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ABSTRACT

Classical machine learning techniques have dominated
Music Emotion Recognition (MER). However, improve-
ments have slowed down due to the complex and time-
consuming task of handcrafting new emotionally relevant
audio features. Deep Learning methods have recently
gained popularity in the field because of their ability to au-
tomatically learn relevant features from spectral represen-
tations of songs, eliminating such necessity. Nonetheless,
there are limitations, such as the need for large amounts
of quality labeled data, a common problem in MER re-
search. To understand the effectiveness of these tech-
niques, a comparison study using various classical ma-
chine learning and deep learning methods was conducted.
The results showed that using an ensemble of a Dense Neu-
ral Network and a Convolutional Neural Network archi-
tecture resulted in a state-of-the-art 80.20% F1-score, an
improvement of around 5% considering the best baseline
results, concluding that future research should take advan-
tage of both paradigms, that is, conbining handcrafted fea-
tures with feature learning.

1. INTRODUCTION

In the early stages of developing Music Emotion Recog-
nition (MER) systems, the focus was mainly on classi-
cal machine learning (ML) techniques, which involved a
significant amount of effort devoted to feature engineer-
ing [1, 2]. Music classification involves identifying gaps
in dimensions such as melody, harmony, rhythm, dynam-
ics, timbre, expressivity, texture, and form. Feature extrac-
tion algorithms capture these dimensions, and ML models
are trained on them. However, current works mostly use
low- and mid-level descriptors. Panda et al. [3] achieved
76% accuracy with a combination of novel emotionally
relevant features based on audio analysis and a newly pro-
posed dataset, the 4QAED dataset, surpassing the 69% ac-
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curacy plateau observed in the MIREX challenge held in
2007. The most pressing issue is the challenging and time-
consuming process of designing such features, requiring
expertise in signal processing, musicology, and ML to pro-
duce improvements.

As a way to avoid this process, deep learning (DL) has re-
cently seen a rise in popularity due to its ability to automat-
ically learn relevant features from raw input data. Recently,
various DL methods have been applied to tackle MER,
many of which employ convolutional (CNN) and recur-
rent (RNN) neural networks [4, 5]. Different approaches
have been proposed for processing raw input data in audio
applications. This includes end-to-end architectures [6, 7],
transfer learning from larger datasets [8], and using em-
beddings extracted from pre-trained CNNs [9].

These techniques have limitations due to requiring large
amounts of quality labeled data. Previous systems have
applied audio transformations to increase the training set
for chosen algorithms, but the impact of this approach for
MER is not well known in comparison with other tasks
such as genre recognition [10].

Neural networks lack interpretability due to their black-
box nature, making it unclear which features are learned
and extracted during training. In MIR, concerns have
been raised about their ability to learn relevant informa-
tion. However, studies such as the one by Choi et al. [11]
showed that a 5-layer CNN can learn to extract features
closely related to melody, harmony, percussion, and tex-
ture. In the same direction, Won et al. [12] demonstrated
that a self-attention mechanism can learn relevant instru-
ment, genre, and emotion detection information through
heatmaps.

In this article, we have performed a comparative study
of different classical ML and DL methodologies applied to
MER. This study aims to understand these methods’ effec-
tiveness, considering the promising paths of DL-based ap-
proaches. To conduct this study, we have used the 4QAED
dataset along with a recent expansion. We have explored
various methodologies, including architectural improve-
ments, audio augmentation techniques, alternative input
data representations, and knowledge transfer from related
tasks. Additionally, the expansion of the baseline dataset
has allowed us to assess the impact of small dataset size



554

increases on the classification accuracy of DL models.
This study produced several contributions, including a

state-of-the-art F1-score of 80.20% achieved through an
ensemble of Dense Neural Network (DNN) and CNN ar-
chitecture while considering data augmentation. Addition-
ally, we conducted a comprehensive comparison of various
methodological enhancements for solving MER, as well as
an analysis of the influence of dataset size and class bal-
ancing on classification performance. To encourage repro-
ducible research, we provide the code used for the con-
ducted experiments 1 .

2. BACKGROUND

The connection between music and emotions has been a fo-
cus of research in music psychology. Emotion from a mu-
sical piece can be examined through expressed, perceived,
and induced perspectives. Perceived emotion provides the
highest level of objectivity and is the focus of most works
in the literature [13].

There have been several proposals to represent the range
of human emotions. These can be divided into categorical
models, which cluster similar emotions together, such as
Hevner’s Adjective Circle [14], and dimensional models,
which create a multi-dimensional plane with axes repre-
senting different biological systems theorized to process
emotion in the human brain. The most widely accepted
dimensional model is Russell’s Circumplex Model [15],
seen in Figure 1, according to the literature. Scholars have
raised concerns about categorical and dimensional models.
Categorical models do not reflect the continuous nature of
emotions, while dimensional models are complex and re-
quire prior knowledge for accuracy [16].

