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ABSTRACT

This paper presents an open-source software tool that
simplifies and automates the generation of accurate and re-
producible datasets from audio effect devices. The tool is
universal as it is designed to work with both software and
hardware devices, presenting analog or digital interfaces.
Specifically, this tool facilitates the process of recording
the processed sound while varying effect control parame-
ters, with four different paradigms offered. The tool has
an interactive graphical user interface that facilitates inter-
facing audio effects and configuring dataset generation op-
tions. The generated dataset is organized as a collection of
sample-accurate files, which makes further processing or
analysis with offline scripts simpler. The paper details the
tool’s design and its extensive set of functionalities, which
are informed by research in machine learning modeling of
audio effects. While discussing the tool’s applications, we
also explore its potential in other contexts.

1. INTRODUCTION

1.1 Audio Effects

Audio effects, also known as effect units or effect proces-
sors, are electronic devices that alter the sound of an au-
dio source using analog or digital signal processing tech-
niques. These are widely used in music production, mu-
sic performance, and broadcasting. They comprise of dis-
tortions, dynamic, filter, modulation, pitch, and time ef-
fects, although hybrid or combined effects are also com-
mon. These effects can be standalone devices or integrated
within sound synthesizers, mixing boards, amplifiers, or
performance-oriented systems. They can be implemented
using analog circuitry, digital signal processors, or in some
old instances, mechanical components. Standalone hard-
ware effects vary in form factor, including pedals, table-
top units, and rack-mountable devices. The advent of stan-
dardized audio plugin formats in the 1990s led to an in-
crease in software implementations of digital audio effects.
These process the sound using techniques available exclu-
sively in the digital domain, such as finite impulse response
filters, or are designed to emulate classic analog effects.
This approach, called virtual analog [1], emerged in the
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1990s, and a variety of numerical techniques have been
proposed since then, to replicate the nonlinear and time-
variant characteristics of these devices.

Audio effects present standardized interfaces for input
and output audio signals. Most effects process either one
(mono) or two (stereo) audio channels, while larger num-
bers of audio channels are found in spatialization and sur-
round processors. On hardware devices, the audio inter-
face uses standardized unbalanced or balanced connectors,
such as RCA jacks, 3.5mm or 6.35mm TRS or TS phone
jacks, or XLRs. These are used to transport AC-coupled,
line-level variable voltage analog signals. Some devices
may also feature microphone or instrument level inputs.
In software devices, uncompressed digital audio is gener-
ally exchanged through buffers of channel-interleaved au-
dio samples, where the buffer size depends on the system’s
audio drivers. Each audio sample is represented as a 16- or
24-bit integer or as a 32- or 64-bit floating point number.

Audio effects typically provide control parameters, en-
abling users to adjust and customize the sound-altering
process. These parameters influence specific, and often
perceptually relevant aspects of the audio processing chain.
In hardware devices, control parameters are mostly inter-
faced to variable resistors in the analog circuitry, while, in
digital devices, they determine values of variables within
the digital signal processing algorithms. Audio effects vary
significantly in their control parameters. Besides the con-
siderable variability in their number, the interfaces also
differ. In hardware devices, these parameters are usually
adjusted through dedicated or shared (i.e., re-mappable)
knobs, sliders, switches, and buttons. Alternatively or
additionally, they may be controlled also through analog
Control Voltage/Gate (CV/Gate) interfaces or through a
Musical Instrument Digital Interface (MIDI), with the lat-
ter being more widespread. MIDI-controlled parameters,
using the common 1.0 standard, are indexed with a 7-bit
integer and have a limited 7-bit resolution. The 2.0 MIDI
standard, introduced in 2020, overcomes this limitation,
but it’s yet only available on a limited number of systems.
CV/Gate offers theoretically infinite resolution, though the
signals can be generated or received by a digital interface
with finite resolution, typically in the range of 10 to 16 bits.
Software effect units often use the Virtual Studio Technol-
ogy (VST) or Audio Units (AU) formats. In these cases,
all control parameters are indexed with an integer and rep-
resented by floating-point numbers in the range of 0.0 to
1.0.
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1.2 Datasets of Audio Effects

