
CSOUND VS. CHUCK: SOUND GENERATION FOR XR MULTI-AGENT AUDIO
SYSTEMS IN THE META QUEST 3 USING THE UNITY GAME ENGINE

Pedro LUCAS(pedroplu@ifi.uio.no)1, Stefano FASCIANI(stefano.fasciani@imv.uio.no)2, and
Kyrre GLETTE(kyrrehg@ifi.uio.no)3

1, 3RITMO, Department of Informatics, University of Oslo, Oslo, Norway
2Department of Musicology, University of Oslo, Oslo, Norway

ABSTRACT

Extended Reality (XR) technologies, particularly head-
sets like the Meta Quest 3, are revolutionizing the field of
immersive sound and music applications by offering new
depths of user experience. As such, the Unity game engine
emerges as a preferred platform for building such audi-
tory environments. As part of its capabilities, Unity allows
the programming of sound generation through a low-level
digital signal processing API, which requires specialized
knowledge and significant effort for development. How-
ever, wrappers that integrate Unity with programming lan-
guages for sound synthesis can facilitate the implemen-
tation of this task. In this work, we focus on applica-
tions for the Meta Quest 3 involving multiple spatialized
audio sources; such applications can be framed as XR
multi-agent audio systems. We consider two wrappers,
CsoundUnity and Chunity, featuring Csound and ChucK
programming languages. We test and analyze these wrap-
pers in a minimal XR application, varying the number of
audio sources to measure the performance of both tools in
two device environments: the development machine and
the Meta Quest 3. We found that CsoundUnity performs
better in the headset, but Chunity performs better in the
development machine. We discuss the advantages, limita-
tions, and computational issues found on both wrappers,
as well as the criteria for choosing them to develop XR
multi-agent audio applications in Unity.

1. INTRODUCTION

Currently, Extended Reality (XR) technologies are emerg-
ing for different aspects of society as part of a novel
paradigm. In the field of sound and music, XR technolo-
gies offer new possibilities for musicians and audiences, in
terms of audio-visual and interactive experiences [1].

The development of XR applications requires platforms
capable of covering a range of features to achieve such
immersive experiences. Today, two platforms are broadly
used to develop these systems: Unreal 1 and Unity 2 . Both

1 https://www.unrealengine.com
2 https://unity.com/

Copyright: © 2024. This is an open-access article distributed under the terms

of the Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

are game engines widely used in the industry. Neverthe-
less, although they offer an extensive set of tools to develop
full XR experiences, their audio capabilities are still insuf-
ficient for specific XR sound and music systems [2]. In the
context of sound synthesis and analysis, Unreal provides
a DSP toolset called MetaSounds 3 . On the other hand,
Unity lacks a similar built-in module and requires third-
party add-ons. Despite this, Unity is still preferred due to
its high compatibility with the XR ecosystem [2].

An option to achieve sound generation in Unity is us-
ing audio programming languages interfaced through OSC
messages [3], which allows the use of widely known lan-
guages such as Max 8, Pure Data, Faust, Csound, ChucK,
or others that support OSC connections. However, it im-
plies playing the sound output outside the Unity appli-
cation, and if we want to have built-in sound generation
within the same system, we need to use wrappers that al-
low direct interfacing with the engine.

In this work, we focus on XR applications developed in
Unity for the recently released Meta Quest 3 XR headset.
As the Meta Quest 3 is based on the Android operative
system, the only wrappers that are currently supported for
this OS are CsoundUnity and Chunity interfacing Csound
and ChucK respectively.

Our research aims to investigate whether both wrappers
function correctly in Unity when we have multiple spatial-
ized instances of audio sources, which are playing patches
developed in these programming languages for an XR ap-
plication in the Meta Quest 3. This scenario often occurs in
XR multi-agent audio systems, when several audio sources
are present in the same environment. Our study also exam-
ines how these wrappers are integrated into the game en-
gine. Furthermore, we analyze their performance in terms
of scalability, i.e., their ability to handle an increasing or
decreasing number of audio sources, and identify any po-
tential issues in terms of resource utilization.

An additional contribution to this paper is a public
GitHub repository 4 that can be used as a base for the de-
velopment of XR audio systems, and where further testing
can be applied.

This paper is organized as follows: Section 2 refers to
multi-agent audio systems and the specific technologies
that we are using in this work, section 3 describes the

3 https://docs.unrealengine.com/5.0/en-US/
metasounds-in-unreal-engine/

4 https://github.com/pedro-lucas-bravo/sound_
engines

mailto:pedroplu@ifi.uio.no
mailto:stefano.fasciani@imv.uio.no
mailto:kyrrehg@ifi.uio.no
https://www.unrealengine.com
https://unity.com/
http://creativecommons.org/licenses/by/3.0/
https://docs.unrealengine.com/5.0/en-US/metasounds-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/metasounds-in-unreal-engine/
https://github.com/pedro-lucas-bravo/sound_engines
https://github.com/pedro-lucas-bravo/sound_engines


methodology followed in this study, section 4 presents the
results and discussion regarding the integration of these
wrappers in Unity and the experiments performed over
them, section 5 lists recommendations based on the ob-
tained results, and finally in section 6 we provide conclu-
sions and future work.

