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ABSTRACT

Audio Super-Resolution (SR) is an important topic as low-
resolution recordings are ubiquitous in daily life. In this
paper, we explore the music SR task through solo piano
music, which is challenging due to the wide frequency re-
sponse and dynamic range of music. Many SR models ex-
ploit Time-Domain Convolutional Neural Network (TD-
CNN), which benefit from the joint processing of mag-
nitude and phase information of audio signals. However,
prior works indicate that TD-CNN approaches tend to pro-
duce annoying artifacts, and the cause of the artifacts is
yet to be identified. In this paper, we demonstrate that the
artifacts in TD-CNNs are caused by the phase distortion
via a subjective experiment for the first time. We further
propose Time-Domain Phase Repair (TD-PR), which uses
a neural vocoder pretrained on the wide-band data to re-
pair the phase components in the waveform outputs of TD-
CNNs. The proposed TD-PR obtained better mean opinion
score than TD-CNN baselines, which demonstrates TD-PR
significantly improves the perceptual quality of TD-CNNs.
Since the proposed TD-PR only repairs the phase compo-
nents of the waveforms, the improved perceptual quality
in turn indicates that phase distortion has been the cause
of the annoying artifacts of TD-CNNs. Moreover, the pro-
posed TD-PR can be easy applied to arbitrary TD-CNNs
without additional adaptation. Audio samples are available
on the demo page 1 .

1. INTRODUCTION

Audio Super-Resolution (SR), also known as bandwidth
extension and bandwidth expansion, aims to predict
the High-Resolution (HR) components from the Low-
Resolution (LR) input audio. Audio SR is an important
topic as LR audio is common in daily life, e.g., histori-
cal recordings or unprofessional-made modern recordings.
As the real-world LR recordings have a variety of band-
widths, addressing audio SR in real world is challenging.
In recent years, Deep Neural Networks (DNNs) have be-
come the mainstream in audio SR tasks [1–4], but only a
few works focus on the music [2]. In this paper, we focus

1 https://mannmaruko.github.io/demopage/tdpr.html
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on solo piano recordings as a representative to investigate
the music SR task.

Various works have delved into the DNN-based ap-
proaches for audio SR. Frequency-Domain Convolutional
Neural Networks (FD-CNNs) aim to directly recover the
HR components in the magnitude spectrogram, and gen-
erally require additional signal processing to estimate the
corresponding phase information, such as Griffin-Lim al-
gorithms [2] or neural vocoders [4]. Compared with FD-
CNN methods, Time-Domain Convolutional Neural Net-
works (TD-CNNs) that directly learn a wave-to-wave map-
ping, are considered being able to avoid the phase problem
in audio SR tasks [2]. However, TD-CNNs tend to pro-
duce annoying artifacts in their waveform output. To al-
leviate the artifacts, Lim et al. proposed a time-frequency
hybrid model [5] based on AudioUNet. Wang et al. made
efforts on objective function that employing the frequency
domain losses [6] during the TD-CNN’s training. The data
augmentation strategy was proposed in [7] to improve the
robustness of TD-CNNs.

Although the above efforts for TD-CNNs improved au-
dio SR quality measured by objective metrics, none of the
above TD-CNN methods succeeds in removing the arti-
facts according to their open-available audio samples. We
hypothesize that the inconsistency between objective and
subjective evaluation results could have been caused by
some signal components that cannot be measured by the
objective metrics. We observe that phase components are
not explicitly measured by typical objective metrics such
as log-spectral distance. This observation encourages us
to explore the importance of phase in audio SR tasks. In
terms of up-sampling ratio, many works perform the SR on
a fixed ratio (e.g., 2×) [1, 2], which would be a limitation
when apply these models to real world scenarios.

