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ABSTRACT

This paper presents BiSAID, a dataset for exploring bipo-
lar semantic adjectives in non-speech auditory cues, in-
cluding earcons and auditory icons, i.e., sounds used to
signify specific events or relay information in auditory in-
terfaces from recorded or synthetic sources, respectively.
In total, our dataset includes 599 non-speech auditory cues
with different semantic labels, covering temperature (cold
vs. warm), brightness (bright vs. dark), sharpness (sharp
vs. dull), shape (curved vs. flat), and accuracy (correct
vs. incorrect). Furthermore, we advance a preliminary
analysis of brightness and accuracy earcon pairs from the
BiSAID dataset to infer idiosyncratic sonic structures of
each semantic earcon label from 66 instantaneous low- and
mid-level descriptors, covering temporal, spectral, rhyth-
mic, and tonal descriptors. Ultimately, we aim to unveil
the relationship between sonic parameters behind earcon
design, thus systematizing their structural foundations and
shedding light on the metaphorical semantic nature of their
description. This exploration revealed that spectral charac-
teristics (e.g. spectral flux and spectral complexity) serve
as the most relevant acoustic correlates in differentiating
earcons on the dimensions of brightness and accuracy, re-
spectively. The methodology holds great promise for sys-
tematizing earcon design and generating hypotheses for in-
depth perceptual studies.

1. INTRODUCTION

In sound-related fields, the formal discourse by profes-
sional sound designers and musicians often use sensory
metaphors as a practical language to describe the attributes
of sound. They draw from a myriad fields, such as vi-
sual and haptic, encompassing semantic adjectives such as
high, low, deep, warm, cold, bright, dark, rough, smooth,
big, small, soft, edgy, round, flat, sharp, dull, transpar-
ent, translucent, shimmering, sweet, and colorful. These
metaphors play a crucial role in shaping the meaning of
sonic objects and narratives through their crossmodal rela-
tionships. For instance, in film sound design, weapons like
swords, knives, or daggers are consistently accompanied
by high-pitched, sharp sounds, aligning with their seman-
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tic characteristics, even if they do not precisely mimic the
physical reality [1].

The discourse on the communicative potential of sound
has recently gained traction in the field of auditory dis-
plays, namely on what concerns non-verbal auditory cues,
which can be categorized into two primary types: audi-
tory icons and earcons. Auditory icons consist of recorded
non-speech sounds that can be recognized from real-world
experiences. For instance, the sound of crumpling paper
playing when deleting a digital document [2]. Earcons,
on the other hand, are “audio messages used in the user-
computer interface to provide information and feedback to
the user about computer entities” [3]. Onboard an aircraft,
short, structured musical messages can be used as alarms
when a passenger requests assistance.

Auditory icons and earcons are instrumental in sound de-
sign across mediums like film, games, and human-machine
interfaces, effectively conveying specific information to
users. In gaming scenarios, for instance, they play a vi-
tal role in alerting players to significant events [3–6]. To
fully harness the power of non-speech auditory cues, and
most notably the synthetically-designed earcons resulting
from a greater domain of creative freedom and sonic sig-
nifiers, designers must align these cues with their intended
meanings. Despite a common understanding and shared
recognition of the structural attributes inherent to each se-
mantic adjective among designers across different cultures,
there are no established guidelines or systematic analyses
of their component structures.

Understanding the sonic attributes inherent to the
earcon’s design can shed light on human perception, psy-
chology, and communication science by means of cross-
modal metaphors, but also in guiding the design principles
for optimal communication with sound. For example, the
problem of creating an alert sound to signal errors must
have a sonic identity that intuitively communicates the in-
formation to users.