2. XR MULTI-AGENT AUDIO SYSTEMS

Multi-agent systems are systems that comprise multiple
elements called agents. An agent is a computer system
that operates within a specific environment and can act au-
tonomously to achieve its objectives [4]. In interactive sit-
uations, we can also include humans as additional agents
who interact with these artificial agents. On the other hand,
systems where sound and music characteristics are empha-
sized in virtual or physical-virtual immersive environments
can be framed in the field of Music in Extended Realities
(Musical XR), which is a multidisciplinary area of research
focused on XR technologies and experiences with diverse
types of projects such as virtual musical instruments, im-
mersive concert experiences, generative musical systems
and gamified musical environments [1].

The combination of these two approaches can lead to sys-
tems where multiple entities can participate autonomously
in sound and music activities or include external interac-
tion of human users as for human-swarm interactive mu-
sic systems [5] where collective behaviours emerge from
the multiple interactions among artificial and living agents.
Works as in [6] and [7] can be considered XR multi-agent
audio systems that require the integration of several tech-
nologies to achieve immersiveness. In some cases, com-
plex integrations are needed due to certain limitations; for
instance, in [7], where Unity is used, the sound is generated
externally in Max 8 and therefore requires additional effort
for system communication. However, generating sound in-
side the application would reduce the complexity of com-
munication, and allow us to use the built-in capabilities of
the XR devices for spatial audio to provide the sensation
of location for the multiple audio sources in an XR scene.

This paper contributes by providing criteria for including
sound generation in the latest XR technologies, which we
describe in the rest of this section. The focus of this paper
is on the programming languages suitable for developing
XR multi-agent audio systems using these technologies.

2.1 The Meta Quest 3

Meta Quest 3 5 is an XR (VR + MR) headset (shown in
Fig. 1) released by Meta in October 2023. Its techni-
cal specifications are: Quest system software, a 64-bit op-
erative system based on Android source code; processor
Qualcomm Snapdragon XR2 Gen 2; 8 GB LPDDR5 RAM
memory, graphics processor Adreno 740, and 128 GB or
512 GB storage (depending on the version).

Additionally, the device provides spatial audio capabil-
ities through its 2 built-in speakers, which, together with
the rest of its features, allows for building immersive sound
and music systems contained in one piece of hardware.

5 https://www.meta.com/quest/quest-3/

Figure 1: Meta Quest 3 XR headset.

Our objective is to utilize this device also for sound gen-
eration, and here we compare different options for its audio
programming through Unity.

2.2 The Unity Game Engine

Unity2 is a general-purpose game engine widely used for
building real-time systems across several platforms. For
our work, we consider the Android platform since the Meta
Quest 3 works under that OS.

In terms of sound generation, Unity offers access to the
audio buffer that runs in the audio thread through the
OnAudioFilterRead 6 function, where sound data is
processed independently from other parts of an application
in development. In that sense, it is possible to implement
complex audio processing or synthesis using the C# pro-
gramming language directly or building custom plug-ins in
C or C++ 7 . Such low-level programming can require con-
siderable development effort compared to other high-level
programming environments that are designed for interac-
tive sound and media.

For that reason, integrating Unity with a programming
language for procedural audio would accelerate the devel-
opment process and allow a faster exploration of sonic pos-
sibilities within the game engine.

2.3 Csound and ChucK for Unity: CsoundUnity and
Chunity

Csound and ChucK are programming languages designed
for digital sound synthesis and processing. Csound op-
erates as a compiler; hence, the code must be ready be-
forehand to be compiled and then run to produce sound
[8]. ChucK is an on-the-fly programming language, which

6 https://docs.unity3d.com/ScriptReference/
MonoBehaviour.OnAudioFilterRead.html

7 https://docs.unity3d.com/Manual/
AudioMixerNativeAudioPlugin.html

8 https://docs.unity3d.com/Manual/upm-ui.html
9 https://assetstore.unity.com/

https://www.meta.com/quest/quest-3/
https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnAudioFilterRead.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnAudioFilterRead.html
https://docs.unity3d.com/Manual/AudioMixerNativeAudioPlugin.html
https://docs.unity3d.com/Manual/AudioMixerNativeAudioPlugin.html
https://docs.unity3d.com/Manual/upm-ui.html
https://assetstore.unity.com/


Feature CsoundUnity Chunity
Unity project set up It uses the Unity Package Manager 8 and does

not become part of the main project files.
It is downloaded from the Unity Asset
Store 9 and becomes part of the main project
files.

Instantiation A Unity GameObject with an
AudioSource component attached needs
a script called CsoundUnity in order to
have an instance of Csound running. Several
instances can be created in the same scene.
The destruction of an instance is automatic
when the GameObject is destroyed.