We investigate the artifacts of TD-CNNs in the follow-
ing ways. First, we train three TD-CNNs with different
architecture and parameter amount to handle LR music
with various bandwidth, which is applicable to real world
problems. The SR capability of three TD-CNN baselines
as well as the artifacts are successfully reproduced. Sec-
ond, we conduct an AB listening test which, to the best of
our knowledge, is the first to demonstrate the artifacts in
TD-CNNs are caused by the phase distortion via a subjec-
tive experiment. Last but not least, we propose the Time-
Domain Phase Repair (TD-PR) method, which utilizes a
vocoder pretrained on wide-band music signals to repair
the distorted phase components in the waveform output of
the TD-CNN. Since the vocoder and TD-CNNs are trained
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independently, a single pretrained vocoder can be directly
applied to arbitrary TD-CNNs without additional adapta-
tion. Therefore, we apply TD-PR to the aforementioned
three TD-CNNs. The proposed TD-PR consistently and
significantly improved the perceptual quality of all three
TD-CNN baselines. Since TD-PR only repair the phase
components of the waveforms, the improved perceptual
quality in turn indicates that phase distortion has been the
cause of the annoying artifacts of TD-CNNs.

2. RELATED WORK

Various approaches for audio SR have been developed and
some of them work in Frequency Domain (FD). Li et al.
proposed an FD approach for speech SR, which consists
of 2 steps [8]. The first step is mapping the magnitude
components from narrow-bandwidth to wide-bandwidth
by DNN. The second step is to estimate the correspond-
ing phase by signal processing. Following this work, Hu
et al. introduced Generative Adversarial Network (GAN)
into both steps and got the better performance [2]. How-
ever, training two GAN-based models is difficult due to
the instability of GAN training. Furthermore, this SR
system works on a fixed up-sampling ratio, which limits
its application to real world problems. Liu et al. used
a GAN-based neural vocoder for the second step with-
out using GAN in the first step, which successfully per-
formed speech SR with the ability of handling various
up-sampling ratios [4]. It is worth pointing out that the
FD approaches mentioned above requires strict matching
of mel-spectrogram settings between the FD-CNN model
and the neural vocoder. Therefore, some FD-CNN models
trained with an unmatched mel-spectrogram settings can-
not directly work with the pretrained vocoder.

Contrary to FD approaches, TD-CNNs are considered be-
ing able to avoid the phase problem in audio SR tasks due
to the direct waveform processing [2]. AudioUNet is one
of the pioneers of tackling audio SR by a TD-CNN [1].
Tagliasacchi et al. proposed SEANet [9], a GAN-based
model for speech SR. The generator of SEANet is a light-
weight but effective TD-CNN. In this paper, we utilize the
generator of SEANet to music SR as one of our baselines.
Defossez et al. proposed a TD-CNN model referred to as
Demucs, which is a large model with over 130M parame-
ters and is initially designed to address music source sep-
aration [10]. Considering the fact that Demucs has shown
strong performance in tasks besides source separation [11],
we utilize the Demucs model in the SR task in this paper.
To the best of our knowledge, this is the first time to apply
Demucs to the music SR task.

The mel-to-wave transform is commonly addressed by
neural vocoders. TFGAN is a light-weight vocoder [12]
and has been applied to the speech SR task [4].

3. PROPOSED METHOD

3.1 Time-Domain Phase Repair

In order to alleviate the artifacts caused by distorted phase
components, we propose Time-Domain Phase Repair (TD-
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Proposed Method: TD-PR

Figure 1. Overview of the proposed TD-PR: The TD-CNN
is trained to perform super-resolution for various narrow-
band inputs. The neural vocoder takes only the magnitude
of the TD-CNN’s output as input, and re-synthesizes an-
other waveform that contains repaired phase components.
Then, the distorted phase components in TD-CNN’s out-
put are replaced by that from the vocoder.

PR). The TD-PR framework consists of two separately pre-
trained DNN modules and a phase replacement operation.

The overview of the proposed method is shown in Fig.
1. Specifically, the TD-PR pipeline involves the follow-
ing steps. First, a TD-CNN is trained to perform muisc
SR. To handle LR music with various bandwidths which is
common in real world, we apply a simulation pipeline to
HR music data to get the corresponding LR version. With
the simulated pseudo paired data, the training of TD-CNN
for music SR is made possible. Details of the simulation
pipeline and training objectives are explained in the suc-
ceeding section.

