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ABSTRACT

This study investigates the emergence of the beat percept
in auditory textures that are built up from homogeneous
sources. Sensorimotor synchronization (SMS) models of
beat perception have examined how humans synchronize
to musically relevant signals, however there have been
few systematic inquiries into SMS in more soundscape-
oriented phenomena where a listener is confronted by mul-
tiples of concurrent, interactive sources. In this experi-
ment, participants were asked to synchronize (via tapping)
to stimuli created from a generative model where forty
metronome sounds are clustered around periodic, tempo-
ral centers using a Gaussian probability distribution func-
tion parameterized with eight levels of variance to pro-
duce ‘swarms’ of temporally aligned onsets. Participants
encountered stimuli both in mono (dichotic) and binaural
spatial presentations as we hypothesized that the spatial
presentation might produce significant differences in SMS
performance. As evidenced by inter-beat interval analy-
sis and phase coherence analysis, participants were able to
largely synchronize to six of the eight onset variance con-
ditions despite tap frequency increasing with onset spread.
Similarly, while we found a slight interaction between spa-
tial format and stimuli onset variance, no significant differ-
ences were found between the overall tap responses to the
binaural versus mono stimuli. This study is a first look
into how the beat percept arises to sound textures whose
constituent elements contain different levels of embedded
synchrony.

1. INTRODUCTION

To be immersed in a sounding environment is to encounter
and listen to many different collections of sounds that make
up the auditory scene. By segregating and identifying the
multitude of sources contained within the soundscape, we
make sense of the auditory environment around us. For
example, we can detect and isolate sound objects, appre-
ciate complex musical phenomena, and identify prospec-
tive threats, all while forming a coherent auditory map
of our surroundings that allow us to navigate a physical
space [1–3].

While much research in sensorimotor synchronization
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(SMS) has investigated the human ability to entrain,
synchronize, and coordinate behavior with a variety of
musically-oriented signals, there has not been a system-
atic inquiry into how SMS emerges from more ambient,
naturalistic sounds. Naturalistic auditory textures, such as
rain, hail, crackling fire, stridulating insects, or the rus-
tle of wind, are often made up of sounding elements that
interplay with one other in ways both complex and pre-
dictable [4]. Here, variegated interactions at the local level
can give rise to collective behaviors that result from dif-
ferent cyclic patterns in nature where biological materi-
als respond to environmental demands. In short, differ-
ent behavioral dynamics create sound in adaptive ways
and this has been reflected in a number of studies such as
insect communication, crowd dynamics, crowd applause,
and traffic noise [5–8].

Taken as a class of auditory signals, many naturalistic
sound textures exhibit signal stationarity which is associ-
ated with specialized forms of auditory processing [9]; Mc-
Dermott et al. successfully recreated such sound textures
by generating signals that mimic their statistical properties
via cochlea filtering during natural listening experiences.
Since sound textures are comprised of large numbers of
concurrent sources, this line of research suggests percep-
tual systems may rely on forms of temporal averaging in
order to recognize and detect such sounds. Other genera-
tive models for soundscape recreation take a different ap-
proach by synthesizing individual sound sources en masse,
exploring techniques such as granular and concatenative
synthesis, physical modeling, and other procedural algo-
rithms that are more physically analogous to sound pro-
duction in the real world (For a review, please see [4]).
If individual sound sources interact and synchronize their
actions, how does collective behavior shape the resulting
soundscape? Human synchronization can offer insights to
better understand how we might perceive and engage with
these auditory worlds.

We can listen for auditory cues in the form of repeated
sonic events in order to sense regularity and construct a
notion of pulse, a sensorimotor skill that is critical for the
performance of music and group synchronization in gen-
eral [10, 11]. The well-known ‘cocktail party effect’ pro-
vides evidence that we are able to ‘listen in’ and latch onto
constituent elements in a dense, auditory textures com-
prised of multiple homogeneous sources [12, 13]. Even
within an auditory stream of spoken language, we have to
parse linguistic signals through various mechanisms such
as synchronizing to phoneme structure [14, 15]. In one
study, short repetitions of synthetic soundscapes were re-
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peated at different intervals to determine if listeners were
able to detect this embedded regularity [16]. The authors
found that recurring segments of naturalistic sounds fa-
cilitated the detection of sound examples within multiple
mixtures and that listeners may unconsciously learn priors
about a sound texture via repetition. Furthermore, there
is limited research on how source spatialization affects the
beat percept and SMS in general. While large-scale, im-
mersive speaker arrays may provide more dynamic and en-
veloping listener experiences at the expense of degrading
the perception of rhythmic information [17], it is not clear
what effect listener envelopment has on the emergence of
the beat percept from otherwise stationary signals.

