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ding space in which each music audio, image, and text is
represented as a feature vector by training respective en-
coders that embed them into the space.

To train the encoders, our method uses contrastive learn-
ing [10–12], a deep learning technique that embeds data
into the multimodal embedding space so that feature vec-
tors of similar context data are close to each other, while
those of dissimilar ones are far away. By optimizing the
space using contrastive learning, we can closely align the
feature vectors of music audio, images, and text with simi-
lar contexts, thereby facilitating the search for image com-
positions on the basis of a music audio (or text) query.

Additionally, we use image outpainting and cropping
techniques to ensure that the encoders identify images of
high aesthetic quality. Image outpainting can seamlessly
expand the boundary of an input image. We utilize the
mask-aware transformer (MAT) [13] to generate the out-
painted images of cover (or thumbnail) images. We then
train the encoders to prioritize cover (or thumbnail) images
over images randomly cropped from the outpainted images
in the multimodal embedding space.

The trained encoders can be utilized to embed a music
audio (or text) query and image compositions into the mul-
timodal embedding space. We use a grid-anchor formula-
tion [14] to generate image composition candidates from
each image in the image collection. Subsequently, we can
generate a ranked list of image composition candidates on
the basis of the similarity between the feature vectors of
the query and each candidate.

We qualitatively show the effectiveness of our method
using the TAD66K dataset [15] as the image collec-
tion. In addition, we demonstrate our method’s effective-
ness through quantitative evaluation on the public YT8M-
MusicVideo dataset [16] and the private Album Songs 5
Million (AS5M) dataset.

2. RELATED WORK

Image cropping automatically selects visually-appealing
regions or objects from an image for various applica-
tions [17]. Advancements in deep learning techniques have
enabled image cropping techniques to become more prac-
tical [18]. However, these techniques mainly focus on im-
proving the aesthetic quality of the cropped images, result-
ing in the images that do not capture the user’s intention.

Several studies have been pursuing the potential for fur-
ther advancement in image cropping, particularly in cap-
turing the user’s intention through multimodal input [6–9].
Santella et al. introduced a framework that implicitly uti-
lizes gaze-based interactions to identify accurate regions
of interest [6]. Bhattacharya et al. developed a frame-
work that recomposes an image on the basis of the user-
selected foreground object [7]. Horanyi et al. proposed
caption and aesthetic-guided image cropping, which lever-
ages pretrained models for image captioning and aesthetic
tasks [8]. Zhong et al. developed a framework that inte-
grates OWL-ViT [19] and DETR [19] to achieve query-
conditioned image cropping [9]. The drawback of these
image cropping techniques is that they only search for im-
age compositions in a single image. Our method can gener-

ate image compositions from multiple images, facilitating
the search for image compositions the users want.

3. PROPOSED METHOD

This section describes our proposed method. Figure 2
shows an overview of our proposed method.

3.1 Data Representation

Our method deals with three modalities of data: music au-
dio, images, and text. Here, we describe each data repre-
sentation in our method.

3.1.1 Music Audio Representation

The music audio is converted to a mel spectrogram through
a feature extractor of contrastive language-audio pretrain-
ing (CLAP) [20] available in Transformers [21], and our
audio encoder is trained using the spectrogram as input. To
train our audio encoder, we apply a masking technique [22]
and a random crop technique [23] to the spectrogram for
data augmentation. The masking technique generates ran-
dom masks on the spectrogram in both frequency and time
domains, and the random crop technique selects a random
section of the music audio.