Research into the structural attributes of semantic adjec-
tives has predominantly utilized music perception meth-
ods, focusing on identifying significant attributes through
perceptual listening tests. Investigations into the rela-
tion between sonic descriptors and the perception of mu-
sical instrument sounds have been conducted by various
researchers. Disley and Howard [7] explored the tim-
bres of pipe organs, while Bernays and Traube [8] delved
into piano tones. Rosi et al. [9] analyzed the meaning
of metaphorical sound attributes based on interviews with
sound professionals. These studies, despite their differ-

1

mailto:up202001544@fe.up.pt
https://orcid.org/0009-0000-0214-4436
mailto:asapinto@fe.up.pt
https://orcid.org/0000-0003-1629-8385
mailto:gba@fe.up.pt
https://orcid.org/0000-0003-3884-2687
http://creativecommons.org/licenses/by/3.0/


ences, identified common descriptors such as “bright”,
“warm”, and “round”, highlighting consistent perception
signifiers of musical timbres. A different line of inquiry
has examined the impact of audio descriptors on semantic
annotations. Studies have shown that the brightness of a
sound is associated with its spectral centroid, attack time,
and timbral sharpness. Following this approach, Ilkowska
and Miskiewicz [10] delved into the effects of spectral
variations on the perception of sound. By introducing ar-
tificial formants to both noise and music spectra and ap-
plying psychophysical scaling to assess their relationship,
their research demonstrates that vowel frequency plays a
pivotal role in altering perceptions of sharpness and bright-
ness. This influence surpasses that of vowel bandwidth and
amplitude, underscoring the critical impact of frequency
on the auditory perception of semantic qualities.

Concerning the analysis of earcon-specific attributes,
there is a lack of literature on assessing their intrinsic struc-
ture. To this end, we present an empirical analysis of bipo-
lar 1 semantic adjectives in earcon design, as a first step
towards an in-depth (perceptual) study to unveil the foun-
dational sonic attribute of semantic adjectives. In detail,
we infer common attributes from a newly complied dataset
of earcons from weak user-driven tags, named BiSAID. It
includes 599 sound samples for bipolar semantic adjectives
covering 10 metaphors in different domains, e.g., temper-
ature (cold vs. warm), and brightness (bright vs. dark).
Samples were collected from the crowd-sourced Freesound
platform. Samples were annotated with 66 instantaneous
and global audio descriptors capturing spectral, temporal,
spectrotemporal, and energetic information.

To evaluate the quality of compiled data and initiate the
exploration of the sonic attributes of earcon design, we em-
ploy statistical and machine learning methods to deduce
instantaneous earcon descriptors that effectively differenti-
ate between bipolar adjectives within specific metaphorical
domains. Our hypothesis posits that characteristic sonic di-
mensions, such as pitch, onset density, and spectral band-
width, among others, are inherent to the sonic structure of
earcons corresponding to various metaphors.

We present two detailed case studies. Firstly, we exam-
ine which descriptors in the BiSAID dataset are most per-
tinent for distinguishing between bipolar adjectives such
as bright versus dark, and correct versus incorrect. The
former represents a well-established baseline case, exten-
sively discussed in existing literature, which should unveil
the adequacy of our data in aligning with perceptual re-
sults and enlighten the limitations of the current sound col-
lection. The latter introduces a novel metaphor that has
received limited attention thus far. Treating each adjective
as a distinct sample or class, we statistically infer signif-
icant differences between the two sample sets and deter-
mine their relative importance through machine learning
models.

The reminder of the paper is structured as follows. Sec-
tion 2 describes the BiSAID dataset structure and contents.

1 This type of methodology on sound perception was first introduced
by von Bismarck [11], based on the semantic differential technique, pio-
neered by Osgood [12], a method for measuring the meaning of concepts
by eliciting ratings on bipolar adjective scales.

Table 1. Dataset composition: earcons, semantic labels,
and categories.

Dimension Adjectives Category #
Earcon Icon Other Exc.a

Accuracy correct 125 8 19 248 400
incorrect 48 13 8 44 113

Brightness bright 49 0 0 236 285
dark 47 1 5 202 255

Shape curved 43 0 30 327 400
flat 27 0 10 308 345

Sharpness sharp 46 54 69 231 400
dull 14 49 32 202 297

Temperature warm 55 0 59 286 400
cold 0 20 82 298 400

454 145 314 2382 3295
a Excluded due to erroneous tag.

Section 3.1 provides the description of two case studies on
earcon semantic-driven descriptors for brightness (bright
versus dark) and accuracy (correct versus incorrect). Sec-
tion 4 presents preliminary results of the earcon data anal-
ysis and discusses the potential and limitation of our data.
Finally, Section 5 presents the conclusions of our work and
directions for future research.