A dataset generated from an audio effect typically includes
output recordings for different values of the control param-
eters. As audio effects don’t generate audio signals, the
dataset is intrinsically linked to the selected input signal.
The input signal selection largely depends on the specific
application for which the dataset is developed, though it
commonly includes a variety of stimuli such as sinusoidal
tones, sine sweeps, amplitude sweeps, and combinations
of noises. Excerpts of various music genres, recordings of
individual percussive and non-percussive musical instru-
ments, and singing and spoken voices are also frequently
included. Copyright of the selected stimuli determines the
extent to which the resulting dataset can be used and re-
leased. The output for the selected input signal is recorded
for all combinations of the control parameters to be in-
cluded in the dataset. However, this is not a strict require-
ment, and input of different durations and content can be
used. The number of parameter combinations can vary sig-
nificantly depending on how many variable parameters and
their possible values are included in the dataset. While the
term "permutation" might be more mathematically appro-
priate to identify unique settings of the control parameters,
we use "combination" as we formally consider the value of
each individual parameter belonging to a different set. In-
deed, even after normalization, each parameter included in
the dataset may have a different range and sampled values.
There is no standardized way to arrange the dataset. How-
ever, recent efforts have aimed to minimize the likelihood
that dataset differences can lead to significantly different
experimental results. This has led to the development of
an open-source library that handles datasets in their cur-
rent distribution modes while regulating possible variabil-
ity [2]. Common practices in developing an audio effect
dataset include: providing a separate uncompressed audio
file for each parameter combination with an identical sam-
pling rate, and typically associating filenames to metadata
in a Comma Separated Value (CSV) file. Encoding meta-
data in the filename is a less common option. The sampling
rate can also vary significantly across datasets, with 44.1,
48, and 96 KHz being the most common choices. The
selected stimuli input file is also usually included in the
dataset. Datasets may also be arranged as a single audio
file for the recording. In this case, boundaries for segment-
ing the recorded audio according to different combinations
of parameters must be provided.

1.3 Applications and Uses of Datasets

Datasets of audio effects have various applications, and
the specific purpose can influence the content and struc-
ture of the dataset. One use for these datasets is for mod-
eling an audio effect using data-driven methods such as
black- or gray-box approaches. Deep learning techniques
have become increasingly popular in this context in recent
years. Datasets can also be used to evaluate the accuracy
of numerical models, even when these models are devel-
oped with explicit white-box techniques that do not rely
on the device’s data. In addition, these datasets can be
utilized for offline precision characterization of an audio

effect, measuring level, gain, noise, harmonic and inter-
modulation distortion, relative phase, crosstalk, and trans-
fer function. Datasets can be used to compare different
effect units that are designed to apply similar alterations
to audio signals, such as those from different manufactur-
ers, production batches, or after exposure to varied oper-
ating conditions or life cycles. Intelligent mixing systems,
an emerging field, is another context where audio effect
datasets can find significant applications. For example,
datasets can be used in developing algorithms for recog-
nizing applied audio effects and estimating parameters of
an effect that generates processed signals. Datasets can be
used to generate a semantic or perceptually-relevant model
of an effect’s response to parameter changes, assisting in
the navigation, selection, and generation of parameter pre-
sets for a specific unit. In a creative context, these datasets
can represent a rich and varied sonic corpus due to the sig-
nificant alterations that audio effects can produce on the
sonic content of an audio signal. Such data can be used as
material for granular or concatenative synthesis, for music
production, or artistic installations.

1.4 Challenges in Generating Datasets

There are several challenges associated with the generation
of audio effect datasets. Firstly, it can be a time-consuming
and tedious process. Assume three variable parameters are
included in the dataset, with 10 sampled values from each,
resulting in 1000 combinations. If we record 60 seconds
of audio for each combination, it requires 16.6 hours of
continuous recording time. Depending on the application,
datasets may require a significantly higher number of sam-
pled values for each parameter. While the total record-
ing time might not be a significant issue, changing settings
and restarting the recording could potentially introduce er-
rors if executed manually. Consistency across recordings is
critical- parameter settings, recording levels, and synchro-
nization of playback and recording must be maintained,
sometimes down to sample-accurate levels. If the setup
must be dismantled and reassembled daily, there may be
accuracy issues due to inconsistencies in the setup, partic-
ularly concerning settings controlled by non-digital means,
such as gains in the audio interface or in the effect unit.
These inconsistencies and errors can be detrimental to spe-
cific applications that use the dataset. The results gener-
ated by designs using the dataset may present flaws or lack
precision, eventually traced back to the dataset itself af-
ter lengthy inspections. Automating the dataset generation
process can save time and reduce the chances of errors and
inconsistencies. However, automation needs to consider
the specific interface of the selected audio effect and re-
quires software development and validation that could con-
sume the saved time.

