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ABSTRACT

In the Western music tradition, chords are the main con-
stituent components of harmony, a fundamental dimension
of music. Despite its relevance for several Music Informa-
tion Retrieval (MIR) tasks, chord-annotated audio datasets
are limited and need more diversity. One way to improve
those resources is to leverage the large number of chord an-
notations available online, but this requires aligning them
with music audio. However, existing audio-to-score align-
ment techniques, which typically rely on Dynamic Time
Warping (DTW), fail to address this challenge, as they re-
quire weakly aligned data for precise synchronisation. In
this paper, we introduce ChordSync, a novel conformer-
based model designed to seamlessly align chord annota-
tions with audio, eliminating the need for weak alignment.
We also provide a pre-trained model and a user-friendly
library, enabling users to synchronise chord annotations
with audio tracks effortlessly. In this way, ChordSync cre-
ates opportunities for harnessing crowd-sourced chord data
for MIR, especially in audio chord estimation, thereby fa-
cilitating the generation of novel datasets. Additionally,
our system extends its utility to music education, enhanc-
ing music learning experiences by providing accurately
aligned annotations, thus enabling learners to engage in
synchronised musical practices.

1. INTRODUCTION

Harmony is central to Western music traditions’ theoretical
and practical foundations. It entails the combination of in-
dividual pitches to create chords and their concatenation
into sequences to create chord progressions. Therefore,
chords, i.e., the simultaneous sounding of two or more
pitches, are the primary constituents of harmony, while
chord progressions play a vital role in shaping and defining
the overall structure of a musical piece.

Not surprisingly, automatic chord recognition (ACR)
from audio, the task of generating a sequence of time-
synchronised chord labels given raw audio as input, has
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Figure 1. Basic schema of ChordSync: The model pro-
cesses a list of chords alongside the audio signal, produc-
ing time-aligned chords as output.

been an active research topic in Music Information Re-
trieval (MIR) for more than two decades [1], with appli-
cations including music similarity assessment [2, 3], clas-
sification [4], and segmentation [5].

The development of ACR systems requires large datasets
of audio-aligned chord annotations for training and eval-
uation. However, the diversity of existing chord anno-
tated datasets is limited. They predominantly feature pop
music and exclude a wide array of genres and styles [1].
The lack of diversity is critical since the chord vocabulary
differs according to musical style and context, making it
difficult to generalise from a limited music sample. Be-
sides, the subjectivity inherent in chord annotations further
complicates the ACR task. Musical chords can be anno-
tated at varying levels of granularity and complexity, ac-
counting for global harmony or specific instrument con-
tributions. Additionally, the distinction between harmony
and melodic lines is frequently challenging, while inter-
pretations of elements such as arpeggios often lead to di-
vergent annotations. In [6], authors demonstrate that inter-
annotator agreement on the root note in a dataset annotated
by four different annotators stands at only 76%. Datasets
annotated from other perspectives are even rarer, currently
comprising only a few dozen tracks.

In recent years, meta-corpora of chord annotations have
emerged, such as Chord Corpus (ChoCo) [7] and When
in Rome (WiR) [8], which aim to aggregate and standard-
ise different datasets originally available in various formats
and annotation styles. In this way, they facilitate the util-
isation of large-scale data, which improves diversity and
is crucial for training deep-learning models. However, the
availability of audio-aligned annotations within these cor-
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pora remains limited. Notably, less than 12% of the 20, 000
annotated tracks in ChoCo are audio-aligned.

On the other hand, the internet hosts vast repositories
of crowd-sourced chord annotations on platforms such as
Ultimate Guitar 1 , e-chords 2 , and Chordie 3 , collectively
housing millions of annotated songs. This multitude of-
fers a great variety in terms of genre distribution, includ-
ing genres not present in any MIR datasets, such as elec-
tronic, metal, hip hop, reggae, and country. Moreover,
these repositories of harmonic annotations often contain
multiple versions of the same song. This abundance of ver-
sions may offer new avenues for analysis, accommodating
the subjectivity and complexity inherent in the annotations,
as proposed in [6,9]. Unfortunately, these annotations lack
any timing and duration information, providing solely lists
of chords and occasionally lyrics, hindering their reuse for
MIR-related tasks.