2. BISAID: A DATASET OF EARCONS AND
AUDITORY ICONS WITH SEMANTIC

DIFFERENTIAL TAGGING AND ACOUSTIC
DESCRIPTION

The BiSAID dataset has been meticulously classified and
tagged to encompass the following semantic dimensions:
temperature (cold vs. warm), brightness (bright vs. dark),
sharpness (sharp vs. dull), shape (curved vs. flat), and ac-
curacy (correct vs. incorrect). Each data point is annotated
with semantic differential tags and described through a
rich set of acoustic and psychoacoustic descriptors. These
earcons and tags are summarized in Table 1, while the de-
scriptors, comprising both global and instantaneous types,
are detailed in the remaining of the current section.

The earcons within BiSAID were curated from
Freesound 2 [13]. We aimed to collect up to 400
sounds for each tag, classifying them into three categories:
Earcons, which are short musical sounds designed to
convey specific information; Auditory icons, brief sounds
that mimic familiar non-speech sounds from everyday life;
and Other, which includes sounds relevant to the tag but
not categorized as earcons or auditory icons. In the data
cleansing phase, 2382 sounds were excluded due to inac-
curate tagging. This step involved listening to each sound
to assess if the tags accurately reflected the content, in
terms of perception of sound. Despite the crowd-sourced
nature of Freesound’s tagging system and the resulting
variability [14], the objective was to ensure the integrity
of tags rather than to standardize their meanings. For
example, a sound (id:574006) tagged as “correct” that

2 https://freesound.org, last accessed on 27 February, 2024.
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was unrelated to the concept of correctness was removed,
as well as a sound (id:195219) tagged as “bright” which
descriptors a male voice singing Monty Python’s “Always
Look on the Bright Side of Life”—a clear mismatch with
the expected perception of brightness. The final dataset
includes 3295 sounds, with 599 specifically identified as
earcons or auditory icons.

For the computational analysis of earcons in the BiSAID
dataset, we employed the Freesound API extractor,
grounded in Essentia [15]. Initially, this tool computes
a foundational set of 91 3 primary low- and mid-level de-
scriptors, encompassing a broad spectrum of acoustic and
psychoacoustic properties. These foundational descriptors
capture diverse acoustic dimensions, including temporal
aspects (e.g., zero-crossing rate, effective duration), spec-
tral characteristics (e.g., spectral centroid, spectral spread),
spectro-temporal descriptors (e.g., spectral flux, the first
derivative of spectral contrast), rhythmic elements (e.g.,
beats count, onset rate), and tonal attributes (e.g., tuning
frequency, chord histogram).

Regarding the temporal analysis scale, we can group
these descriptors in global descriptors, which synthesize
characteristics over the entire sound duration (e.g., log-
attack time, tristimulus), and instantaneous descriptors,
calculated for discrete frames within the sound to provide
a momentary acoustic snapshot (e.g., spectral rms, pitch
salience). Building upon the initial set, the Freesound
API further computes statistical aggregators for all in-
stantaneous descriptors, thus expanding the dataset to en-
compass a total of 452 descriptors. These aggregators
include the maximum, minimum, mean, variance, me-
dian, and the first and second derivatives, significantly
enriching the dataset’s descriptive capacity while captur-
ing the acoustic temporal profile of each sound. Notably,
approximately 20% of these descriptors are vector-based
structures, such as the Equivalent Rectangular Bandwidth
(ERB) [16, 17] bands or the Gammatone Frequency Cep-
stral Coefficients (GFCC), offering multidimensional in-
sights into the sound’s acoustic and psychoacoustic profile.

BiSAID is made available in several formats to cater
to both manual and computational exploration. This en-
compasses Excel (xlsx) files, which aggregate all sound-
related information by dimension, and CSV and JSON files
that present audio descriptors alongside semantic labels.
The content of these files is curated to include the sound’s
id, name, sound (a hyperlink for previewing the sound),
and tags (the full list of tags associated with the sound).
After an auditive inspection, additional annotations are
made to document the category of the sound and any
pertinent note that offers insight into its categoriza-
tion. The dataset, distributed under a Creative Commons
license, is accessible at https://figshare.com/
articles/media/BISAID/25377589. To promote
reproducibility and transparency, we further provide the
scripts utilized in the data collection and analysis phases,
ensuring that researchers can readily replicate or extend
the work presented herein. The scripts can be found

3 For a detailed description of these descriptors, please con-
sult https://freesound.org/docs/api/analysis_docs.
html.

in the paper repository at https://github.com/
ZijingCaoo/sound_analysis.