The tool we propose in this paper addresses these chal-
lenges, offering fully automated and accurate dataset gen-
eration that is compatible with most hardware and soft-
ware audio effects. It provides a high degree of accu-
racy and exposes an extensive set of functionalities to users
through a comprehensive Graphical User Interface (GUI).
The design and implementation, detailed in the follow-



ing sections, are informed by our research in modeling
analog audio effects using deep learning techniques, an
application that requires highly accurate datasets, as ex-
plained later in the paper. The tool, named as Dataset
Generator for Musical Devices (DGMD) is available
as open-source software at https://github.com/
stefanofasciani/DGMD. In this paper, we present
the DGMD version focused on audio effects, while a sep-
arate version focusing on sound synthesizers is still under
development.

2. RELATED WORKS

Variable control parameters are found in both audio ef-
fects and sound synthesizers. Managing these during
dataset generation and handling the potentially large num-
ber of combinations pose a common challenge. Further-
more, effects and synthesizers often share similar inter-
faces and formats. Automatic and offline rendering of
software sound synthesizers is a widespread practice in
research modeling different aspects of these algorithms.
Commonly, a basic synthesis algorithm is explicitly pro-
grammed to generate such a dataset. However, software
sound synthesizers in VST format have also been used,
providing a more realistic and complex study case. Ad-
ditionally, software sound synthesizers in the VST for-
mat have been used, offering more realistic and complex
study cases. In this context, RenderMan 1 —a command-
line VST instrument host with Python bindings, written in
C++—represents a highly effective and efficient option for
dataset generation. RenderMan not only facilitates dataset
creation but also provides analysis of the rendered audio.
It has been utilized in [3] and in [4] for generating datasets
to train systems for the automatic programming of sound
synthesizers.

The Timbre Space Analyzer and Mapper [5]-a previous
work by the first author—part of the conceptual inspiration
behind the DGMD tool-is a mixed MATLAB and Cycling
’74 Max system. It allows for the analysis and modelling
of a sound synthesizer’s timbre response, as well as the
control of synthesis parameters from various representa-
tions of the timbre space. To accomplish this, the system
internally computes a dataset from a VST sound synthe-
sizer subject to variations of selected control parameters.

The dataset used to train real-time neural network models
of guitar amplifiers, presented in [6], is generated from a
hardware analog amplifier. The amplifier’s parameters are
controllable only through manually operated knobs. To en-
sure precision, consistency, and repeatability—challenges
hard to overcome with a human operator—the authors
have developed a robotic control system for the parameter
knobs, consisting of an array of electric motors. Another
notable aspect of this work is their sampling approach for
control parameters. Instead of using a fixed grid, which
may lead to overfitting, they employ a random sampling
strategy. Parameters are drawn from a uniform distribu-
tion for each combination added to the dataset, ensuring
an unbiased sampling of the control space throughout the

1 https://github.com/fedden/RenderMan

dataset.

3. DESIGN AND IMPLEMENTATION

3.1 Objectives and Choices

The tool we propose for generating datasets from audio
effects has been designed to achieve the following objec-
tives:

• It should support any audio effects, ranging from
software plug-ins to hardware effects with MIDI,
CV/Gate, or manual interfaces.

• It should minimize manual intervention by automat-
ing the entire dataset generation process.

• It should be cross-platform, easy to install, and user-
friendly, with all functionalities accessible through a
single GUI.

• It should support the generation of sample-level ac-
curate and reproducible datasets.

For the implementation, we have selected Cycling ’74
Max 2 because it offers the best trade-off between the
objectives listed above. It interfaces with audio plug-
ins through a native object, while supporting a variety
of audio drivers that can cover virtually any sound card
needed to interface an external audio effect. Max allows
the building of standalone cross-platform applications with
complex GUIs, solving any problems related to operating
system-specific system libraries, graphic libraries, audio,
and MIDI drivers, as well as compiling and building the ap-
plication. Furthermore, Max is a reasonable choice for en-
suring the longevity of our tool. This environment has been
updated and maintained for over 30 years and can handle
any changes in operating systems that will inevitably occur
in the future.