These challenges underscore the need for systems capa-
ble of aligning chord annotations with audio recordings.
Yet, to the best of our knowledge, no model has been ex-
plicitly developed for this purpose. Existing audio-to-score
alignment techniques often rely on Dynamic Time Warp-
ing (DTW) algorithms [10], typically requiring prelimi-
nary weak alignment. Such alignment methods are not al-
ways feasible for aligning chord annotations to audio, par-
ticularly in cases of crowd-sourced data where temporal
information is completely lacking.

1.1 Our Contribution

In this paper, we address this gap by introducing
ChordSync, a novel approach that seamlessly aligns chord
annotations to audio without requiring any preliminary
weak alignment (see Figure 1). Leveraging the power of
conformer architecture [11], our method paves the way for
creating diverse and comprehensive audio-aligned chord
annotated datasets based on existing resources. We also
provide a pre-trained model and a user-friendly library, en-
abling users to synchronise chord annotations with audio
tracks effortlessly. Finally, we showcase the effectiveness
of our approach by aligning a sample of tracks taken from
Ultimate Guitar. This can, in turn, benefit other MIR ap-
plications, such as music structure analysis, and foster en-
riched music learning experiences.

The rest of the paper is structured into four main sections:
Section 2 reviews the current state-of-the-art, Section 3 de-
scribes the methodology of ChordSync, Section 4 presents
experimental results, and Section 5 offers conclusions and
suggests future research directions.

2. RELATED WORK

2.1 Audio-to-Score Alignment

The task of aligning audio to symbolic music, commonly
known as audio-to-score alignment (A2SA), has been pri-
marily addressed by Dynamic Time Warping (DTW) al-
gorithms [12], as they are particularly effective for se-

1 Ultimate Guitar: https://www.ultimate-guitar.com/
2 e-chords: https://www.e-chords.com/
3 Chordie: https://www.chordie.com/

quence alignment tasks. Thus, various DTW-based align-
ment methods have been proposed to align audio with dif-
ferent symbolic music formats, such as MIDI [13], often
integrating additional techniques and diverse signal repre-
sentations to improve alignment accuracy [14, 15].

A differentiable variant of DTW, SoftDTW, has been re-
cently used as the loss function within neural network ar-
chitectures, mainly for multi-pitch estimation tasks [16,
17]. However, a general limitation of the DTW-based ap-
proaches is their reliance on weak-aligned data to perform
the alignment. This requirement renders them unsuitable
for contexts without prior alignment information.

Other deep-learning methods have been investigated for
audio-to-score alignment, including leveraging automatic
transcription techniques [18] and training audio features
tailored explicitly for alignment tasks [19].

The only previously proposed approach for aligning au-
dio with chord annotations uses Hidden Markov Models
(HMM) and is part of an ACR workflow [20]. Also related
to our work is the Harmonic Change Detector (HCD), in-
troduced in [21] and subsequently revisited and improved
in [22, 23], for detecting harmonic changes within the au-
dio signal, including chord changes. However, the number
of harmonic changes within the audio signal often exceeds
the number of chord changes, posing challenges for using
these algorithms directly for audio-to-chord alignment.

2.2 Lyrics-to-Audio Alignment

Another form of alignment pertinent to our work is the
audio-to-lyrics alignment task, which seeks to determine
the corresponding locations in a song recording of its lyrics
at various levels such as line, word, or phoneme [24]. Ex-
isting methods for this task are commonly adapted from
automatic speech recognition (ASR) [25, 26], despite the
inherent complexity of singing voices compared to speech
[27], and typically make use of acoustic models trained to
recognise the phonetic content of the audio signal at vari-
ous levels of granularity. Some recent works have adopted
the Connectionist Temporal Classification (CTC) loss [28],
training the acoustic model in an end-to-end fashion [26].

2.3 Conformer-based Approaches

The conformer architecture [11] has recently emerged in
ASR as a novel architecture to effectively model global and
local audio dependencies by leveraging a combination of
Convolutional Neural Networks (CNNs) and Transformer
architectures. It has showcased remarkable success across
various tasks not only in speech [29] but also in music [30],
including melodic transcription [31], representation learn-
ing [32], and music audio enhancement [33].