3.1.2 Image Representation

We use an RGB image resized to 224 px × 224 px as in-
put for our image encoder. Since most datasets for im-
age cropping are single-modal, comprising only images,
multimodal datasets that include music audio are not read-
ily available. Hence, we create such a dataset using im-
age outpainting and cropping techniques. Specifically, we
utilize MAT [13], an outpainting technique, to expand the
boundary of the original cover (or thumbnail) image. We
resize the image such that its longer side becomes 224 pix-
els while maintaining the original aspect ratio, and then we
center the resized image and use MAT to outpaint around
it, resulting in an image size of 512 px × 512 px. Dur-
ing training, we operate under the assumption that the
region of the original image represents a more suitable
composition than randomly cropped regions from the out-
painted image. This approach is based on the actual design
workflow in which cover and thumbnail images are often
created by cropping from photos or illustrations. It has
the unprecedented advantage that original images actually
cropped by professionals can be used as correct answers
in this manner. To train our image encoder, we use both
the original and outpainted images. The outpainted images
undergo a series of data augmentation: a random resized
crop (with scale range [0.57, 1.43] and ratio range [0.4,
2.5]), a random horizontal flip (with a probability of 0.5),
and random erasing (with a probability of 0.2) [24].

3.1.3 Text Representation

We tokenized text generated by using a keyword-to-
caption augmentation technique [20] with a maximum
length of 77, which is the same setup as contrastive
language-image pretraining (CLIP) [25]. To train our
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where λH is a weight.

3.3 Cover Image Composition Method

We use the grid-anchor formulation [14] to generate im-
age composition candidates with a specified aspect ratio
from each image in the image collection. First, image com-
position candidates are automatically determined by using
the grid-anchor formulation that constructs an image grid
with M × N bins on the original image. Each bin has a
width of ∆w px and a height of ∆h px. Then, the grid-
anchor formulation chooses a region to be cropped by se-
lecting two anchor points so that the region is at least 40
percent of the size of the original image. This formulation
can efficiently determine image composition candidates of
a specified aspect ratio from the original image. We use
∆w = ∆h = 12 when cropping an image with an aspect
ratio of 1:1 and ∆w = 16,∆h = 9 for 16:9. The values
of M and N are automatically determined from the size of
each bin and the aspect ratio of the original image. As a re-
sult, we can obtain a dozen to several hundred image com-
position candidates of a specified aspect ratio from each
image in the image collection. Note that the number of
image composition candidates generated by the proposed
method depends on the size of each image.

Then, we can calculate how an image composition candi-
date matches a query as follows:

Fi = sim(zQ, zI
i ) (4)

where zQ and zIi are the feature vectors of the query and
the i-th instance of the image composition candidates, re-
spectively. We calculate feature vectors of the query and
image composition candidates using the trained encoders.
By sorting the values {Fi} in descending order, we can
obtain a ranked list of the image composition candidates.

4. EXPERIMENTS AND RESULTS

This section describes a qualitative analysis and compari-
son experiments to evaluate our method’s effectiveness.

4.1 Dataset

We utilized three datasets (one image dataset and two mul-
timodal datasets) in our experiments.

4.1.1 Image dataset

The TAD66K dataset [15] is specifically designed for
image aesthetics assessment. The dataset contains over
66K images of various aspect ratios, covering 47 popular
themes. We utilized this dataset as the image collection.

4.1.2 Multimodal dataset

The YT8M-MusicVideo dataset [16] is a subset of the
YouTube-8M dataset [30], comprising videos tagged as
“music video.” We collected 73,113 triplets consisting of
music audio (average length of 4 min with a 48 kHz sam-
pling rate), the corresponding thumbnail image (an RGB
image with an aspect ratio of 16:9), and the corresponding
metadata including title, channel name, and upload date on

YouTube from 60,785 YouTube channels. We randomly
split the dataset into training (64,001 songs), validation
(7,112 songs), and test (2,000 songs) sets with no channels
overlapping across these sets.