The time required to generate a dataset from software plu-
gins can be significantly reduced using Max’s non-realtime
audio driver, which renders audio at the maximum rate al-
lowed by the CPU computational power. While the same
or better efficiency could potentially be achieved using
VST hosts for text-based programming languages, we still
see significant value in using Max. Notably, when using
Max, the real-time mode can be used to open the plugin’s
GUI, select variable parameters, and fine-tune their range
to be included in the dataset. This can be done while lis-
tening to the effect’s output before recording the dataset, a
crucial feature in this context. Then the non-realtime driver
can be used to generate the dataset offline. In contrast, a
fully script-based offline approach, aside from not allow-
ing one to listen to, interact with, and view the plug-in’s
GUI, also requires advanced knowledge of the audio effect
controls’ range, name, or index. These could vary signifi-
cantly from those documented in manuals or visible on the
plug-in’s GUI.

While Max offers precise signal processing objects for
sending audio and control parameters to audio effects, as
well as for recording the effects’ outputs with sample-level
consistent accuracy, it does have limitations in handling

2 https://cycling74.com/products/max
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non-native data structures and in implementing algorithms
that require iterative loops. To overcome this, we have
coded a significant portion of the DGMD in JavaScript,
which Max natively supports and integrates through ded-
icated objects. Utilizing JavaScript advantages the cross-
platform aspect, although execution time and synchroniza-
tion with the signal processing part are not guaranteed.
Hence, we have limited all time-critical operations such as
interfacing with the audio effect to Max’s signal process-
ing components. Non-time-critical tasks, such as file I/O
operations, are generally implemented in a combination of
JavaScript and Max objects operating at message rate.

3.2 Interfacing Audio Effects

The tool can send and receive audio from effects with one
(mono) or two (stereo) channels while controlling up to ten
different effect parameters. These are the limits of the cur-
rent implementation, which can be easily extended. Soft-
ware plugin effects are hosted directly inside the DGMD,
with audio and parameters exchanged using the VST in-
terface. Hardware effects are interfaced using an audio
interface to send and receive audio signals. Most audio
interfaces also feature a MIDI output, which can be used
to send parameters to those effects with parameters digi-
tally controlled via MIDI. Effects with a CV/Gate parame-
ter interface instead, require a more specific type of audio
interface with DC-coupled audio outputs, and one audio
channel per controlled parameter. In Figure 1 we have il-
lustrated how software and hardware effects are interfaced
to the DGMD.

In the case of hardware effects that lack an analog or
digital interface for the parameters, we suggest a MIDI-
controlled electro-mechanical interface as an alternative to
manual control. This type of interface could be constructed
using various low-cost microcontroller boards that include
a USB class-compliant MIDI interface. The microcon-
troller would receive MIDI control change messages used
to set the angle of an array of 270 servo motors, each cor-
responding to a specific controlled effect parameter. The
microcontroller should feature a number of Pulse Width
Modulation (PWM) output pins at least equivalent to the
number of parameters to be controlled. Consequently, the
audio effect appears to the DGMD interface as if it in-
cludes MIDI-controllable parameters. Such hardware and
firmware design for interfacing with most manual effects
is relatively simple and generic, and we have included an
example in the tool’s repository. However, the physical
connection between the servo motors and the effect unit is
device-specific and must be custom-made, for example by
3D printing the required parts to hold the motors in place
and to clamp onto the effect unit’s knobs.

4. FUNCTIONALITY AND FEATURES

In this section we detail all functionality and features we
have included in the DGMD tool, motivating their inte-
gration against specific applications. The GUI is visible
in Figure 2, where yellow overlay letters are used to label
sections serving different purposes. Detailed information

Figure 1. Interfacing between the DGMD tool and au-
dio effects. Software (SW) plugin audio effects are di-
rectly hosted within the DGMD, with audio and parame-
ters exchanged through the VST interface (top). In con-
trast, hardware audio effects are connected via an external
audio interface, with parameters controlled through MIDI
or CV/Gate signals (bottom).

about the functionalities is displayed to users when hover-
ing the mouse over each interactive element of the GUI.

4.1 Device Selection and Interface

Section ‘G’ of the GUI allows users to specify the target
audio effect device as either an internal software plugin or
an external hardware unit. Users can select the number of
audio channels for sending the stimulus to the effect and
for recording the processed sound, which can be config-
ured as mono or stereo. This section also lets users adjust
and monitor the pre-recording gain of the audio signal from
the effect and listen through the monitoring loudspeakers.

When working with internal plugins, section ‘H’ enables
the selection of the specific plugin from system folders or
the manual loading from a file. The plugin’s GUI can be
displayed in a separate window, and the ‘Monitor Plugin’
feature allows users to see the name and value of param-
eters changed in the plugin’s GUI on the DGMD. This is
critical because the DGMD tool displays the VST inter-
face’s parameters’ names and values, which usually differ
from those visible on the plugin’s GUI. The VST names
and values are necessary for determining what information
to include in the dataset.