Second, we pretrain a neural vocoder on the unprocessed
HR music data. Since a neural vocoder can generate realis-
tic waveform signals with only the magnitude input, it can
be inferred that a vocoder can generate realistic phase com-
ponents that are coherent with the input magnitude compo-
nents. This inspires us to utilize a neural vocoder to repair
distorted phase.

Last, we introduce TD-PR to repair the phase compo-
nents of the output from the TD-CNN. The intermediate
waveform produced by the TD-CNN is decomposed into
magnitude and phase components by Short-Time Fourier
Transform (STFT). We empirically use an STFT of 1024-
point hann window and 256 hop length for a sampling rate
of 16 kHz. The neural vocoder takes only the magnitude
of the TD-CNN’s output as input, and re-synthesizes an-
other waveform that contains repaired phase components.
Then, the distorted phase components in TD-CNN’s output
is replaced by that from the vocoder, and a phase-repaired
waveform output is produced by inverse STFT. Although
the vocoder also outputs waveform, we decide not to use it
as the final results, because empirically we found that the
vocoder could introduce distortions in the lower frequency
part.

According to the above description, the vocoder and TD-
CNNs are trained independently, which indicates a single
pretrained vocoder can be directly applied to arbitrary TD-
CNNs without additional adaptation, making the method
flexible. It is worth noting that since TD-PR only repair the
phase components of the waveforms, the improved percep-
tual quality in turn indicates that phase distortion has been
the cause of the annoying artifacts of TD-CNNs.



3.2 Simulation Pipeline

The design of simulation pipeline has been shown impor-
tant to the performance and robustness of audio SR mod-
els [6, 7]. The simulation pipeline we utilize mainly fol-
lows the principles in [6,7]. Specifically, we simulate each
LR input by randomly choosing a low-pass filter from 7
low-pass filters, including Butterworth, Chebyshev type 1,
Chebyshev type 2, Elliptic, Bessel, subsampling (i.e., re-
sample_poly in scipy), STFT filter (i.e., replacing the high
frequency components with zero elements) with the filter
order randomly selected from 6 to 10. We use the imple-
mentation of low-pass filters provided by Liu et al. 2 [4].

Since 3 kHz has been analyzed to be the typical band-
width of real historical recordings [13], we sample an LR
bandwidth between 2.5 kHz and 4 kHz via a uniform dis-
tribution. We don’t consider 2 kHz because we found this
bandwidth will filter out a part of melody, which is not
common in real recordings. The low-pass filtering is con-
ducted on-the-fly during training.

3.3 Loss Function

Inspired by [6], we perform cross-domain loss to guide
TD-CNNs to capture features in both time and frequency
domains. The loss function (denoted as 𝐿) is comprised
of two parts, multi-resolution STFT loss (𝐿MRSTFT) [14]
and multi-resolution wave loss(𝐿MRwave) which is similar
to 𝐿MRSTFT. The loss function is defined as below:

𝐿 = 𝐿MRSTFT + 𝜆𝐿MRwave, (1)

where 𝜆 denotes the hyperparameter balancing the two loss
terms. In our case, we empirically set 𝜆 = 1000 to balance
the weights between two losses.

The definition of 𝐿MRSTFT and 𝐿MRwave are shown as fol-
lows:

𝐿MRSTFT =
1

𝑀

𝑀∑︁
𝑚=1

𝐿
(𝑚)
STFT(𝑦, 𝑦), (2)

𝐿MRwave =
1

𝑁

𝑁∑︁
𝑛=1

𝐿(𝑛)
wave(𝑦, 𝑦), (3)

where 𝑦 and 𝑦 denote the ground truth and generated sam-
ple respectively. 𝑀 denotes the number of STFT losses
with different analysis parameters (i.e., FFT size = [512,
1024, 2048]; hop size = [256, 512, 1024]; window size =
[512, 1024, 2048]). We use the implementation of 𝐿MRSTFT
from [15]. 𝑁 denotes the number of wave losses with dif-
ferent sampling rate (i.e., original sampling rate, 2× down
sampling rate, 4× down sampling rate).
𝐿wave is defined as follows:

𝐿wave(𝑦, 𝑦) =
1

𝑃
‖ 𝑦 − 𝑦 ‖1, (4)

where 𝑃 denotes the number of wave samples and ‖ · ‖1
denotes the L1 norms.