The AS5M dataset is a private dataset containing triplets
of a music audio excerpt (a 30 s audio preview for trial lis-
tening, with a 44.1 kHz sampling rate), the corresponding
cover image (a square RGB image), and the correspond-
ing metadata including song title, artist name, collection
name, music genre, and release date. The dataset con-
tains 5,920,828 music audio excerpts and their metadata by
174,629 artists, and 1,115,668 cover images. Because mul-
tiple excerpts from an album are associated with a single
cover image, each image corresponds to about 5.3 excerpts
on average. The excerpts, typically representative music
sections, were already cropped on a music streaming ser-
vice from which they were crawled. The corresponding
cover images and metadata were crawled simultaneously.
The songs encompass a variety of music genres (over 250,
according to the streaming service). We randomly split
the dataset into training, validation, and test sets with an
eight-one-one ratio and with no artists or images overlap-
ping across these sets. For evaluation, we constructed ten
folds of test subsets by randomly selecting 2,000 triplets
of a music audio excerpt, cover image, and text prompt for
each fold from the test set.

We determined the size of each test set by following the
setup used in related works [16, 31].

4.2 Qualitative Analysis

We performed a qualitative analysis to demonstrate that
the proposed method can generate aesthetic image com-
position candidates and retrieve appropriate image com-
positions in response to each query. The most effective
way to demonstrate the proposed method is to test it on
real examples [16]. We thus used music audio available on
YouTube 1 as music audio queries, and text available on
Wikipedia 2 as text queries. The queries were selected on
the basis of their high popularity, that is, hit charts (rank-
ings) of music sales and YouTube views. For the image
collection, we used all images in the TAD66K dataset [15].

Figure 3 shows example results of our method. The im-
ages in the top and bottom four rows are formatted in an
aspect ratio of 16:9 and 1:1, respectively. From the ranked
list, we list the top two images as “most matched”, the mid-
dle three images as “moderately matched”, and the bottom
two as “least matched.” The results show that our method
captures the property of each query and retrieves image
compositions that match either the music audio or text
queries. For example, in the case of “White Christmas”
(third row of Figure 3), the word “Christmas” resulted in
the most matched images, such as the board shaped like
Santa Claus, decorated Christmas tree, and star-shaped
ornament. In the case of “Call Me Maybe” (fifth row
of Figure 3), the top ranked results feature charming im-
ages since the song is categorized as teen-pop. Altogether,

1 Each music audio query in Figure 3 can be accessed at
https://youtu.be/{ID}.

2 We used the first paragraph that introduces a song. Each text query
in Figure 3 can be accessed at https://en.wikipedia.org/wiki/{Url}.
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close to each other in the multimodal embedding space.

5. DISCUSSION

The proposed method is useful in various situations, e.g.,
when musicians want to add a cover (or thumbnail) image
to their own music, using a large collection of images or
photographs that they personally own or that are free of
rights issues. The retrieved image composition can be used
as is or further adjusted as a cover (or thumbnail) image.

In such a situation, one might wonder why not use recent
multimodal generative models capable of generating cover
images from various inputs [36]. A primary concern with
generative techniques is the potential to replicate existing
images from training data [37, 38]. For musicians, legal
ambiguities and risks of using generated images can be a
substantial drawback.

In contrast, the use of self-collected or owned images or
commercial stock images is free of rights concerns and is
likely to be the preferred option, especially for commer-
cial use. Therefore, this paper focuses on the unique chal-
lenge of retrieving cover image compositions from an im-
age collection without daring to consider using the gener-
ative models.

6. CONCLUSION

We proposed a method of retrieving image compositions
suitable for a music audio (or text) query. The contribu-
tions of this paper can be summarized as follows. First, to
ensure that image compositions have the specified aspect
ratio, high aesthetic quality, and contextual relevance to the
query, we utilized multimodal image retrieval and cropping
techniques, which offer a novel solution to this challenge.
Second, we demonstrated that the proposed method can
retrieve image compositions suitable for queries, as our
qualitative analysis shows. Third, our proposed method
succeeded in training the encoders so that the feature vec-
tors of music audio, images, and text from the same song
(i.e., those with similar contexts) are close to each other in
the multimodal embedding space, as demonstrated by our
quantitative evaluation.

This work will lead to further development of assistive
tools that can deal with various music content.
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