For external audio effects, the audio interface and se-
lected channels for sending and receiving audio are chosen
in section ‘E’. If the effect has MIDI-controllable param-
eters, the output port and channel are set and enabled in
‘F’, and the corresponding MIDI control change numbers
for each parameter are set in one of the ten ‘D’ sections.
Additionally, CV control of parameters can be activated in
‘F’, with the associated specific DC-coupled output audio
channel for each parameter defined in ‘D’.

The dataset’s recording sampling rate is determined in



Figure 2. GUI of the Dataset Generator for Musical Devices (DGMD) tool, audio effects version. The capital letters in the
yellow overlays indicate the different sections of the interface.

section ‘E’, where users can also choose the audio inter-
face channels for the monitoring loudspeakers to listen to
what is sent to and received from the audio effect.

We have included the option for users to manipulate the
plugin or external effect’s parameters via a MIDI con-
troller, which is advantageous for testing parameters and
ranges to include in the dataset and for setting parameters
during manual dataset generation. Users can designate and
enable the specific MIDI input port and channel for this
purpose in ‘D’, and set the parameter-specific MIDI con-
trol change numbers in sections ‘D’.

4.2 Parameters Options and Change Modes

The GUI of the DGMD, as shown in Figure 2, features ten
identical sections labeled ‘D’, each corresponding to a spe-
cific effect parameter to be varied for dataset generation.
A parameter value will only be changed by the tool dur-
ing dataset generation if it is set to ‘Enabled’ in the GUI.
To generate the dataset, at least one parameter must be en-
abled. Enabled parameters on the GUI don’t necessarily
have to be situated next to one another. For software plu-
gin effects, a drop-down menu at the top of the ‘D’ sections
allows users to select a parameter from the list of those
available from the VST interface. For external hardware
effects, within the same section, users can choose either
the MIDI control change number or the audio channel for
the CV signal. When selecting a CV signal, it is also possi-
ble to specify whether the controlled parameter is unipolar
or bipolar, enabling the DGMD to map the parameter range
to the appropriate output voltage values.

In the bottom portion of each section ‘D’, the current
value of the parameter is shown both as a numerical value
and as a horizontal slider. These indicators are interactive,
allowing user adjustment and also changing automatically
during dataset generation. Parameter values are consis-
tently represented in the normalized range from 0.0 to 1.0.
Additionally, users can select a specific range of interest-
from ‘Min’ to ‘Max’-for each parameter to be varied in the
dataset, helping to reduce the time required for generation
and to limit the overall size of the output files.

The dataset can be generated according to four differ-
ent ‘Parameter Change Mode’, specified in the section ‘A’:
Step, Random, Manual, or Sweep.

In Step mode, the DGMD generates the dataset by sam-
pling the variable parameters using a regular grid. Each
parameter is sampled using an independent ‘Step’ value,
which users can specify in section ‘D’. For instance, the
settings displayed in Figure 2 show two enabled parame-
ters, both with a selected range from 0.0 to 1.0. The first,
however, has a step of 0.1, resulting in 11 different val-
ues, while the second has a step of 0.2, yielding 6 different
values. As a result, and also as automatically indicated in
section ‘D’ before dataset generation, the dataset will in-
clude 66 different parameter combinations. This provides
users with an indication of how long the dataset genera-
tion will take, given the selected settings. While the cur-
rent lowest step value is 10−5, it is important to note that
when parameters are controlled via MIDI, values are sent
as 7-bit integers. In this case, appropriate step values are
calculated as 1/2𝑁 , where 𝑁 is the number of bits, rang-
ing from 1 to 7, to consider. In devices with CV-controlled
parameters, stages of quantization may also be present, es-
pecially when the signal processing is handled digitally. In
these cases, CV analog signals may be acquired by ADCs
with resolutions ranging from 10 to 16 bits.

