . . , 9f
where f is the fundamental frequency. Additionally, the
amplitudes and phases of each sinusoid in the complex are
manipulated in real-time. The results show that the missing
fundamental can be retrieved with ease, which is consistent
with the simulations run in [15].

5.3.2 Building missing fundamental for a complex of
voices

For this example, we used a set of previously recorded
samples containing a single note sang by a female singer 3 .
These samples are played at different rates so that their
fundamentals follow a harmonic distribution with a miss-
ing fundamental, as in 5.3.1. The results show that apply-
ing the sr.timedom∼ object introduces a fundamental
with ease in every scenario. Moreover, since the original
signal consists of a sum of signals that resemble the har-
monics of a sound but already have harmonics, some other
resonances appear in the spectrum corresponding to what
seems to be the fundamentals of the harmonics of these
complex sounds. When a low-pass filter is applied to the
resulting signal, a new synthesized sound that resembles
some characteristics of the original voice appears.

6. CONCLUSIONS

In this paper, we propose a series of algorithms based on
the Stochastic Resonance phenomenon for use in sound,
accompanied by a theoretical discussion and exploration
of their potential applications in sound synthesis and pro-
cessing.

Our contribution goes beyond mere theory, providing
a user-friendly and efficient environment for musicians,
sound designers, and researchers. The Stochastic
Resonance package, implemented in real-time in both
Max/MSP and Live as a Max for Live device, streamlines
the utilization of our proposed algorithms, seamlessly inte-
grating them into any workflow. The package can be freely
downloaded from our GitHub repository. Additionally, we
present a series of examples to showcase the practical ap-
plications of the Stochastic Resonance package in sound
synthesis and processing.

In summary, by amalgamating theoretical insights with
practical examples, this paper serves as a comprehensive
resource for those keen on unlocking the creative potential
of the Stochastic Resonance phenomenon in the realm of
sound and music.
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