3. METHOD

This section describes ChordSync, our proposed
conformer-based model for audio-to-chord alignment.
It implements an acoustic model for estimating the
frame-wise probabilities of chord labels, which are then
fed to a forced-alignment decoder, along with the list of
chord labels to align. Figure 2 illustrates the three primary
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Figure 2. Architecture of ChordSync: (i) The audio signal undergoes preprocessing to Constant-Q Transform (yellow box);
(ii) The preprocessed audio serves as input for training the conformer-based acoustic model (blue box); and (iii) The model
output probabilities, along with the list of chord labels for alignment, is fed into a CTC forced alignment module (green
box), which outputs the aligned chord labels.

steps implemented by the model: pre-processing and
data augmentation (Section 3.2), the acoustic model used
during training (Section 3.3), and the forced alignment
decoder (Section 3.4). The software implementation and a
pre-trained model are available on a GitHub repository. 4

3.1 Problem Statement

Let 𝑋 = {𝑥1, ..., 𝑥𝑁} be a frame-level sequence of acous-
tic features extracted from the input audio, where 𝑥𝑛 ∈ R𝐷

represents a D-dimensional feature vector, and 𝑁 indi-
cates the total number of frames within the sequence. Let
𝐶 = {𝑐1, ..., 𝑐𝑀} be the input list of chord labels encoded
into integer values, where 𝑐𝑚 ∈ Z𝐾 , 𝐾 denotes the size
of the chord vocabulary, and 𝑀 is the length of the chord
sequence. The list of chord labels is upsampled to match
the length of the audio sequence 𝑁 . This upsampling is
performed uniformly, assuming each chord has a duration
approximately equal to 𝑁/𝑀 . Specifically, each chord la-
bel 𝑐𝑚 is repeated for approximately 𝑁/𝑀 frames to pro-
duce the sequence 𝑍 = {𝑧1, ..., 𝑧𝑁}, where 𝑧𝑚 ∈ Z𝐾 .
Thus, we train an acoustic model to optimise the following
equation:

𝑍* = argmax
𝑧

𝑝(𝑍|𝑋), (1)

where 𝑍* represents the optimal sequence of chord labels
that maximises the posterior probability 𝑝(𝑍|𝑋), given the
input sequence 𝑋 . Note that 𝑋 and 𝑍 are aligned at the
frame level, and 𝑝(𝑋|𝑍) is evaluated by estimating the
frame-wise posterior probability 𝑝(𝑥𝑛|𝑧𝑛).

The output probabilities 𝑝(𝑋|𝑍) from the acoustic model
are then fed to a CTC forced alignment decoder, which es-
timates the best alignment between the sequence of acous-
tic features 𝑋 and the list of chord labels 𝐶:

𝐴* = argmax
𝑎

𝑝(𝐴|𝑋,𝐶), (2)

4 https://github.com/andreamust/ChordSync

where 𝐴* represents the optimal alignment between 𝑋 and
𝐶 that maximises the posterior probability 𝑝(𝐴|𝑋,𝐶).

In this way, the decoder generates the aligned chord la-
bels with respect to the audio signal.

3.2 Preprocessing

For the input audio data, a standard pre-processing pipeline
is implemented. The audio is first resampled to a sampling
rate of 22050 Hz, and a hop size of 2048 is applied. Then,
the Constant-Q Transform (CQT) features are calculated
on 6 octaves starting from 𝐶1, with 24 bins per octave,
resulting in a total of 144 bins.

The audio data used for training undergoes data aug-
mentation by applying (i) time masking and (ii) frequency
masking directly to the audio features, as proposed in
SpecAugment for end-to-end ASR [34].

During training, each audio excerpt in the training set un-
dergoes augmentation, where either one of the transforma-
tions (frequency masking or time masking) or both are ap-
plied, and the choice of augmentation technique is deter-
mined randomly with equal probability.

Chord labels are numerically encoded into integer values
and upsampled to match the length of the audio sequence
𝑁 . The upsampling is performed using the pumpp
library 5 . Figure 3 shows how chord labels are converted
and sampled. The size of the chord vocabulary 𝐾 results
from the linear combination of the 12 pitches, representing
the chromatic scale, with chord qualities such as {maj,
min, 7, dim, dim7, hdim7, aug, min7,
maj7, maj6, min6, minmaj7, sus2, sus4},
plus an additional chord symbol N representing silence or
no chord.