Upon initiating dataset generation, the DGMD initializes
a generator of parameter combinations. Within this gener-
ator, each combination is associated with a unique integer
index. These indices are used progressively to query the
generator, which then produces combinations on demand,
one at a time, instead of storing them in a table—an ap-
proach that could consume a significant amount of mem-
ory. Subsequently, the parameter combinations are sent se-
quentially to the audio effect in ascending order accord-
ing to their index. For each combination, the audio stim-
ulus is sent to the audio effect, and the output is recorded.
Audio data is initially read from and written into mem-
ory buffers to ensure sample-accurate synchronization. It
is transferred to disk only after recording is complete, and
before a new parameter combination is sent to the effect.
A separate audio file is created for the output recording of



each parameter combination. Users have the option to set
a delay time between updating the parameters on the audio
effect and the start of playback for the input stimulus as
well as the recording of the output. This delay accommo-
dates any latency in the parameter update response time,
which may vary from several milliseconds to fractions of
a second, depending on the specific interface. In this case,
an effect with electromechanically-controlled parameters
represents the worst-case scenario.

Given that the dataset may include a large number of
parameter combinations, potentially leading to a lengthy
generation process, we have introduced a feature that al-
lows users to begin generation from any selected param-
eter combination index. Coupled with the ability to save
all settings in user-defined presets, the deterministic and
reproducible behavior of the generator of parameter com-
binations, and the fact that each combination produces a
separate audio file, users are empowered to create large
datasets over multiple sessions without compromising the
consistency or accuracy of the dataset.

In Random mode, the DGMD generates the dataset by
drawing values from a series of independent uniform dis-
tributions, each corresponding to a different parameter.
These distributions are confined to the selected range for
each parameter, and in this context, the step value serves as
a quantizer. This can be particularly useful when parame-
ters are controlled using a low-resolution interface. For in-
stance, with a range from 0.0 to 1.0 and a step of 0.01, only
101 distinct values can be drawn. Similar to step mode, in
random mode parameter combinations are generated and
sent to the audio effect on the fly, one at a time. How-
ever, in this case, the process is not reproducible, which is
why the generated combinations are progressively stored
in a memory table. Users need to specify the number of
different random parameter combinations to be drawn to
complete the dataset. The overall automated dataset gener-
ation process is the same as that described for step mode,
including the option to delay the initiation of recording af-
ter dispatching a new set of parameters to the effect, and
the ability to start from an index greater than one. How-
ever, the latter only affects the numbering of the recorded
audio files, as a previously generated table including ran-
dom combinations cannot be reconstructed. In such cases,
users must manually merge the tables, which are exported
to a file.

When the dataset is used to train a machine learning
model of the audio effect, and the parameters are employed
to condition the model’s inference, sampling the parame-
ters with a high-density uniform grid may lead to overfit-
ting. In this scenario, random sampling emerges as a more
effective strategy to mitigate overfitting. Nonetheless, for
sparser grids — that is, those with fewer sampled values
per parameter — a uniform sampling ensures better cov-
erage of the effect parameter space. Still, a uniform grid,
even if dense, might be the preferred choice for applica-
tions focused on analyzing, characterizing, or comparing
the response of an audio effect.

The Manual mode enables users to set the parameters of
the effect by hand. This mode is only semi-automated;

each parameter combination is individually added to a
memory table when users manually initiate the process of
sending the stimulus to the audio effect and recording its
output. This mode may serve various purposes: for ex-
ample, it can be used to sample the parameter space using
criteria different from those previously mentioned, likely
involving only a limited number of combinations, or it can
assist in the generation of datasets with external hardware
audio effects with a manual interface for parameter adjust-
ment. In such cases, users should duplicate the settings
made on the effect unit within the DGMD interface before
triggering the recording for each combination.

The Sweep presents major differences compared to other
modes. Parameters are continuously varied while record-
ing the dataset, each following a triangular wave with ar-
bitrary range and frequency. In section ‘D’ of the GUI, it
is possible to set the ‘Sweep Rate’, which is the frequency
of the triangular oscillator controlling each individual pa-
rameter, which spans from the individual ‘Min’ to ‘Max’
defined in the same section. In this case, the concept of
parameter combinations no longer holds, and the desired
dataset size is expressed by the number of times the play-
back of the input stimulus signal is repeated. For each rep-
etition, the effect output signal is recorded into an audio
file. Also, the sweeping parameters are recorded at audio
rate into separate multichannel audio files. As the record-
ing processes are synchronized, each track on both result-
ing files presents an identical duration expressed in number
of samples.

Control parameters for audio effects with a CV interface
are transmitted as an audio signal. However, for all other
interfaces, the triangular waves need to be sampled, and
their values transmitted to the effect device. In section ‘A’
of the GUI, users can specify the ‘Sweep Update Rate,’
expressed as the number of audio samples, a feature effec-
tive only when the CV output is disabled. This determines
the rate of a clock driving a sample-and-hold block, which
downsamples the triangular waves and generates the actual
set of values sent to the effect. Consequently, when the
control parameters for the audio effects are recorded, the
resultant triangular wave appears stepped. Moreover, to
account for the eventual limited resolution of the interface
controlling the parameters, in section ‘A’ users can select
the bit depth for quantizing sweep values before recording.