A Unity GameObject with an
AudioSource component attached
needs a script called ChuckSubInstance.
Additionally, the scene needs to have one
GameObject with the scripts TheChuck
and ChuckMainInstance, then sev-
eral instances of ChuckSubInstance
can be used. The destruction of a
ChuckSubInstance is explicit when
its GameObject is destroyed.

Patch Integration It supports attaching files to the
CsoundUnity component as well as
direct Csound code in Unity C# scripts.

Direct ChucK code can be used through Unity
C# scripts. Files are supported, but they need
to be explicitly managed using the Chunity
API.

Parameters Access Csound control-rate variables and score
events can be manage through C# scripts in
Unity. Additionally, it is possible to use ed-
itor features with graphical controls in the
CsoundUnity component. It is not possi-
ble to communicate from Csound to Unity.

ChucK control-rate variables, as well as sig-
nal and broadcast events, can be managed
through C# scripts in Unity. It is possible
to communicate from ChucK to Unity using
these types of events.

Language support Both wrappers support all function generators (opcodes and UGens) of recent releases
of Csound and ChucK; however, it is not ensured that every function generator will
work correctly when using on different platforms.

Table 1: Features for CsoundUnity and Chunity wrappers.

means that, unlike Csound, users can write code while the
program is running. It uses a unique time-based concurrent
programming model [9].

Both programming languages are interfaced for Unity
through CsoundUnity 10 and Chunity 11 [10], respectively.
These wrappers implement the OnAudioFilterRead
function mentioned previously to achieve sound generation
in Unity.

The necessary common features for these wrappers rele-
vant for fulfilling sound generation in Unity are described
in Table 1. Additional features can be explored in their
corresponding websites10 11 .

In section 4.1, we return to these features and discuss ad-
ditional considerations after integrating these wrappers in
an XR Unity application.

3. METHODOLOGY

We initially searched for suitable wrappers that support
sound generation in Unity for Android applications, as the
Meta Quest 3 headset is based on that OS. We found that
Csound and ChucK are the current options that offer such
functionality through the wrappers CsoundUnity and Chu-
nity, respectively. Both programming languages and their
wrappers are actively maintained.

A Unity project for the Android platform was set up
and configured for the Meta Quest 3 device. Both wrap-

10 https://github.com/rorywalsh/CsoundUnity
11 https://chuck.cs.princeton.edu/chunity/

pers were added to this project. Then, we implemented a
simple scene in Pass-through mode (i.e. mixed reality or
physical-virtual environment) as shown in Fig. 2, consist-
ing of coloured spheres rotating around a cube that can be
moved by the user using any hand. Every sphere has an au-
dio source attached, which is an instance of a continuous
sound built through one of the wrappers. A sphere can be
spawned in a random location around the perimeter of the
cube and adopt a random colour. With this simple scene,
we wanted to assess that spatial audio works for both wrap-
pers by hearing the output as we moved in the scene. A
video showing this scene in action was published 12 . This
video was captured using a streaming service for Meta
Quest 3 13 with the limitation of having monaural audio.

We used the scene to perform a series of experiments
when the number of sources was varied to collect perfor-
mance measurements. These experiments were executed
based on the following scenarios:

1. Scalability: In this scenario, we start the scene with-
out sound sources, and then we add one by one. With
every increase, we take several measurements of
the digital signal processing (DSP) time that Unity
spends on generating the sound in its audio buffer.
Additionally, we measure the memory that Unity
uses exclusively for audio. Both parameters, DSP
time and audio memory, are frequently sampled dur-

12 https://youtu.be/OtpDR9MnnbI
13 https://www.oculus.com/casting

https://github.com/rorywalsh/CsoundUnity
https://chuck.cs.princeton.edu/chunity/
https://youtu.be/OtpDR9MnnbI
https://www.oculus.com/casting


Figure 2: Screenshot for the mixed reality application
taken in the Meta Quest 3. The audio sources are rep-
resented by coloured spheres orbiting around an interac-
tive cube that can be moved using any user’s hand. In this
scene, 29 objects were instantiated, but some are not visi-
ble due to the field of view limit.

ing a period of time before adding a new source.
While this experiment is running, we listen to the
output to identify the number of sources that pro-
duce audio artifacts (e.g. glitches), indicating that
sound processing is taking longer than allowed for
real-time.

2. Resource Leak Detection: For this case, we start
again without any sources, then we take several mea-
surements for DSP time and audio memory in a de-
termined period; next we add one audio source that
will be playing for some time, and then we remove
this source and take measurements again without
any sources. We repeat this trial several times. The
goal is to identify whether the DSP time and the au-
dio memory are the same as we increase the num-
ber of trials. The increase in any of both parameters
would indicate resource leak problems.

To collect these measurements, we implemented a cus-
tom script using the ProfilerRecorder 14 API from
Unity to access the audio memory. For the DSP time,
we measured the execution time for the code inside the
OnAudioFilterRead function.