3.3 Conformer-based Acoustic Model

The acoustic model we adopt is an adaptation of the orig-
inal Conformer architecture [11], where the audio encoder

5 https://github.com/bmcfee/pumpp.
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Figure 3. Workflow of the pre-processing applied to the
chord labels. Chord labels are numerically encoded and
upsampled to match the length of the CQT.

processes the input through a convolutional module fol-
lowed by a series of Conformer blocks.

The convolutional module comprises a convolution layer,
a fully connected layer, and a dropout layer. The convo-
lutional module serves as the initial feature extractor, cap-
turing local patterns within the input CQT. Dropout regu-
larisation is applied by randomly deactivating units during
training to reduce overfitting. Additionally, we incorpo-
rate positional encoding, as proposed in the original trans-
former architecture paper [35].

A Conformer block is composed of four modules stacked
together: a feed-forward module, a self-attention module,
a convolution module, and a second feed-forward module
at the end. In the original Conformer paper, the authors
explore three different sizes of the Conformer architec-
ture: 𝑆 (small), 𝑀 (medium), and 𝐿 (large), with differ-
ent numbers of layers, hidden units, and other parameters.
For our implementation, we opt for the 𝑀 architecture,
which comprises a 16 encoder layer with a dimension of
256, 4 attention heads, and a convolutional kernel size of
32. While the original paper observed significant improve-
ments when transitioning from the 𝑆 to the 𝑀 variant, our
experimentation yielded little improvements from 𝑀 to 𝐿.

To handle the large dimensionality of the vocabulary, we
use an architecture similar to that proposed by [36], in
which root notes, bass notes, and all pitch activations of
the chord are predicted. Subsequently, these probabilities
are passed to a feed-forward layer, which converts these
three probabilities into the likelihood of the chord with re-
spect to the vocabulary 𝐾, similarly to what was proposed
by [37].

For training, we employ cross-entropy loss and optimise
using the AdamW optimiser. We utilise a cosine annealed
warm restart learning scheduler to manage learning rates.
Learning rate schedulers proved effective in training audio
data, especially with augmented data [34]. Finally, we ap-
plied early stopping by halting the training if the loss failed
to decrease for over 20 epochs to prevent overfitting.

3.4 Forced Alignment

To estimate the best alignment between the acoustic fea-
tures 𝑋 and the chord labels 𝐶, we utilise the Connection-
ist Temporal Classification (CTC) objective function [28],

which computes the probability of a given alignment be-
tween the input features and output labels. The CTC ob-
jective function is defined as follows:

𝑝(𝐶|𝑋) =
∑︁

𝐴∈𝒜𝑋,𝐶

𝑝(𝑎𝑡|𝑋), (3)

where 𝒜𝑋,𝐶 denotes the set of all possible alignments that
produce the label sequence 𝐶, and 𝑝(𝑎𝑡|𝑋) represents the
probability of alignment 𝑎𝑡 given the input sequence 𝑋 .

The probability of alignment 𝑎𝑡 given 𝑋 is computed as
the sum of probabilities of all paths 𝑎′𝑡 that correspond to
𝑎𝑡 after collapsing repeated labels and blank symbols:

𝑝(𝑎𝑡|𝑋) =

𝑇∏︁
𝑡=1

𝑝𝑡(𝜋𝑡|𝑋), (4)

where 𝑇 is the length of the alignment, and 𝑝(𝜋𝑡|𝑋) is the
probability of the 𝑡-th symbol in the alignment path 𝜋 given
the input sequence 𝑋 .

4. EXPERIMENTS

Due to the lack of established methodologies to address
the chord-to-score alignment task, conducting a compar-
ative evaluation with existing state-of-the-art techniques
presents some challenges. Therefore, to gauge the effec-
tiveness of the proposed methodologies, we use alternative
approaches performing analogous albeit slightly dissimilar
methods for comparison and conduct two different experi-
ments. The first aims to evaluate the model’s capability in
detecting chord boundaries, while the second compares it
to a traditional DTW-based alignment.

All experiments were carried out using a subset of ChoCo
[7], which offers a standardised version of chord anno-
tations sourced from various datasets. Specifically, only
ChoCo partitions annotated on audio, i.e. expressing tem-
poral information such as onsets and duration in seconds,
were considered. Table 1 presents a summary of all ChoCo
partitions employed for training and evaluation.