We introduced the sweep mode for generating datasets
that can be used to assess how audio effects respond to
continuous variations of parameters. It can also serve to
compare the behavior of an audio effect model versus the
original device when parameters are varied continuously
and gradually. Besides, a dataset wherein effect parame-
ters are not fixed during the audio recording can be used for
experimental training of machine learning models of audio
effects. This allows to explore the extent to which such
an approach might yield better results compared to mod-
els using a grid of fixed parameter combinations, which
are required guessing outputs for unseen parameter values.
The information embedded in the dataset and the potential
ability of a model to learn from it can significantly vary
with the selected rates. Slower variations may prove ad-



vantageous for training models. Also, in order to maxi-
mize coverage of the parameter space, the rates of param-
eters should not bear an integer multiple relationship. For
repeatability in dataset generation, the phases of the trian-
gular oscillators are reset to zero at the beginning of the
dataset generation process.

4.3 File Input and Outputs

The audio file including the stimulus signal utilized as in-
put for the audio effect can be loaded in section ‘B’ of the
GUI. The stimulus is reproduced automatically during the
dataset generation, while the GUI allows users to manually
playback or loop the signal to test the audio effect while
adjusting the dataset generation options. This section also
lets users adjust and monitor the pre-effect gain of the stim-
ulus signal and listen through the monitoring loudspeakers.
We have chosen to use a stimulus from a file rather than an
integrated signal generator as the latter may not be as com-
prehensive in terms of options as existing libraries or tools.
Also, an integrated stimulus generator may fall short when
users want to use segments of music or instrument record-
ings as stimuli.

When recording the output of an external hardware audio
effect, the signal undergoes processing by the effect device,
but it also passes through the output and input of the audio
interface. While most audio interfaces provide relatively
transparent sound, there could be setups where this might
not hold true or applications where the contribution of the
audio interface can not be overlooked. Consequently, we
have added an option in section ‘B’ to record the stimulus
file after the audio interface loopback. In this scenario, the
output of the audio interface must be connected to its input.
When training machine learning models of an audio effect,
it is more appropriate to use the recording of the stimulus
loopback as input rather than the original stimulus file.

The DGMD generates several output files. In section ‘C’
of the GUI, users can specify the directory where output
files are saved and a prefix used for all generated files.
In Step, Random, and Manual modes, the tool generates
a separate uncompressed mono or stereo wave audio file
for each parameter combination included in the dataset,
recording the effect output. Audio filenames include an
integer index, which serves to retrieve the associated com-
bination of parameters from a table exported as a Comma
Separated Value (CSV) file. When working with internal
software plugins, the CSV file also includes the VST pa-
rameter names. Though the CSV file with parameter com-
binations is exported upon completion of dataset genera-
tion, users can manually export the file if the dataset gen-
eration is manually interrupted. In all modes, parameter
combinations are generated internally and cannot be im-
ported from an existing CSV file. The generator of pa-
rameter combinations for step mode is initialized when the
‘Update Step Mode Combination’ button in section ‘A’
is pressed. The generator for step mode and the mem-
ory table that holds parameter combinations for random
and manual modes are cleared when the ‘Reset’ button is
pressed. Additionally, in section ‘C,’ users can choose to
incorporate the associated parameter values also into the

names of the recorded audio files.
In Sweep mode, two uncompressed wave audio files are

generated for each repetition of the input stimulus signal.
The first file contains either a mono or stereo recording of
the output processed by the effect. The second file is a
multichannel wave file with many channels equivalent to
the number of enabled parameters, and it includes record-
ing at audio rare of the sweeping parameters. The file-
names of both audio files include an integer index, which
facilitates pairing the recorded output with the associated
sweeping parameters. As previously discussed, these sig-
nals undergo a process of downsampling when the CV pa-
rameter output is not enabled. Given that parameter val-
ues change very frequently in this mode, recording them as
audio signals ensures perfect alignment with the recorded
output and simplifies the process of utilizing the dataset -
particularly when modeling the audio effect using machine
learning techniques requiring matching input-output pairs.