We applied both experiment scenarios to the following
two devices:

1. The Development Machine: This is the environ-
ment where the XR application is developed. The
experiments are performed over the application run-
ning in the Unity editor. The machine used was a
Windows 11, 64-bit, powered by a 12th Gen Intel(R)
Core(TM) i7-12700H 2.30 GHz, with RAM 16 GB,
and a laptop graphics processor NVIDIA GeForce
RTX 3050 Ti.

2. The Meta Quest 3: A XR headset that supports
virtual and mixed reality applications. The device
used was the version with 128 GB of storage. Its
specifications are described in section 2.1.

14 https://docs.unity3d.com/ScriptReference/
Unity.Profiling.ProfilerRecorder.html

For the first scenario, we considered imple-
menting two patches: a sine oscillator, and
a simple synthesizer having the signal chain
saw_oscillator → low_pass_filter →
reverb → amplitude_envelope → gain. The
second scenario used only the sine oscillator patch.

An audio source that uses the sine oscillator plays con-
tinuously, and a random frequency is assigned when it is
instantiated in the scene. For the simple synthesizer, the
envelope plays one second every 2 seconds, and parame-
ters for the components in the chain are changed randomly
on every play. Implementation details can be explored in
our public repository4 .

For all the experiments, we set the DSP buffer size in
Unity as Best Performance, meaning a buffer size of
1024 samples. We used the default audio sample rate in
Unity (48000 Hz), thus the buffering latency of real-time
audio is 21.33 ms. The specific settings for every experi-
ment, as well as results and interpretations, are presented
in section 4.2.

4. RESULTS AND DISCUSSION

4.1 Integration with Unity

After the testing performed, we can confirm that both
wrappers are operational on the Meta Quest 3 for the de-
velopment of XR audio applications. However, there are
differences in the development process that might influ-
ence the decision to use one or both of them. We discuss
some of these differences as follows:

• Learning the languages: Csound and ChucK use
very different syntax. While ChucK utilizes a more
traditional syntax similar to programming languages
like Java, JavaScript, and C#, making it rela-
tively easy to learn, Csound has a unique syntax that
may require some effort to learn, especially for those
who are inexperienced. However, the effort is worth
it if we want to take advantage of the many function
generators offered by Csound, which might not be
available in ChucK.

• Implementing the patches: The complexity de-
pends on what a developer wants to achieve and
what the languages offer. For instance, a simple sine
wave could be relatively straightforward in both lan-
guages; however, other implementations, such as an
amplitude envelope, can differ depending on the lan-
guage paradigm. In our case, we implemented such
an envelope for a simple synthesizer. Differences
can be identified in the Unity scripts for the syn-
thesizer behaviour 15 16 . Additionally, Csound of-
fers more built-in function generators than ChucK;
nevertheless, ChucK allows to create custom plug-

15 https://github.com/pedro-lucas-bravo/sound_
engines/blob/main/sound_engines_unity_project/
Assets/Scripts/CsoundSimpleSynthe.cs

16 https://github.com/pedro-lucas-bravo/sound_
engines/blob/main/sound_engines_unity_project/
Assets/Scripts/ChuckSimpleSynthe.cs

https://docs.unity3d.com/ScriptReference/Unity.Profiling.ProfilerRecorder.html
https://docs.unity3d.com/ScriptReference/Unity.Profiling.ProfilerRecorder.html
https://github.com/pedro-lucas-bravo/sound_engines/blob/main/sound_engines_unity_project/Assets/Scripts/CsoundSimpleSynthe.cs
https://github.com/pedro-lucas-bravo/sound_engines/blob/main/sound_engines_unity_project/Assets/Scripts/CsoundSimpleSynthe.cs
https://github.com/pedro-lucas-bravo/sound_engines/blob/main/sound_engines_unity_project/Assets/Scripts/CsoundSimpleSynthe.cs
https://github.com/pedro-lucas-bravo/sound_engines/blob/main/sound_engines_unity_project/Assets/Scripts/ChuckSimpleSynthe.cs
https://github.com/pedro-lucas-bravo/sound_engines/blob/main/sound_engines_unity_project/Assets/Scripts/ChuckSimpleSynthe.cs
https://github.com/pedro-lucas-bravo/sound_engines/blob/main/sound_engines_unity_project/Assets/Scripts/ChuckSimpleSynthe.cs


ins and expand the possibilities for signal processing
17 .

• Setting up a Unity project: In terms of project
organization and file optimization, CsoundUnity has
an advantage over Chunity, since it can be included
in a Unity project through the Unity Package Man-
ager8 allowing its access locally in the development
machine and saving space for a version control sys-
tem (e.g. git) since the package is downloaded every
time the project is cloned. As Chunity files lie within
the project itself, they must be tracked by the version
control system.

• Developing multi-agent audio systems: Instan-
tiation and destruction of audio sources occur in a
multi-agent audio system and are carried out accord-
ing to the application’s needs. We would expect
to create an audio agent with a particular behaviour
that is independent of others and not implement ad-
ditional considerations to ensure that independence.
In the case of CsoundUnity, this independence is en-
sured for every new instance created; however, Chu-
nity needs an extra effort to achieve it; that is, vari-
ables in a ChucK script must be different for every
instance, thus if we are using the same patch, we
have to rename the variables to not interfere among
sources, which requires additional code to automa-
tize this process. Due to this issue and in comparison
to Chunity, CsoundUnity facilitates the development
of a multi-agent audio system.