This perceptual study examines how the beat percept
arises in sequences of concurrent sound onsets that are syn-
chronized at different levels of temporal alignment. How
synchronized do sound events have to be in order for hu-
mans to notice a sense of regularity, latch onto an entrain-
ing rhythm, and coordinate behavior in tandem with the
incipient beat? By creating auditory textures built up from
superpositions of sound onsets at different levels of syn-
chrony, we can examine the point at which we begin to
induce beat via tap synchronization. As such, this study is
a first look into how the beat percept might arise within au-
ditory textures comprised of homogeneous sound sources
that are temporally allocated as (Gaussian) random vari-
ables over periodic moments in time. We hypothesized
that people would use the embedded onset densities or
‘swarms’ as an auditory cue in order to synchronize to
such auditory textures. Similarly, we anticipated that the
spatial format of such sounds would influence human syn-
chronization performance.

2. METHODS

2.1 Stimuli Preparation

Audio stimuli were generated from a generative Gaussian
probability density function (PDF) that distributes 40 in-
dependent onsets in the form of metronome clicks around
15 “beat centers” as derived from 5 tempo conditions
(60,68,77,88,100 bpm). For each tempo, the PDF was cen-
tered at the time associated with the period of each tempo
condition, parameterized with 8 levels, or “gradations”, of
variance that correspond to a set of standard deviations
spanning a linear range from 0.0 to 0.6 of the temporal
period. Depending on the variance, this generative PDF
allocates a ‘swarm of onsets’ more or less tightly around
periodic centers corresponding to the tempo of each con-
dition (each of the gradation conditions of variance scaled
with tempo so as to keep the spread of distributions propor-
tionate across the tempo condition). An audio sample of a
single metronome click was used as the auditory source on-
set. Stimulus generation is illustrated in the Figure 1 which
shows the Gaussian PDF parameterized at the 8 levels of
variance for a single tempo condition (the lowest variance
condition represents the isochronous case). Kernel Density
Estimates (shown in orange) of the onset histograms are
shown over each of the 15 beat centers for each variance
condition. Correspondingly, the resultant audio waveform

Figure 1. Examples of the stimulus waveforms for each of
the variance conditions, or “gradations”, for a single tempo
condition. Kernel density estimates (shown in orange) ap-
proximate the shape of the generative Gaussian PDF cen-
tered on each of the 15 beat centers (shown as vertical red
lines). The stimulus phase coherence, 𝑅𝑜𝑛𝑠𝑒𝑡𝑠, sampled at
each temporal beat center, are shown in red.

is overlayed onto this plot; the red line shows the phase co-
herence magnitude (see Equation 1) , 𝑅𝑜𝑛𝑠𝑒𝑡𝑠, of the stim-
uli which is a summary statistic which indicates the global
synchrony of the onsets over each beat region.

When the stimuli variance is low, the metronomes sounds
are tightly distributed around the period associated with
the tempo; conversely, when variance is high, the samples
are more randomly distributed throughout the beat-to-beat
temporal region. During stimulus creation, two versions of
each variance gradation and tempo condition were created
resulting in 80 stimulus sequences.

2.2 Test Procedure

14 volunteers from the University community participated
in this study. Participants completed a questionnaire before
the experiment began which collected demographic data.
4 women participated in the study and the mean age was
30.5 yrs (SD(age) = 11.2 yrs). 2 of the participants were
left-handed and the entire cohort had 4.8 yrs as the average
years of musical training (SD(musical training) = 6.2 yrs).



Participants were asked to tap on the spacebar of a 15”
MacBook Pro Laptop using the dominant finger of their
dominant hand with Sony MDR7506/1 headphones. The
experimental stimuli were created using the SuperCollider
music programming language. The stimuli were presented
in randomly in two blocks, each block either consisting of
sound sequences that were either dichotic (i.e., mono, the
same sound presented to both ears) or binaurally using the
SoundScape Renderer v. 0.6.1 with a head tracking unit
(Supperware Head Tracker 1) [18]. The 40 onsets were
distributed onto 40 virtual source positions located on the
horizontal plane as a circle around the listener.