3. A STUDY ON THE RELATIONSHIP BETWEEN
SOUND PARAMETERS OF EARCON AND

SEMANTIC DESCRIPTORS

This section presents a preliminary exploration of the Bi-
SAID dataset, emphasizing the semantic dimensions of
brightness (bright vs. dark) and accuracy (correct vs. in-
correct). Our goal is to uncover the relationship between
sound parameters and semantic descriptors, shedding light
on the structural underpinnings and metaphorical semantic
qualities of earcons. The focus on earcons, in preference
to auditory icons, stems from their inherent design process.
Unlike auditory icons, which are based on sampled sounds
from the environment, earcons are synthesized creations,
meticulously crafted by sound designers to convey specific
semantic meanings. This deliberate design process allows
for a deeper investigation into how certain audio descrip-
tors are intentionally manipulated to represent different se-
mantic labels, offering a more controlled environment to
study the precise relationship between sound parameters
and their perceived meanings. Moreover, this investigation
evaluates the dataset’s quality and the data collection pro-
cess, setting the groundwork for future research and the
next phases of our study.

The choice of brightness and accuracy for our study is
twofold: the well-documented discussion of brightness in
music perception literature [7, 18, 19], and the relatively
uncharted territory of the accuracy dimension, critical in
sound design for indicating correct or incorrect actions [20,
21].

3.1 Method

To address our objectives, we began with two preliminary
steps regarding earcon and descriptor selection. To pre-
vent imbalances, we ensured an equal representation of
earcons for each tag, selecting 47 earcons per tag, based on
the maximum common count across descriptors for both
pairs of correct / incorrect and bright / dark. In terms of de-
scriptors, we aimed for a manageable and interpretable de-
scriptor space, focusing on one-dimensional numerical de-
scriptors and excluding vector-based and non-numeric at-
tributes. Only the mean values of instantaneous descriptors
were retained, setting aside other statistical aggregates to
streamline our analysis. Additionally, we removed descrip-
tors with constant values across all earcons, as they do not
aid in our analysis. An example is the second-peak-spread
(rhythm.second peak spread.mean, according to
Freesound original naming) descriptor in the accuracy case
study, which showed no variability and was thus excluded.

After establishing the groundwork, our analysis proceeds
with three key stages aimed at clarifying how earcon pa-
rameters relate to semantic descriptors: statistical analysis
of descriptors, descriptor importance ranking, and correla-
tion analysis.

First, we assessed the normality of the distribution of
these descriptors using the Shapiro-Wilk test [22]. The
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test indicated that approximately 80% of the descriptors
deviated from a normal distribution (more precisely, 84%
for the accuracy case, and 74% for the brightness case),
thus requiring the use of non-parametric tests for further
statistical analysis. Consequently, we employed the Mann-
Whitney U test [23] 4 to evaluate the statistical signifi-
cance of differences between groups defined by semantic
labels, ensuring the robustness of the descriptor selection
process against non-normal distribution patterns. We used
a 𝑝-value threshold of 0.001 to ensure that the observed dif-
ferences in medians between the two groups were highly
unlikely to have occurred by random chance.

The second phase of our analysis involved the use of two
machine learning models, logistic regression and random
forests, to rank the descriptors in terms of the predictive
power of the semantic labels. This approach under two
alternative machine learning models allowed the identifi-
cation of both linear and non-linear relationships between
the descriptors and the labels, and gave us an idea of the
more important descriptors.

The convergence of statistical significance, and model-
based predictive power led to a focused subset of descrip-
tors for deeper analysis.

4. SOUND ANALYSIS AND RESULTS

In this section, we examine the correlations between
earcon descriptors and semantic labels within two seman-
tic dimensions: accuracy (contrasting “correct” vs. “incor-
rect” bipolar labels) and brightness (contrasting “bright”
vs. “dark”). Each dimension’s analysis follows a struc-
tured approach: initially presenting descriptor importance
as determined by our computational models, with particu-
lar emphasis on descriptors that are statistically significant
and hold high importance in both models. Subsequently,
we analyze the distributions of these descriptors, provid-
ing visual comparisons to elucidate how they vary between
semantic contrasts.