• The system in action: Perceptually, there is no dif-
ference between the output generated by the wrap-
pers, which means that any of them can be used
for the intended purpose. Moreover, there were
no crashes or artifacts observed when a reasonable
number of sources were used in the experiments.
However, there can be differences in performance,
as explained in the next section.

Furthermore, it is possible to include in one project both
wrappers at the same time, which increases the options for
sound generation in a Meta Quest 3 application.

4.2 Computational Performance

We accomplished the experiment scenarios specified in
section 3 on the simple scene from the mixed reality appli-
cation mentioned in the same section. We initially used the
Unity Profiler 18 to look for noticeable performance issues
like frame-rate drops or important memory leaks. We did
not find such issues at that stage for both wrappers. Then,
we executed the experiment scenarios with the following
results.

4.2.1 Scalability

For the scalability scenario, we added up to 30 audio
sources for the sine oscillator and the simple synthesizer

17 https://chuck.cs.princeton.edu/extend/
18 https://docs.unity3d.com/Manual/Profiler.html

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Audio Sources

0

5

10

15

20

25

DS
P 

Ti
m

e 
(m

s)

Buffer Latency = 21.33 ms

Artifacts perceived around 17 ms

Buffer Latency = 21.33 ms

Artifacts perceived around 17 ms

SINE - Unity Editor DSP Time (ms)
CsoundUnity
Chunity

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Audio Sources

1.75

1.80

1.85

1.90

1.95

Au
di

o 
M

em
or

y 
(M

B)

SINE - Unity Editor Memory (MB)

CsoundUnity
Chunity

(b)

Figure 3: Results for the Sine Oscillator patch tested in the
Unity Editor (development machine) (a) DSP Time. (b)
Audio Memory.

patch. For both patches we started from zero sources, then
we took measurements every 0.2 seconds until having 30
samples; next, we rested for 1 second before adding a new
audio source, and so on. We performed this procedure
for the Unity Editor (development machine) and the Meta
Quest 3. Fig. 3 shows the results for the Unity Editor and
Fig. 4 for the Meta Quest 3 regarding the DSP time and
the audio memory for the sine oscillator patch. The charts
depict the average value and standard deviation for each
number of audio sources. Note that every chart illustrates
the buffer latency (21.33 ms), although we experimentally
realized that glitches were perceived around 17 ms since
Unity needs to use additional computational time for inter-
nal processes.

The sine oscillator patch: Note that, for the Unity Editor
in Fig. 3, Chunity invests less DSP time than CsoundUnity;
however, Chunity consumes more audio memory, although
this amount is relatively low (less than 2 MB) for the over-
all system memory. Considering the threshold for artifacts
perception of 17 ms, we found that glitches start to appear
for CsoundUnity when there are around 25 sources, and
for Chunity when we have 37. Although these results may
vary according to the development machine, the important
aspect is that Chunity performs better than CsoundUnity
in the Unity Editor under the Windows implementation
of ChucK and Csound. Memory usage can be negligible
in this case.

For the Meta Quest 3 in Fig. 4, the results are differ-
ent from the Unity Editor since we have less variability in
the data, which is expected because the editor deals with
additional processes. Moreover, the most important differ-
ence is that CsoundUnity takes less DSP time than Chunity,
which is the opposite tendency regarding the Unity Editor.
For the audio memory, we still have a negligible result un-
der 2 MB. Therefore CsoundUnity performs better than
Chunity in the Meta Quest 3 under the Android imple-

https://chuck.cs.princeton.edu/extend/
https://docs.unity3d.com/Manual/Profiler.html


0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Audio Sources

0

5

10

15

20

25

DS
P 

Ti
m

e 
(m

s)

Buffer Latency = 21.33 ms

Artifacts perceived around 17 ms

Buffer Latency = 21.33 ms

Artifacts perceived around 17 ms

SINE - Meta Quest 3 DSP Time (ms)
CsoundUnity
Chunity

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Audio Sources

1.4

1.6

1.8

Au
di

o 
M

em
or

y 
(M

B)

SINE - Meta Quest 3 Memory (MB)

CsoundUnity
Chunity

(b)

Figure 4: Results for the Sine Oscillator patch tested in the
Meta Quest 3. (a) DSP Time. (b) Audio Memory.

mentation of ChucK and Csound. We start to perceive
glitches for CsoundUnity when we have 39 sources, and
for Chunity when there are 22.