First, we collected a 15 second period of participant spon-
taneous tempo by asking them to tap at a rate that was
comfortable to them without any auditory stimuli. Follow-
ing this, participants attempted a practice block consisting
of 4 auditory stimulus sequences before each experimental
block. They proceeded onto the experimental tapping task
which consisted of 80 audio files in each block which re-
sulted in a total duration of around 20 minutes per block.
The total experiment took approximately 40 minutes to
complete.

2.3 Data Analysis

The parameters associated with each stimulus—namely
the variance and the tempo — were initially collected and
saved to disk during stimulus generation. The partici-
pant tap responses were analyzed in terms of their inter-
tap-interval and the phase coherence magnitude, (𝑅), and
angle, (𝜓). The inter-tap interval (ITI) is defined as the
amount of time in between each of their successive taps
which can be normalized with respect to the stimuli period
(obtained from the tempo condition) so as to compare tap
responses between tempo conditions; this is referred to as
the normalized ITI (nITI). A nITI of 1 would mean that
the participant tapped at the same rate as the stimulus beat
centers (conversely, a nITI < 1 would indicate taps that
occurred at a rate that was faster than the stimulus beat
centers).

The phase coherence analysis is determined from cal-
culating the stimulus onsets and participant tap response
complex order parameters from which the phase coherence
magnitude, 𝑅, and average angle, 𝜓, are obtained from
Equation 1 where 𝑁 is the number of onsets and 𝜑𝑖 is the
phase in radians between consecutive beat centers (𝑗 is a
complex number). 𝑅 is a value between 0 and 1 which
represents the synchrony of the group of onsets and 𝜓 (0-
2𝜋) represents the average angle among all onsets.

𝑅 𝑒𝑗𝜓 =
1

𝑁

𝑁∑︁
𝑖=1

𝑒𝑗𝜑𝑖 (1)

Unlike ITI analysis, phase coherence analysis provides
information on how taps line up with the center of the beat
and provides information about how taps may tend to pre-
cede (‘lead’) or fall behind (‘lag’) the center of the beat.
Each participants tap and stimulus onset can be mapped to
a point on a circle where the bounds of the circle represent
the distance between consecutive beat centers where center

Figure 2. Participant mean (red) and SD (blue) of the nor-
malized inter-tap-interval (nITI) over each stimulus vari-
ance condition. Error bars indicate the mean subject error.

of the beat is defined to be at 𝜋 (onsets or taps > 𝜋 imply
a lag and tap responses < 𝜋 imply a lead). For the tap
and stimuli onset distribution, we can create a phasor with
magnitude, 𝑅, at average angle, 𝜓, that reflects both the
aggregate alignment of the participants’ tap responses and
the stimuli onsets. Rayleigh tests were performed to deter-
mine if the tap and onset distributions contained any sig-
nificant directionality and lend support to the idea that the
phase coherence magnitude and angle can be considered
to be valid [19]. Similarly, comparisons between distribu-
tions can be made using Watson-Wheeler Tests, a circular
statistic that tests for homogeneity on two or more samples
of circular data in terms of the mean or variance [20].

3. RESULTS

Figure 2 shows the participant mean nITIs and SD of nITIs
for each of the stimuli variance gradations (1-8) for the
combined mono and binaural sounds. Here we see how
nearly all of the participants were able to tap with a nITI≈1
up until the 7th and 8th variance gradation at which point
there is decrease in nITI which implies that the participants
began to tap at a faster rate than the stimulus beat centers.

Figure 3 shows the mean nITI and SD distribution of all
tapping trials as a function of the stimuli phase coherence.
As the phase coherence of the stimuli decreases (at 𝑅 ≈
0.3), many participants began to tap at a faster rate (lower
nITI) with much more tap-to-tap variance (larger SD of
nITI) across participants.

Table 1 summarizes the results of the three-way repeated
measures ANOVA of the stimulus variance, spatial presen-
tation, and tempo conditions for the mean nITI and SD re-
spectively. For the mean nITI, the ANOVA revealed sig-
nificant main effects of stimuli variance, tempo, and an in-
teraction between stimuli variance and tempo. The main
effect of stimuli variance was significant (F(7,84) = 5.84,
𝑝 < 0.001) where post-hoc tests showed mean nITI pro-
gressively decreased from the stimulus variance gradation
1 to 8 (0.98, 0.95, 0.92, 0.93, 0.92, 0.92, 0.86, 0.75) and
post-hoc analysis showed more significant mean nITI val-
ues as compared to higher stimulus variance gradations.