2 https://github.com/haoheliu/ssr_eval

4. EXPERIMENTS

4.1 Dataset and Implementation

We trained and evaluated our model on the MAESTRO
dataset [16]. It is composed of about 200 hours of high-
quality classical piano recordings in waveform. Although
these recordings have the sampling rate of 44.1 kHz or 48
kHz, we empirically found that 16 kHz is high enough for
the piano solo. Hence, we performed music SR with the
target bandwidth of 8 kHz, i.e., a target sampling rate 16
kHz. We used the official split of the MAESTRO dataset
for training, validation and test. We cut all of the waveform
into 30-second short clips for efficient training.

To implement the proposed TD-PR framework, we
trained a TFGAN [12] from scratch on MAESTRO train-
ing set by using an unofficial implementation 3 . We fol-
lowed the original settings, except resetting the sampling
rate to 16 kHz, and trained it for 1M iterations.

Since TD-PR is feasible for arbitrary TD-CNNs with a
single pretrained neural vocoder as mentioned in Sec. 3.1,
we evaluated TD-PR with three representative TD-CNN
models as baselines: AudioUNet [1], Demucs [10] and
SEANet generator [9]. We trained them from scratch with
the loss function mentioned in Sec. 3.3 by applying the
simulation pipeline in Sec. 3.2 to the dataset. We used the
Pytorch implementation of AudioUNet 4 and Demucs 5 .
We implemented the SEANet generator by ourselves. We
used an Adam optimizer and the initial learning rate 0.0001
to optimize each TD-CNN model for 200 epochs with the
batch size of 12 and the input duration of 5s.

4.2 Investigation into the Effectiveness of Ground
Truth Phase Components

Before delving into the evaluation of TD-PR, we present
a preliminary study to show the impact of phase on the
artifacts issue of TD-CNN models. In this study, we
used SEANet a representative, and replaced the phase of
the TD-CNN output with the phase of the corresponding
Ground Truth (GT) music, which denoted as TD-CNN w/
GT-phase. Note that GT phase is not available in real world
applications.

We then conducted an AB listening test, in which we
asked participants to choose the one containing fewer arti-
facts between the TD-CNN baseline and TD-CNN w/ GT-
phase. We selected eleven music pieces for the listening
test which cover different periods and styles of different
musicians from the MAESTRO test set. Eleven audio pairs
are presented in the AB test, in which one pair is for prac-
tice and the left ten pairs are for evaluation. Each clip is
cut into the duration of 5s. We also regularized the volume
of all the samples by Audacity 6 . The input bandwidth for
this listening test is set to 3 kHz, as it has been analyzed to
be the typical bandwidth of historical recordings [13].

3 https://github.com/rishikksh20/TFGAN
4 https://github.com/serkansulun/deep-music-enhancer
5 https://github.com/facebookresearch/demucs/tree/v2
6 https://www.audacityteam.org/



4.3 Comparison Between TD-PR and TD-CNN
Baselines

TD-PR is proposed to improve the perceptual quality of
TD-CNN baselines via phase repair. We evaluated the pro-
posed TD-PR from both objective and subjective aspects.
In terms of the objective evaluation, we used the Log-
Spectral Distance (LSD) as the metric, which has been
widely used in audio SR tasks [1, 2, 4]. LSD is designed
as:

𝐿𝑆𝐷 =
1

𝐿

𝐿∑︁
𝑙=1

⎯⎸⎸⎷ 1

𝐹

𝐹∑︁
𝑓=1

(︁
log|𝑌𝑙,𝑓 |2 − log|𝑌𝑙,𝑓 |2

)︁2

, (5)

where 𝑌𝑙,𝑓 and 𝑌𝑙,𝑓 are the ground truth and the estimated
magnitude via STFT at 𝑙-th time step (𝑙 = 1, ..., 𝐿) and
𝑓 -th frequency bin (𝑘 = 1, ..., 𝐹 ), respectively.