The simple synthesizer patch: A more realistic example
was tested considering the simple synthesizer mentioned in
section 3. We show the results for the Unity Editor and the
Meta Quest 3 in Fig. 5 and Fig. 6, respectively. In this
case, for both devices, the audio memory usage is simi-
lar to the sine oscillator patch and thus is not necessary to
show these results; however, we can notice important dif-
ferences in the DSP time. These results support the previ-
ous statements regarding which wrapper is better accord-
ing to the device, although we notice that Chunity takes
less DSP time for this patch than the sine oscillator in such
a way that its performance is similar in the Meta Quest 3
until 18 sources in Fig. 6. We speculate that Chunity per-
forms better in this case due to how ChucK manages the
amplitude envelope in comparison to Csound and due to
the resting period between the envelope execution since it
is played for one second every 2 seconds on each audio
source. Nevertheless, we cannot ensure a fair comparison
for this patch since we do not know details about the in-
ternal implementation of the function generators for each
programming language; hence, results might change if us-
ing different generators (e.g. using a moogladder low
pass filter instead of a lowres in Csound).

4.2.2 Resource Leak Detection

We performed the second scenario described in section 3
to detect resource leaks in DSP time and audio memory
for both devices using the sine oscillator patch. We per-
form 100 trials for each device. Fig. 7 and Fig. 8 show the
results for the Unity Editor and the Meta Quest 3, respec-
tively. Ideally, we would expect zero DSP time process
and a constant memory that is not invested in the audio
generation after several adding-removing sources actions;
however, we detect the following issues:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Audio Sources

0

5

10

15

20

25

DS
P 

Ti
m

e 
(m

s)

Buffer Latency = 21.33 ms

Artifacts perceived around 17 ms

Buffer Latency = 21.33 ms

Artifacts perceived around 17 ms

SYNTH - Unity Editor DSP Time (ms)
CsoundUnity
Chunity

Figure 5: DSP time results for the Simple Synthesizer patch
tested in the Unity Editor (development machine).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of Audio Sources

0

5

10

15

20

25

30

DS
P 

Ti
m

e 
(m

s) Buffer Latency = 21.33 ms

Artifacts perceived around 17 ms

Buffer Latency = 21.33 ms

Artifacts perceived around 17 ms

SYNTH - Meta Quest 3 DSP Time (ms)
CsoundUnity
Chunity

Figure 6: DSP time results for the Simple Synthesizer patch
tested in the Meta Quest 3.

Resource Leak for DSP Time: In both devices, we
verify that CsoundUnity unity is not processing anything
during the several trials in both devices; that is, it por-
trays the expected behaviour. Nevertheless, Chunity starts
with a small DSP time even though we have not started
any adding-removing process, and then this time increases
linearly as we progress in the trials for the two platforms.
After the 100 trials, Chunity wasted close to 1 ms in re-
sources for the Unity Editor, as shown in Fig. 7a, while for
the Meta Quest 3 in Fig. 8a, this value is close to 3 ms,
although the variability is lower than in the editor. We hy-
pothesize that the reason behind this issue is that Chunity
would manage a centralized execution of ChucK scripts
since every variable must be different per instance, and
when we stop or remove an audio source, the code is still
running even though the sound generation is not happening
anymore. Moreover, Chunity needs the TheChuck and
ChuckMainInstance components as pre-requisites to
have multiple audio sources in one scene, which may cause
the initial processing time when there are no sources yet.

Memory Leak: In the case of audio memory, we iden-
tify an initial increment for Chunity in both devices as
shown in Fig. 7b and Fig. 8b. For the Unity Editor, Chu-
nity reaches a value close to 1.9 MB that is constant along
the trials, while for the Meta Quest 3, this value is slightly
higher than 1.8 MB. In that sense, Chunity fulfils the ex-
pectation of constant memory. However, CsoundUnity de-
notes a linear increment of memory that overcomes Chu-
nity in the editor as shown in Fig. 7b; that is, it passes
1.9 MB around the trial 70. For the Meta Quest 3, the au-
dio memory for CsoundUnity is also increasing but, after
the 100 trials, is still below the 1.8 MB reached by Chu-



0 10 20 30 40 50 60 70 80 90 100
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

1.2

DS
P 

Ti
m

e 
(m

s)
Resource Leak - Unity Editor DSP Time (ms)

CsoundUnity
Chunity

(a)

0 10 20 30 40 50 60 70 80 90 100
Number of Trials

1.75

1.80

1.85

1.90

1.95

Au
di

o 
M

em
or

y 
(M

B)

Memory Leak - Unity Editor Memory (MB)

CsoundUnity
Chunity

(b)

Figure 7: Resource Leak Detection in the Unity Editor (de-
velopment machine) (a) DSP Time. (b) Audio Memory.

nity. We think that, although CsoundUnity is not process-
ing audio anymore, the implementation is not freeing all
the memory and, therefore, leading to this leak. While, for
Chunity, although it is still processing and spending un-
necessary DSP time, the audio memory does not increase
since the audio generation is stopped, although it could be
using the main memory to keep track of the hanging scripts
while adding and removing sources.

5. RECOMMENDATIONS

Based on the results and their interpretations provided in
the previous section, we list the following recommenda-
tions for developing multi-agent audio systems in the Meta
Quest 3.