For the SD of the nITIs, the ANOVA revealed significant
main effects only for the stimulus variance (F(7,84) = 3.83,
𝑝 = 0.001) from gradation 1 to 8 (0.11, 0.10, 0.10, 0.10,
0.10, 0.14, 0.18, 0.14) where the mean SD of the subject



Figure 3. All mean (top) and SD (bottom) of the participant
nITIs for each trial plotted as a function of the stimulus
phase coherence. Mean nITIs < 1.0 imply that a partici-
pant tapped at a rate that was faster than the rate associated
with the stimulus beat centers.

Table 1. Results of the three-way ANOVAs for the mean
and SD of the participant nITIs. Note. Significance levels
are indicated as *** 𝑝 < .001, ** 𝑝 < .01, * 𝑝 < .05, NS
= not significant. The levels for the variance conditions
are (1-8) and the five levels for the tempo conditions were
(60,68,70,88,100).

taps tended to increase over stimulus gradation.
Lastly, the main effects of the tempo on the nITI was sig-

nificant (F(1,12) = 27.4, 𝑝 < 0.001) and the results of the
post-hoc tests indicated that tap nITI tended to increase
with increasing tempo conditions; post-hoc results showed
bpm 60, 68, 77, 88, and 100 corresponding to 0.83, 0.89,
0.92, 0.93, 0.96 nITI respectively.

The phase coherence of the taps and the stimulus onsets
were computed to derive a phasor representing the aver-
age angle across participants with respect to the center
of the beat. These phase coherence distribution plots are
shown for each variance gradation in Figure 4. Rayleigh
tests reported all of the tap and stimulus onset distribu-
tions were shown to have significant directionality with the
exception of the tap distribution of variance gradation 8.
Watson-Wheeler tests showed significant mean differences
between the distributions of the tap and onset distributions
for every gradation (all comparisons per variance gradation

1 2 3 4 5 6 7 8

Figure 4. Phase coherence “swarm” plots showing the dis-
tribution of the participant taps (red) versus the stimulus
onsets (blue). Phase coherence magnitude and average an-
gle (𝑅, 𝜓 (rad)) are shown as phasors for the taps (𝑅𝑡) and
onsets (𝑅𝑜).

𝑝 < 0.0001, except variance gradation 8, (𝑝 = 0.003)).

4. DISCUSSION

We observe three central tendencies among participant tap
responses: 1.) all participants tapped in line with the re-
gion of the stimuli containing the highest onset density (the
beat center) across variance gradation and 2.) participants
slightly increased the mean frequency of their taps when
synchronizing to stimuli with increased onset variance but
tapping was slower at higher tempos and 3.) the spa-
tial presentation (mono, or binaurally rendered) of the on-
set swarms did not significantly affect their tap responses.
These results indicate that synchronization performance
only degraded at gradation 7 and 8 suggesting that up un-
til that variance gradation, participants were able to induce
a beat percept from the stimulus sequences. While SMS
probably depends on the source sound material and nu-
merosity of sources and events, this study suggests that
sound onsets normally distributed in time can induce the
beat percept if they are sampled from a normal distribution
with a SD that is ≈ 0.3 of the temporal period.

Previous research has observed tapping rate increases
with stimulus asynchrony which might be a result of in-
dividual differences [21]. Surprisingly, participants taps
were generally consistent throughout the course of the
stimuli sequences since tap-to-tap variance (SD of nITI)
was generally low and only significantly increased toward
the last two stimuli variance gradation. While it is pos-
sible that subjects simply tapped at consistent rate without
being entrained, their tapping rates during stimulus presen-
tation were substantially faster than their collected sponta-
neous rates. For the last two variance gradations, approx-
imately 40% of their taps still fell within a 10% window
and 20% window of the target stimulus tempo for the last
two stimulus variance gradations respectively. Why might
people tap at faster rate when they lose the beat percept?
Once individual onsets are no longer grouped as belong-
ing to a particular beat center, individual onsets—taken se-
quentially rather than streamed — may begin to dominate
the perception of the beat [22, 23]. Similarly, faster tap-
ping might reflect strategies that incorporate active sens-
ing where humans might sample from sensory spaces at a
faster rate [24, 25].

No significant differences were found in tap responses to
the mono (dichotic) presented sounds versus the binaurally
presented ones. Initially, we hypothesized that the listener
being enveloped by the sounds might allow them to segre-



gate specific sounds in the mix and use that sound as an au-
ditory cue for synchronization. However, our findings sup-
port previous research showing how only four spatialized
speakers can approximate spatial envelopment for broad-
band, stationary sounds such as those found in naturalistic
soundscapes [26,27].The findings of this study support the
notion that SMS performance is not facilitated nor con-
strained by the presence of more spatialized sources.