The subjective evaluation aims at collecting Mean Opin-
ion Score (MOS) from participants to compare the percep-
tual quality across the input LR music, TD-CNN baseline,
TD-CNN w/ TD-PR and ground truth HR music. MOS
is commonly used in audio SR tasks to represent the per-
ceptual quality [4, 11]. Participants are asked to rate audio
samples according to the similarity with the reference au-
dio, i.e., the groud truth HR music. The range of MOS
in our work is set from 1 to 5, where 5 denotes excellent
quality (i.e., is the closest to the reference) and 1 denotes
bad quality. To avoid auditory fatigue caused by giving
too many samples to participants, we evaluated the three
TD-CNN models separately in three independent listening
tests, which means the MOS values across different tests
cannot be directly compared. For each TD-CNN, eleven
people with no background in audio engineering partici-
pated the listening test. The same eleven music pieces and
pre-processing as in the preliminary AB test are used.

5. RESULTS AND DISCUSSION

5.1 Impact of Ground Truth Phase Components

The preference of the AB listening test between TD-CNN
baseline and TD-CNN w/ GT-phase described in Sec. 4.2
is shown in Fig. 2. TD-CNN w/ GT-phase is voted to have
fewer artifacts with a large margin (95.38% vs 4.62%).
Therefore, we concluded that the artifacts in TD-CNN ap-
proaches for audio SR tasks is caused by the phase dis-
tortion, and the distortion can be repaired by replacing the
distorted phase with a more realistic one.

4.62%

95.38%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

TD-CNN

TD-CNN
w/ GT-phase

Figure 2. Results of the preliminary AB listening test:
95.38% of the TD-CNN w/ GT-phase is voted to have
fewer artifacts.
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Figure 3. Results of MOS listening test: The box plot of
the ratings across input, TD-CNN, TD-PR and GT. TD-PR
is applied to three different TD-CNN baselines.

5.2 Results on TD-PR

We conducted the MOS listening test described in Sec. 4.3.
The box plot of the MOS test results and the correspond-
ing average for each method are shown in Fig. 3. First, the
proposed TD-PR obtained better MOS scores than all three
TD-CNN baselines by a large margin, e.g., the proposed
TD-PR has higher boxes, and higher average MOS scores
of 1.12 (SEANet), 1.34 (AudioUNet), 0.78 (Demucs), re-
vealing that the TD-PR improved the perceptual quality of
TD-CNN baselines significantly. Successfully improving
three different baselines with a single pretrained vocoder
indicates the flexibility of the proposed TD-PR method.

From the perspective of the average MOS scores between
input LR music and TD-CNN baselines, it is obversed that
TD-CNN baselines obtained lower MOS than the LR in-
put by the deterioration of -0.61 (SEANet), -0.46 (Au-
dioUNet), -0.12 (Demucs). This indicates that the artifacts
in TD-CNNs severely harmed the perceptual quality. How-
ever, we will show later that TD-CNN baselines obtained
better LSD scores (objective metric) than the LR input, in-
dicating that LSD is not a reliable metric to evaluate audio
SR and perceptual quality.

In terms of the gap of the average MOS between input
and TD-CNN baselines, Demucs shows the smallest gap
to the input, which implies that Demucs is the strongest
among the three baselines. This observation is also in con-
sistency with its largest parameter amount.

The LSD scores on 4 representative LR bandwidth (2.5
kHz, 3 kHz, 3.5 kHz, 4 kHz) is shown in Table 1. Note

Table 1. LSD results with different input bandwidth and
parameter amount of different models.

2.5kHz 3kHz 3.5kHz 4kHz AVG Parameter

Input 2.43 2.19 1.97 1.78 2.09 -

SEANet 0.89 0.78 0.72 0.68 0.77 11M
SEANet w/ TD-PR(proposed) 0.94 0.86 0.82 0.80 0.86 11+6M

AudioUNet 0.83 0.74 0.69 0.66 0.73 56M
AudioUNet w/ TD-PR(proposed) 0.89 0.82 0.79 0.77 0.82 56+6M

Demucs 0.82 0.74 0.68 0.64 0.72 134M
Demucs w/ TD-PR(proposed) 0.89 0.83 0.79 0.77 0.82 134+6M