4.1 Case I: Brightness

Figure 1 presents the ranking of descriptors according to
their predictive power for semantic earcon labels of bright-
ness, differentiating between “bright” and “dark” labels.
Descriptors that showed statistical significance, as deter-
mined by the Mann-Whitney U test with 𝑝 < 0.001, are
highlighted with an asterisk next to their labels.

The analysis reveals a notable alignment between the
most statistically significant audio descriptors and the ran-
dom forest method, suggesting the data’s potentially non-
linear characteristics. However, our focus remains on
those descriptors that not only show high statistical sig-
nificance but also are crucial in the results produced by
both predictive models (random forest and logistic re-
gression). Identified as highly relevant in both anal-
yses and marked in dark blue in Figure 1, these de-
scriptors predominantly pertain to the spectral domain

4 A non-parametric method for comparing differences between two in-
dependent groups in instances where the dependent variable is ordinal or
continuous yet does not adhere to a normal distribution.
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Figure 1. Descriptor importance for semantic label pre-
diction for the brightness dimension. Asterisks (*) denote
statistically significant descriptors; (grey) descriptors high-
light high import descriptors in the corresponding model;
and (blue) descriptors high importance in both models.

(such as spectral-rms, spectral-energyband-low, spectral-
energyband-middle-low, spectral-skewness, barkbands-
skewness, spectral-complexity, and spectral-flux), with the
exception of average-loudness, which operates in the tem-
poral domain. A significant number of these descriptors
are associated with the sound’s energy.

Due to the absence of energy normalization in our
methodology, we refrain from drawing definitive
conclusions about certain descriptors (spectral-rms,
spectral-energyband-low, spectral-energyband-middle-
low, spectral-energy, average-loudness). It is noted that
“dark” distributions consistently exhibit higher values
than “bright” ones in aspects like average-loudness and
spectral energy, particularly at the lower end of the
spectrum (spectral-energyband-low). This observation
aligns with the intuitive association of “darker” sounds, in
terms of both luminescence and mood (e.g., “scary”), with
greater energy in the lower frequency range and increased
loudness.

Given the high correlation between spectral-skewness
and barkbands-skewness (differing only in the scale used
for computation), we opt to exclude only the latter from
further analysis, as shown in Figure 2, focusing on the for-
mer due to its direct relevance. Spectral-skewness quan-
tifies the asymmetry of the spectrum’s distribution around
its mean, indicating more energy on the right-hand side
of the distribution at lower values, and conversely, more
energy on the left side suggests a higher skewness value.
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This descriptor, therefore, is crucial for understanding the
distribution of energy across the frequency spectrum.

In addition to spectral-skewness, other descriptors under
consideration include spectral-complexity, which counts
the number of peaks in the spectrum between 100Hz and
5KHz, and spectral-flux, which gauges the changes in the
frequency content over time. The latter uses either the L2-
or L1-norm difference between consecutive frames of the
magnitude spectrum, offering insights into how the spec-
tral content evolves. These descriptors collectively provide
a multifaceted view of the sound’s spectral characteristics,
illuminating different aspects of how sounds are perceived
as either “bright” or “dark”.
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Figure 2. Distribution analysis of key acoustic descriptors
for the dimension of brightness, contrasting “bright” vs.
“dark” semantic labels.

Attempting to interpret the data, the higher skewness val-
ues in dark earcons compared to bright ones suggest a trend
where the spectral content of “dark” sounds is skewed to-
wards lower frequencies. The broader range of mean val-
ues for “dark” instances may imply less consistency in the
spectral centroid, hinting at an intuitive connection where
“dark” sounds are associated with lower-frequency energy.
This observation, while not conclusive, resonates with a
common perception that links auditory darkness with a
prevalence of lower frequencies.

In the analysis of spectral-complexity, dark earcons show
a greater complexity than their bright counterparts, par-
ticularly in sounds tagged as “scary” or “creepy” on
Freesound. This increased complexity might intuitively
suggest that “dark” sounds encompass more intricate spec-
tral textures and a higher level of dissonance from over-
lapping spectral peaks. While this insight does not serve
as a definitive explanation, it opens up a pathway for intu-

itive speculation on how complexity in the spectral domain
could influence our perception of sounds as being “dark”
or ominous.