Audio files corresponding to each ChoCo annotation
were obtained automatically from the available metadata
in the original datasets. This was necessary as only a small
portion of the datasets offer external links to the original
audio sources used for chord annotation. Since the auto-
matic retrieval process depends on sometimes sparse and

Dataset Genre #Tracks Reference
Isophonics pop, rock 300 [38]
Billboard pop 740 [39]
Chordify pop 50 [40]
Robbie Williams pop 61 [41]
Uspop 2002 pop 195 [42]
RWC-Pop pop 100 [43]
Schubert-Winterreise classical 225 [44]
Weimar Jazz Database jazz 456 [45]
JAAH jazz 113 [46]
Total 2240

Table 1. Dataset utilised for all experiments. All datasets
are sourced from ChoCo [7].



Method Genre Precision ↑ Recall ↑ F1 Score ↑
HCDF pop/rock 0.4999 0.6334 0.5269
HCDF classical 0.4454 0.6220 0.5191
HCDF jazz 0.4911 0.7749 0.5857
HCDF all 0.4953 0.6508 0.5323
ChordSync pop/rock 0.8847 0.8335 0.8553
ChordSync classical 0.6008 0.5917 0.5951
ChordSync jazz 0.4663 0.4129 0.4350
ChordSync all 0.8895 0.8420 0.8621

Table 2. Precision, Recall, and F1 Score for the HCDF
method [23] and the proposed ChordSync model.

incomplete metadata, the validity of the audio files was
manually verified on randomly selected samples. The com-
plete dataset consists of 2240 audio tracks, encompassing
four distinct music genres: pop, rock, classical, and jazz.
However, it is noteworthy to observe a significant imbal-
ance in the dataset, with the pop/rock genre comprising
over 65% of the total tracks.

Audio data is segmented into intervals of 15 seconds du-
ration, with a 3-second overlap between each segment and
the preceding one, yielding a corpus of 31909 segments.
We split these segments into train, validation, and test sets
with proportions of 65−20−15. Importantly, when a seg-
ment from a particular song is included in the train set, we
ensure that no segments from the same song are included
in either the validation or test sets.

4.1 Chord Changes Detection Evaluation

The first comparison is conducted with the Harmonic
Change Detection algorithm [21], which specialises in de-
tecting harmonic changes on an audio signal. These algo-
rithms are typically evaluated by assessing their capacity
to detect the onsets of annotated chords within the identi-
fied harmonic changes, often employing standard metrics
such as Precision, Recall, and F1 Score.

However, by their intrinsic design, HCD algorithms ex-
tract every harmonic variation present in the audio sig-
nal. [21] and [23] provide two distinct implementations of
this algorithm, each optimising either the F1 score or preci-
sion. The number of harmonic changes varies significantly
depending on the chosen algorithm implementation, but in
general, it far exceeds that of chord changes.

In contrast, ChordSync extracts the number of chord
changes of the list of chords passed to the CTC decoder.
Table 2 presents a comparative analysis between the HCD
algorithm in [23] and ChordSync. A harmonic change
match is defined in a 0.3 seconds window between the pre-
dicted and the ground-truth onsets.

Our method demonstrates notable efficacy in chord
change extraction, substantially increasing all the perfor-
mance measures considered. This performance improve-
ment stems from the model’s inherent design, which op-
timises the alignment between the audio signal and the
provided sequence of chords. However, performance de-
creases in the less represented genres within the dataset,
such as jazz and classical.

4.2 Alignment Evaluation

Evaluating audio-to-score or audio-to-lyrics alignment en-
tails comparing predicted and ground truth timestamps to
measure their temporal differences [47,48]. This compari-
son typically occurs pairwise and involves calculating met-
rics such as the median absolute error in seconds and the
percentage of overlapping segments. This approach offers
a straightforward means of assessing alignment accuracy
and determining the effectiveness of alignment methods
for practical applications.

Furthermore, perceptually-grounded metrics for evaluat-
ing lyrics-to-audio alignment systems have been recently
introduced [49]. These metrics were fine-tuned on data
collected through a user Karaoke-like experiment, reflect-
ing human judgement of how “synchronous” lyrics and au-
dio stimuli are perceived in that setup.

All the metrics described above are implemented in the
mir eval library [50], providing a standardised and ac-
cessible means for conducting evaluations in audio align-
ment. Given its similarities with other alignment tasks and
the perceptual considerations involved, the same metrics
are suitable for evaluating audio-to-chord alignment.