• Develop for the target platform: For our case, the
target platform is the Meta Quest 3. If choosing a
wrapper does not depend on factors other than per-
formance, we can go for CsoundUnity according to
our results; however, other considerations may influ-
ence this decision depending on the system, time re-
strictions, and the developer’s skills. The important
aspect is that the Unity Editor should not be used
as an accurate reference for how an XR system per-
forms.

• Detection of issues through profiling tools: For
the Meta Quest 3 we can use the Unity Profiler18

and the Meta Quest Developer Hub 19 as debugging
tools for quick identification of performance issues.
Custom profiling tools can be implemented as in this
work. Use these options to improve the application’s
performance if critical issues arise.

• Estimate the maximum number of agents: As
the results show, both wrappers present resource leak

19 https://developer.oculus.com/
meta-quest-developer-hub/

0 10 20 30 40 50 60 70 80 90 100
Number of Trials

0.0

0.5

1.0

1.5

2.0

2.5

3.0

DS
P 

Ti
m

e 
(m

s)

Resource Leak - Meta Quest 3 DSP Time (ms)
CsoundUnity
Chunity

(a)

0 10 20 30 40 50 60 70 80 90 100
Number of Trials

1.4

1.6

1.8

Au
di

o 
M

em
or

y 
(M

B)

Memory Leak - Meta Quest 3 Memory (MB)

CsoundUnity
Chunity

(b)

Figure 8: Resource Leak Detection in the Meta Quest 3.
(a) DSP Time. (b) Audio Memory.

issues. A way to work around this problem, and as
a good practice in real-time systems, is to use object
pools and just active or deactivate objects. It can be
useful not only for audio but for other components
when complete agents are pooled.

• Identify additional audio processes: An XR sys-
tem may use additional audio objects that increase
the DSP time in Unity (e.g. mixer, plugins, etc). Be-
ing aware of these additional processes, which can
be quantified through profiling, is important to avoid
overloading the audio buffer.

• Think in multi-platform if needed : Unity is a
multi-platform game engine, so the same applica-
tion may be potentially built for different devices
and operative systems. As we have shown in the re-
sults, performance can vary depending on the plat-
form (Windows in the editor and Android in the
Meta Quest 3). If the development requires target-
ing several platforms, we need to choose the wrapper
that best fits all of them, and still, the ideal case is to
focus on one target platform, as pointed out before.

• Optimization beyond Unity :Csound and ChucK
have particular programming paradigms and their
own ways of optimization. An example is the close
performance for both in the simple synthesizer ex-
periment, as shown previously in the results. Use
the power of any of those languages as much as pos-
sible to achieve highly optimized sound generation
that helps to reach your performance goals for an
XR application in Unity.

• Explore choices according to the system : We
might encounter various challenges while develop-
ing a system. Depending on the particular require-
ments, we may need to change our decision regard-
ing which engine to use. For instance, if you are

https://developer.oculus.com/meta-quest-developer-hub/
https://developer.oculus.com/meta-quest-developer-hub/


more fluent in ChucK or Csound, and performance
is not critical to a certain extent, then you can use any
or even both languages. However, you should con-
sider the earlier recommendations and balance your
choices based on your skills.

6. CONCLUSIONS

We explored Csound and ChucK as mediums for sound
generation in Unity, focused on multi-agent audio sys-
tems running in the Meta Quest 3 through the wrappers
CsoundUnity and Chunity. We developed a simple mixed
reality scene to test both wrappers and discussed their in-
tegration into Unity. The same scene was used for several
experiments to evaluate their computational performance
regarding DSP time and audio memory. We confirmed that
both wrappers are effective with spatialization in the Meta
Quest 3.

In terms of integration with Unity, CsoundUnity ensures
independence for audio sources that implement the same
behaviour, while Chunity needs explicit identification of
every source, which requires an extra development effort.
Additionally, both wrappers can be used for the same ap-
plication.

In terms of computational performance, results regard-
ing the DSP time tell us that Chunity performs better than
CsoundUnity in the Unity Editor for a Windows machine,
but Csound is more efficient in the Meta Quest 3 (based
on Android). When using any of the wrappers, the audio
memory is relatively low (less than 2 MB) and thus negli-
gible to have a considerable impact. Despite these results,
patches might be more or less efficient depending on how
they are implemented and how efficient the function gen-
erators are in every language, which might influence in the
results.

We discovered resource leak issues for both wrap-
pers. Chunity consumes DSP time when several adding-
removing actions happen, while CsoundUnity does not free
all memory under the same conditions and Chunity does;
however, CsoundUnity does not consume DSP Time. An
object pool can be used to mitigate these issues.

Based on these results, we suggested the recommenda-
tions listed in the previous section that can be used to select
the most suitable wrapper (or both) for an XR application.

For future work, we plan to assess these wrappers for
other platforms supported by Unity, such as general An-
droid devices, iOS devices, PCs (Mac, Linux, Windows),
and web browsers. In addition, we aim to enable an XR
application to switch between the default spatial audio sys-
tem for the Meta Quest 3 and an external multi-speaker
system. To achieve this, we need to investigate how to use
Csound and ChucK patches in external sound engines that
support ambisonic capabilities.