Regarding spectral-flux, the observation that dark earcons
exhibit a higher flux raises speculative thoughts on the na-
ture of these sounds. The higher spectral flux indicates
more variability in the spectrum over time, which might in-
tuitively be linked to the presence of elements such as low-
frequency rumbles, atonal textures, and noise. This charac-
teristic of “dark” sounds, suggesting a more dynamic spec-
tral evolution, allows for speculative reflection rather than
firm conclusions. It hints at how such auditory features
could be perceived as “dark” aligning with a common intu-
ition about the complexity and variability in sounds labeled
as such.

4.2 Case II: Accuracy

Figure 3 delineates the hierarchy of descriptors based on
their efficacy in predicting semantic earcon labels concern-
ing accuracy, particularly distinguishing between “correct”
and “incorrect” labels. Descriptors achieving statistical
significance, as verified through the Mann-Whitney U test
with 𝑝 < 0.001, are distinguished by an asterisk beside
their names.
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Figure 3. Descriptor importance for semantic label pre-
diction for the accuracy dimension. Asterisks (*) denote
statistically significant descriptors; (grey) descriptors high-
light high import descriptors in the corresponding model;
and (blue) descriptors high importance in both models.

Mirroring the analytical approach of the previous case,
we concentrate on the intersection of highly significant
descriptors as identified by both logistic regression and
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random forest models, illustrated in dark blue in Fig-
ure 3. From this convergence, three audio descriptors stand
out: spectral-complexity, pitch-salience, and spectral-
energyband-low. Descriptive statistics for these salient de-
scriptors are depicted in Figure ??. Preliminary scrutiny of
spectral-energyband-low indicates a negligible perceptual
disparity amidst subtle variations.

The data distribution reveals an uptick in spectral-
complexity for earcons labeled as incorrect relative to those
deemed correct. Closer inspection of the earcons across
our dataset exposed clear timbral distinctions between the
two groups. Incorrect earcons typically embodied a mul-
titude of percussive sounds characterized by densely pop-
ulated spectral bands, whereas correct earcons were more
likely to manifest as pitched tones within harmonic spec-
tral frameworks. Thus, we may infer that the “incorrect”
earcons are typified by a more intricate spectral profile,
with a higher density of spectral peaks and a less promi-
nent fundamental frequency.

This narrative of spectral-complexity is corroborated
by the pitch salience assessments; incorrect earcons are
marked by higher pitch-salience values. Pitch-salience is
calculated as the quotient of the spectrum’s highest auto-
correlation peak over the unshifted autocorrelation base-
line, reflecting the prominence of a tone. Sounds defined
by pure tones or limited harmonics tend to register lower
pitch-salience readings, tending towards zero, as noted
in correct earcons. In contrast, the presence of multiple
harmonics in the spectrum of incorrect earcons results in
increased pitch-salience, indicative of their intricate har-
monic structures.

incorrect correct
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Figure 4. Distribution analysis of key acoustic descriptors
for the dimension of accuracy, contrasting “correct” vs.
“incorrect” semantic labels.

4.3 Discussion

This exploratory study has highlighted several key points
regarding the use of audio descriptors for semantic descrip-
tion of sound.

The examination of audio descriptors in relation to se-
mantic bipolar concepts such as “bright” versus “dark” and
“correct” versus “incorrect” has demonstrated the poten-
tial of descriptors like spectral-complexity and spectral-
skewness to reflect auditory qualities ascribed to these
terms. However, the application of these descriptors is
not straightforward due to the subjective nature of sound
perception. The use of the descriptor “dark” raises issues
concerning the alignment between user-generated tags and
the a shared perception they are intended to characterize.

Literature suggests that subjective tagging can introduce
inconsistencies [14], that require further methodological
treatment. Bipolar scales can compound this problem by
presenting a false dichotomy that may not mirror the au-
ditory experience, as discussed by Kendall and Carterette
[18]. An alternative approach using unipolar scales, like
the VAME method, avoids such binary oppositions by con-
sidering attributes on a continuum, which might better rep-
resent the spectrum of auditory qualities.