The phase coherence angle of the group’s tapping re-
sponse to gradation 1, a completely isochronous stimuli,
shows a lag (≈0.47 rad, ≈75 ms for the 60 bpm condition,
≈45 ms for the 100 bpm condition) between the mean of
the subject tap and the center of the beat is well within
the range of negative mean asynchrony (NMA) observed
in other SMS studies which for humans to coordinate their
taps with a slight delay behind an entraining stimulus on-
set [28]. 𝜓𝑡𝑎𝑝𝑠 slightly preceded 𝜓𝑜𝑛𝑠𝑒𝑡𝑠 during variance
gradation 2, 3, and 4 suggesting that listeners may have
been more adaptive in their tapping; error correction mod-
els have accounted for such anticipatory responses in audi-
tory pacing sequences with expressively modulating tem-
pos [29]. However, as the stimulus variance increases, we
observed a reduction of phase coherence magnitude across
and within participant tap responses. Surprisingly, while
the 𝑅𝑡𝑎𝑝𝑠 value remained small (≈ 0.14), 𝜓𝑡𝑎𝑝𝑠 still re-
mains pointing towards the center of the beat until the last
variance gradation which suggests that overall, there was
still a tendency to tap toward either the center of the beat
or in between two beat centers. Another indication of the
participant entrainment is observed in the transition from
variance 4 to 6, where 𝑅𝑡𝑎𝑝𝑠 > 𝑅𝑜𝑛𝑠𝑒𝑡𝑠: the participants
placed their taps with more temporal alignment than the
onsets themselves.

Ultimately, our findings support the notion that onset den-
sity is indeed used by the listener in order to construct a
sense of beat, however tentative that may be.

It should be noted that the waveform of the stimuli asso-
ciated with larger variances did contain a weakly periodic
amplitude envelope suggesting that volume might be the
entraining auditory cue as shown in other research in am-
plitude modulated noise perception [30] but that the ma-
jority of participants were still able to coordinate their taps
with onset density when phase coherence magnitude, 𝑅,
was small (≈0.3). Even among a backdrop of a homo-
geneous auditory texture, we suspect that participants are
able to track the accumulation of onsets as they coalesce
around temporal centers and that the auditory mechanism
involved in auditory averaging of stationary signals tran-
sitions to parsing onsets into periodic temporal regions,
a process that shares many features with beat-bin based
models of microtiming in groove-based music [31]. In
fact, this model is built into to the stimuli generation a
priori: PDFs generate onsets that align with more or less
spread around temporal centers, and beat perception in this
context may rely on integrating onsets within durational
boundaries that arise from making causal inferences from
priors in order to structure beat relevant information in the
real-time [32].

The SMS behaviors observed in this study might not ap-

ply to phenomena exhibiting other statistical distributions
given that our stimuli produced onset swarms normally
distributed in time; natural phenomena exhibiting other
statistical distributions might induce other forms of syn-
chronization. This analysis did not capture any aspects
related to the time structure of participant taps—that is,
there was no analysis to determine if their taps evolved
over the course of the stimuli sequences. We observed
that tap variance was relatively low for most of the vari-
ance gradations but further inquiry into the nature of when
participants began to tap or how their taps evolved on a
tap-to-tap basis would be interesting to evaluate more thor-
oughly. While we did capture the participants’ head track-
ing movement data during the experiment, we noticed that
they did not tend to move their head during the tapping
task and therefore did not analysis this data. Because the
40 virtual sources sufficiently enveloped the listener, head
movements would not likely have facilitated beat induc-
tion.

5. CONCLUSIONS

This study provided a first look into how a sense of beat
might arise from interactions among sound sources that
makeup a larger auditory texture. We used a probabil-
ity density function parameterized at different levels of
variance to span a range of synchronous onset sequences.
While spatial source location did not significantly affect
tap performance, ITI and phase coherence analysis sug-
gested that participants synchronized their behavior with
the recurring onset density and that the gradual loss of the
beat percept was associated with tapping at an accelerated
rate. Further inquiry into SMS using onset distributions
might examine the effects of source numerosity; for ex-
ample, listeners may well use such spatialized cues when
the number of perceived sound sources in a space is lower.
This would be particularly true if the sources themselves
were less homogeneous in timbre, as more salient sound
objects might direct attention in such a way as to signifi-
cantly alter their SMS performance [33, 34].
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