The generated wave audio files have a sampling rate iden-
tical to the system sampling rate, which is set in section
‘D’ of the GUI. The sample format is configured to a 32-
bit floating point for recording the audio effect output and
a 24-bit integer for parameter recording in sweep mode.

4.4 Latency Compensation

Audio effects may present some input-output latency,
which varies based on whether they are analog or digital,
as well as their internal signal processing architecture. In
the DGMD environment, as well as in other digital audio
recording environments, there are other components con-
tributing to add significant latency.

Audio effects can present some latency between the in-
put and output audio. This latency varies depending on
whether the effects are analog or digital, and it is also
influenced by the internal signal processing architecture.
Within the DGMD environment, as well as other digital au-
dio recording environments, other components contribute
further, adding significant latency. For internal software
plugins within Max ‘Signal Vector Size’ has an impact
on the latency. This setting specifies the number of au-
dio samples processed at once by Max’s signal processing
routines. For external hardware effect units, Max ‘I/O Vec-
tor Size’ accounts for additional latency, as this determines
the number of audio samples buffered and exchanged with
the audio interface at a time. This value usually has a mini-
mum setting of 64 samples for most audio interfaces. Both
‘Signal Vector Size’ and ‘I/O Vector Size’ can be adjusted
in section ‘E’ of the GUI. This additional latency intro-
duced by the DGMD environment determines a significant
misalignment between the input stimulus signal and the
recorded effect output, which can be detrimental for effect
modeling purposes.

The DGMD tool includes a utility to detect the latency,
measured in audio samples, of the audio effect, taking
into account all additional components mentioned above.
When measuring, the audio effect’s parameters should be
set to return a signal that is as dry as possible. Measure-
ments can be initiated in section ‘A’, where the detected la-
tency is displayed. Users have the option to automatically



compensate for this latency. In this case, recordings of the
effect output continue past the end of the stimulus signal by
an equal number of audio samples to the detected latency.
Once the recording ends, and before being written to file,
a number of samples equal to the detected latency are re-
moved from the start of the recorded audio buffer. This
ensures alignment between the effect input and output sig-
nals. Users can use the latency measurement utility with
different values of ‘Signal Vector Size’ and ‘I/O Vector
Size’ to determine the actual latency of the effect, which
should be a constant offset added to the buffering-related
latency. Then, this value can be manually subtracted from
the detected latency value to generate a dataset that still
accounts for the internal latency of the effect.

4.5 Other Functionalities and Features

All user-defined settings, which determine the interfacing
of the effect and dataset generation options, can be saved
into a preset. Each preset is associated with a user-defined
name and an integer index in section ‘I’ of the GUI. These
presets can be recalled to enable reproducible dataset gen-
eration, which is essential when a single dataset generation
task needs to be executed over multiple sessions. The en-
tire collection of presets can be exported to, or imported
from a file.

Audio effects can include Low-Frequency Oscillators
(LFOs) that independently vary one or more parameters in
the internal audio signal alteration process. In some cases,
an external trigger can reset the phase of the LFOs to zero.
As such, in section ‘F’, we have provided a utility to send
to the effect a Gate signal or a MIDI note with arbitrary de-
lay and duration each time the playback of the input stimu-
lus begins and output recording starts. This feature allows
to obtain consistent and reproducible influence of the LFOs
on the dataset.

Given that the dataset generation process can be lengthy,
the progress percentage is displayed in section ‘A’ of the
GUI. The overall duration can be estimated by multiplying
the number of combinations by the duration of the stimulus
file. This estimation does not account for minor delays due
to parameter updates and file-writing to disk. However, if
an internal software plugin is being used, users can switch
the audio driver to ‘NonRealTime’ in section ‘E’. This sig-
nificantly speeds up the generation process as Max’s signal
processing routines are executed offline.

Lastly, section ‘A’ of the GUI dynamically changes with
the selected parameter change mode, as the names, avail-
ability, and functionality of the options may vary across
modalities. Extensive information is provided to users in
small pop-ups when they hover the mouse over each inter-
active element of the GUI.

5. CONCLUSIONS

We have introduced a tool called Dataset Generator for
Musical Devices (DGMD), specifically the audio effect
version. DGMD is a standalone software for gener-
ating precise and reproducible datasets from any soft-
ware and hardware audio effect. This tool offers a rich

set of features and functionalities which are informed
by research in the field of machine learning model-
ing of audio effects processing. Both DGMD and its
accompanying video documentation are freely available
as open-source software at https://github.com/
stefanofasciani/DGMD.
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