Acknowledgments

This work was partially supported by the Research Coun-
cil of Norway through its Centres of Excellence scheme,
project number 262762.

7. REFERENCES

[1] L. Turchet, R. Hamilton, and A. Camci, “Music
in Extended Realities,” IEEE Access, vol. 9, pp.
15 810–15 832, 2021. [Online]. Available: https:
//ieeexplore.ieee.org/document/9328440/

[2] L. Turchet, “Musical Metaverse: vision, oppor-
tunities, and challenges,” Personal and Ubiqui-
tous Computing, vol. 27, no. 5, pp. 1811–
1827, Oct. 2023. [Online]. Available: https:
//link.springer.com/10.1007/s00779-023-01708-1

[3] D. Johnson, D. Damian, and G. Tzanetakis, “OSC-
XR: A Toolkit for Extended Reality Immersive
Music Interfaces,” in 16th Sound and Music Com-
puting Conference, Málaga, Spain, May 2019, iSBN:
9788409085187 Publisher: Zenodo. [Online]. Avail-
able: https://zenodo.org/record/3249318

[4] M. Wooldridge, An Introduction to MultiAgent Sys-
tems, 2nd ed. Wiley Publishing, 2009.

[5] P. Lucas and K. Glette, “Human-Swarm In-
teractive Music Systems: Design, Algorithms,
Technologies, and Evaluation,” Proceedings of
the 16th International Symposium on Com-
puter Music Multidisciplinary Research, Nov.
2023, publisher: Zenodo. [Online]. Available:
https://zenodo.org/doi/10.5281/zenodo.10113080

[6] A. Bargum, O. I. Kristjansson, S. Rostami Mosen,
and S. Serafin, “Spatial Audio Mixing in Vir-
tual Reality,” in 19th Sound and Music Com-
puting Conference, Saint-Étienne, France, Jun.
2022, publisher: Zenodo. [Online]. Available:
https://zenodo.org/record/6572821

[7] P. P. Lucas and S. Fasciani, “A Human-Agents
Music Performance System in an Extended Reality
Environment,” in Proceedings of the International
Conference on New Interfaces for Musical Expression,
M. Ortiz and A. Marquez-Borbon, Eds., May
2023, pp. 10–20, place: Mexico City, Mexico.
[Online]. Available: http://nime.org/proceedings/2023/
nime2023_2.pdf

[8] V. Lazzarini, O. Brandtsegg, J. ffitch, J. Heintz, I. Mc-
Curdy, and S. Yi, Csound: A Sound and Music Com-
puting System, 1st ed. Cham: Springer International
Publishing : Imprint: Springer, 2016.

[9] G. Wang, P. R. Cook, and S. Salazar, “ChucK:
A Strongly Timed Computer Music Language,”
Computer Music Journal, vol. 39, no. 4,
pp. 10–29, Dec. 2015. [Online]. Available:
https://direct.mit.edu/comj/article/39/4/10/106778/
ChucK-A-Strongly-Timed-Computer-Music-Language

[10] J. Atherton and G. Wang, “Chunity: Integrated
Audiovisual Programming in Unity,” in Proceedings
of the International Conference on New Interfaces for
Musical Expression, T. M. Luke Dahl, Douglas Bow-
man, Ed. Blacksburg, Virginia, USA: Virginia Tech,
Jun. 2018, pp. 102–107, iSSN: 2220-4806. [On-
line]. Available: http://www.nime.org/proceedings/
2018/nime2018_paper0024.pdf

https://ieeexplore.ieee.org/document/9328440/
https://ieeexplore.ieee.org/document/9328440/
https://link.springer.com/10.1007/s00779-023-01708-1
https://link.springer.com/10.1007/s00779-023-01708-1
https://zenodo.org/record/3249318
https://zenodo.org/doi/10.5281/zenodo.10113080
https://zenodo.org/record/6572821
http://nime.org/proceedings/2023/nime2023_2.pdf
http://nime.org/proceedings/2023/nime2023_2.pdf
https://direct.mit.edu/comj/article/39/4/10/106778/ChucK-A-Strongly-Timed-Computer-Music-Language
https://direct.mit.edu/comj/article/39/4/10/106778/ChucK-A-Strongly-Timed-Computer-Music-Language
http://www.nime.org/proceedings/2018/nime2018_paper0024.pdf
http://www.nime.org/proceedings/2018/nime2018_paper0024.pdf

	 1. Introduction
	 2. XR Multi-Agent Audio Systems
	2.1 The Meta Quest 3
	2.2 The Unity Game Engine
	2.3 Csound and ChucK for Unity: CsoundUnity and Chunity

	 3. Methodology
	 4. Results and Discussion
	4.1 Integration with Unity
	4.2 Computational Performance
	4.2.1 Scalability
	4.2.2 Resource Leak Detection


	 5. Recommendations
	 6. Conclusions
	 7. References