While the use of crowd-sourced tags offers controlled
semantic judgment, it also requires a cautious approach
due to its inherent limitations [24]. This necessitates more
rigorous data collection methods to ensure the validity of
earcon descriptors used in research.

In the context of accuracy, descriptors that might typ-
ically indicate sound correctness, such as dissonance or
roughness, were not prominent in the dataset, suggesting a
gap that warrants further exploration. However, the promi-
nence of pitch-salience and spectral-complexity could be
indirectly linked to these concepts, meriting a future inter-
correlation analysis.

The dataset’s descriptors showed great deviation from a
normal distribution, indicating a complex set of factors
at play in computational-based sound perception studies.
These include the properties of the sounds or the recording
conditions, to mention a few. Such atypical distributions
in the descriptors necessitate meticulous outlier manage-
ment and data transformation in preprocessing to ensure
data quality, so not to introduce noise in subsequent analy-
sis. This is especially true when using average-based tem-
poral aggregation methods, which are more vulnerable to
outlier effects than those based on median aggregation.

To refine the descriptor extraction process, employing
tools like Essentia 5 is recommended. Essentia provides
enhanced control over the analysis parameters, allowing
for a more robust and controlled extraction process. Utiliz-
ing such a tool could improve the precision of sound data
analysis, leading to more reliable and significant research
findings.

5. CONCLUSIONS AND FUTURE WORK

This study introduces a dataset comprising 1053 non-
speech auditory cues, including earcons and auditory
icons, each annotated with semantic bipolar adjectives and
detailed through 452 global and instantaneous audio de-
scriptors. Our focus was on analyzing a subset of 192
earcons, labeled with contrasting pairs ”correct” and ”in-
correct,” and ”bright” and ”dark,” to examine the relation-
ship between earcon parameters and their semantic mean-
ings.

The analysis of semantic earcon labels for brightness dif-
ferentiation unveils important audio descriptors contribut-
ing to perceptual differentiation. Through logistic re-
gression and random forest methods, statistically signifi-
cant descriptors such as energy-related descriptors, spec-
tral skewness, complexity, and flux are identified. No-
tably, brighter earcons exhibit lower energy levels, while

5 https://essentia.upf.edu/
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darker ones display higher positive skewness, reflecting
timbral characteristics akin to pitched instruments. Spec-
tral complexity analysis reveals intricate frequency compo-
nents in darker earcons, evident in dense spectral patterns
and sensory dissonance. Additionally, spectral flux analy-
sis demonstrates temporal variations, with darker earcons
showing greater spectral content variability. These find-
ings offer insights into the nuanced perceptual attributes of
earcons, informing future auditory design considerations.

From the analysis of the accuracy study case, featuring
correct and incorrect earcons and similar methodology,
three key audio descriptors have been highlighted: spec-
tral complexity, pitch salience, and spectral energy band
low. Descriptive statistics for these descriptors uncovered
higher spectral complexity in incorrect earcons, charac-
terized by dense percussive sounds, in contrast to correct
earcons featuring harmonic tones. This finding was rein-
forced by pitch salience analysis, which indicated varia-
tions in harmonic content between correct and incorrect
earcons.

Looking ahead, our research paves the way for several
avenues in future work. We anticipate the integration of
additional models or ensemble methods, such as Gradi-
ent Boosting Machines (GBM) [25], to further substan-
tiate and refine the descriptor importance rankings, par-
ticularly for capturing complex non-linear relationships.
The expansion of our dataset, incorporating a wider variety
of sounds selected through a more stringent methodology,
stands as a priority. This will enable us to extend our anal-
ysis to additional dimensions of earcon design, ultimately
extracting actionable insights for sound designers.

Moreover, the true test of our findings lies in their percep-
tual validation. We propose a perceptual study to confirm
the predictive power of the identified descriptors in real-
world settings, ensuring that our statistical and machine
learning outcomes resonate with actual perceptual differ-
ences among listeners. Complementary to this, controlled
listening tests with participants will allow us to assess their
perception of brightness and accuracy in earcons, aligning
subjective assessments with the quantitative data from our
analysis.

Through this interconnected approach, we aim to bridge
the gap between the theoretical underpinnings of earcon
parameters and their practical design applications, foster-
ing a deeper understanding and more intuitive design of
auditory signals.
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