We compare the performance of ChordSync and a con-
ventional DTW-based approach using the SyncToolbox li-
brary [10], which offers a diverse array of DTW-based im-
plementations. The evaluation of this type of approach
requires both symbolic sequences weakly aligned to au-
dio, which are a prerequisite for the alignment, and ground
truth annotations strong aligned to audio for evaluation. To
our current knowledge, such annotations are exclusively
found within the Schubert Winterreise dataset [44]. Con-
sequently, the evaluation of this approach is constrained to
a limited number of pieces and to the classical genre.

To perform the alignment between audio and chord an-
notations, the chord annotations were first decomposed
into their constituent notes, each of which was then as-
sociated with the chord’s symbolic onsets. The audio
data underwent pre-processing using chroma and DLNCO
features, known for their effectiveness in alignment tasks
[51]. Finally, alignment was carried out utilising memory-
restricted multi-scale DTW (MrMsDTW) [52, 53].

Table 3 shows the performance of the proposed model on
the Schubert Winterreise dataset compared to a standard
DTW approach, along with the broader performance met-
rics of the ChordSync method applied across all datasets
(c.f. Table 1). This evaluation demonstrates that the
proposed model accurately detects chord changes and
achieves alignment performance comparable to that of a
DTW-based approach. Conversely, the evaluation con-
ducted solely on a subset of the Winterreise dataset demon-
strates performance comparable to DTW, albeit slightly
lower. However, this data highlights the model’s strong
generalisation capabilities, as it effectively aligns songs
from a genre that was statistically rare in the training data
due to its limited size.

Even so, it is worth noting that the proposed model
achieves these results without relying on weak-aligned
data, which is a requirement for DTW-based approaches.



Method Dataset Percentage Correct ↑ Median Absolute Error ↓ Average Absolute Error ↓ Perceptual ↑
DTW schubert-winterreise 0.8621 0.0661 0.2088 0.7895
ChordSync schubert-winterreise 0.8245 0.2641 0.2512 0.7230
ChordSync all 0.8664 0.4224 0.5001 0.7900

Table 3. Performance of ChordSync on the Schubert-Winterreise dataset [44] compared to a standard DTW approach
performed using the SyncToolbox library (first two rows). Additionally, performance metrics of the ChordSync method
applied across all datasets are presented. Metrics are computed with the alignment metrics from the mir eval library.

5. DISCUSSION AND CONCLUSION

In this paper, we introduce ChordSync, a novel model for
audio-to-chord alignment that harnesses the capabilities of
the Conformer architecture [11]. Our proposed method at-
tains performance levels comparable to DTW algorithms
in the audio-to-chord alignment task without requiring any
pre-existing alignment as in the DTW approaches. There-
fore, our method facilitates the creation of diverse and
comprehensive datasets featuring synchronised audio and
chord annotations by exploiting existing resources, such as
crowd-sourced online chord annotations, which typically
lack timing and duration information. In order to do that,
we offer a pre-trained model and a user-friendly library,
empowering users to synchronise chord annotations with
audio tracks effortlessly.

The primary limitation of the proposed approach stems
from its reliance on an acoustic model trained using a sim-
plified vocabulary of chord labels (see Section 3) because
the model’s performance is contingent upon the vocabu-
lary size. If a chord is absent from the chord vocabulary,
it will inevitably be approximated by the existing label of
the most similar chord in the vocabulary. However, if the
two consecutive chord symbols match, the alignment gets
more challenging for the CTC decoder. Although the re-
sults indicate that the decoder can handle such scenarios,
using alternative chord encoding might yield better perfor-
mance.

Furthermore, investigating alternative chord encoding
could make the model key-agnostic, a feature lacking in
the current model, which is not specifically designed to
handle discrepancies in key between the chord labels and
the audio signal.
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“When in rome: a meta-corpus of functional harmony,”
Transactions of the International Society for Music In-
formation Retrieval, vol. 6, no. 1, 2023.

[9] H. V. Koops, W. B. de Haas, J. Bransen, and A. Volk,
“Chord label personalization through deep learning
of integrated harmonic interval-based representations,”
CoRR, vol. abs/1706.09552, 2017. [Online]. Available:
http://arxiv.org/abs/1706.09552
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