Ground truth 0 0 0 0 0 -
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Figure 4. Visualization of a set of phase spectrograms: (a)
low-resolution input; (b) ground truth; (c-1) SEANet; (c-
2) SEANet w/ TD-PR (proposed); (d-1) AudioUNet; (d-
2) AudioUNet w/ TD-PR (proposed); (e-2) Demcus; (e-2)
Demucs w/ TD-PR (proposed).

that the proposed method can deal with any bandwidth
between 2.5 kHz and 4 kHz. The results show that both
TD-PR and their TD-CNN baselines got much lower LSD
than LR input, indicating that music SR is successfully
achieved. Although the proposed method got sightly worse
LSD scores than the baselines, we argue this is trivial, be-
cause the aforementioned MOS listening test revealed a
significant gap in perceptual quality between TD-PR and
baselines. Although LSD can well reflect how well the
high frequency magnitude is recovered in each model, it
can’t reflect the degree of the phase distortion and has been
observed not highly correlated with perceptual audio qual-
ity in previous literature [4].

5.3 Qualitative Evaluation of TD-PR

We visualize a part of phase spectrograms in Fig. 4
and their corresponding magnitude spectrograms in Fig.
5 to qualitatively evaluate the proposed TD-PR method.
The visualizations include the spectrograms of LR input,
ground truth, three TD-CNN baselines and their corre-
sponding TD-PR outputs. For a clear view in Fig. 4, we
plot only the phase of a single frequency bin for the first
40 time frames of an audio sample, as the phase spectro-
gram across multiple frequency bins is difficult to under-
stand. The visualizations reveal that the proposed TD-PR
successfully produced a phase distribution that is closer to
ground truth’s compared to TD-CNN baselines. Mean-
while, as TD-PR only repairs the phase components, we
cannot observe significant differences in magnitude spec-
trograms shown in Fig. 5. Nevertheless, perceptual qual-
ity is improved significantly by TD-PR. The visualizations
again validate that phase distortion has been the cause of
the annoying artifacts in TD-CNNs.

6. CONCLUSION

In this research of music Super-Resolution (SR), we delved
into Time-Domain Convolutional Neural Networks (TD-
CNNs), trying to identify the cause of the annoying arti-
facts and improve TD-CNNs’ perceptual quality by allevi-
ating the artifacts. To the best of our knowledge, this work
is the first to demonstrate the artifacts in TD-CNNs are

(c-2)

(e-2)(d-2)

(b) (c-1)

(d-1) (e-1)

F
re

qu
en

cy
 (

kH
z)

(a)

0

8

6

4

2

7

5

3

1

0 3015 0 3015 0 30150 3015
0

8

6

4

2

7

5

3

1

F
re

qu
en

cy
 (

kH
z)

Time (s) Time (s) Time (s) Time (s)

Figure 5. Visualization of a set of magnitude spectrograms:
(a) low-resolution input; (b) ground truth; (c-1) SEANet;
(c-2) SEANet w/ TD-PR (proposed); (d-1) AudioUNet: (d-
2) AudioUNet w/ TD-PR (proposed); (e-2) Demcus; (e-2)
Demucs w/ TD-PR (proposed).

caused by the phase distortion via a subjective experiment.
We further propose Time-Domain Phase Repair (TD-PR),
which uses a neural vocoder pretrained on the wide-band
data to repair the phase components in the waveform out-
put of TD-CNNs. The proposed TD-PR achieved better
mean opinion score, significantly improving the percep-
tual quality of TD-CNN baselines. Moreover, a single pre-
trained vocoder can be directly applied to arbitrary TD-
CNNs without additional adaptation. Since the proposed
TD-PR only repairs the phase components of waveform,
the improved perceptual quality in turn indicates that phase
distortion has been the cause of the annoying artifacts of
TD-CNNs. The findings and comprehensive evaluations
presented in this work offer a new perspective for the future
improvement of audio super-resolution algorithms. This
work inspires us to combine the advantages of TD-CNNs
and neural vocoders in future, to develop a model that can
better address the challenges in music super-resolution.
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