Figure 1. Russell’s Circumplex Model. It is possible to
represent emotions either as continuous values, which can
be seen as individual points on a map, or as discrete labels
that encompass a wider range of emotions.

In our team’s research, Panda et al. [3] introduced the
previously mentioned 4QAED dataset, which utilizes la-

1 https://github.com/g0ld3nl34f/exploring-dl-for-mer

bels provided by experts from the AllMusic API. The la-
bels were converted into A-V values 2 , which correspond
to the x- and y-axes of Russell’s model, representing va-
lence and arousal, respectively. The dataset takes a cate-
gorical approach by grouping all annotations into one of
four quadrants rather than the continuous approach of the
model. Please refer to the following section for a more
detailed understanding of the dataset and its expansion.

3. METHODS

The methodologies explored for this work are presented
in this section. We began by defining both ML and DL
baseline methodologies in Section 3.1 and evaluating them
on multiple datasets for comparison purposes.

The following section discusses the various methodolo-
gies that we explored and what motivated us to con-
sider them. These approaches include improving the ar-
chitecture by utilizing time-related information (Section
3.3), learning features from segments of entire samples
(Section 3.4), obtaining alternative input representations
through high-dimensional projections (Section 3.5), gener-
ating more training data through sample synthesis (Section
3.6), and utilizing learned information from related tasks
(Section 3.7).

3.1 Baseline Architectures

We began our experiments by establishing a classic base-
line using the state-of-the-art system by Panda et al, dis-
cussed previously, consisting on the top 100 standard and
novel features, ranked using a feature selection algorithm,
fed to a Support Vector Machine (SVM) classifier. For
each dataset, we fine-tuned the hyperparameters of the
SVM classifier using the same set of optimal features that
were used in the original work.

Our team previously created a CNN architecture based
on the research done by Choi et al. [17]. This architec-
ture serves as the baseline for deep learning development.
We modified the original architecture to process the ex-
tracted features on a small DNN that predicts one of the
four quadrants from Russell’s model, instead of outputting
a binary vector. To prevent overfitting, an early stopping
strategy was implemented, halting training when the train-
ing set accuracy reached a value equal to or greater than
90%, as found from previous experimentation. Unless ex-
plicitly stated otherwise, these points are the default con-
figuration for the remaining approaches described in this
section.

Regarding the optimal hyperparameters found for each
methodology using a neural network as classifier, please
refer to Table 1.

3.2 Explored Methodologies

We started off by examining the latest DL-based method-
ologies proposed for MER, focusing solely on systems that
improve static emotion in music using only audio.

2 https://tivo.stoplight.io/docs/music-metadata-
api/ZG9jOjQ3NjAxNTk-introduction
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Table 1. Input sizes and best hyperparameters found for DL-based baseline and explored methodologies.

Methodology Input Best Hyperparameters
Type Size Epochs BS Optimizer LR

DL Baseline Mel-spectrogram 942×128 (≈30s) 200 150 SGD 1e-2
Baseline with GRU Mel-spectrogram 942×128 (≈30s) 200 150 SGD 1e-2

CRNN Mel-spectrogram 942×128 (≈30s) 200 50 SGD 1e-3
Hybrid Mel-spectrogram and 942×128 (≈30s) 100 300 SGD 1e-2

Augmented Handcrafted Features 1714 100 300 SGD 1e-2
ShortChunk CNN Mel-spectrogram 116×128 (≈3.5s) 100 50 SGD 1e-3

Sample CNN Waveform 59049 (≈3.5s) 150 50 SGD 1e-3
Baseline + TFM Mel-spectrogram 942×128 (≈30s) 200 150 SGD 1e-2
Baseline + SB Mel-spectrogram 942×128 (≈30s) 200 150 SGD 1e-2
Baseline + RG Mel-spectrogram 942×128 (≈30s) 200 150 SGD 1e-2
Artists CNN Mel-spectrogram 129×128* (≈3s) 200 100 Adam 1e-2

CRNN MTAT Mel-spectrogram 942×128 (≈30s) 200 16 Custom** Custom**
*A sample rate of 22.05kHz was used per the original implementation instead of 16kHz for the remaining methodologies.
**See Section 3.7 for details.

An important resource for our experiments is the work by
Won et al. [18]. Here, a set of architectures from previous
works on automatic music tagging are gathered and tested
against each other. These comprise simple CNN-based
architectures, end-to-end approaches, and even theory-
motivated ones, all available in a GitHub repository 3 .

3.3 Architecture Improvements

We enhanced our DL baseline’s architecture by incorpo-
rating two Gated Recurrent Units (GRU) [19] to enable
learning time-domain-specific features. This was done as a
starting point to improve the overall architecture. We also
experimented with an implementation of the CRNN archi-
tecture, which was adapted from the previously mentioned
work. This way it is possible to assess the DL baseline’s
feature learning portion ability to preserve information re-
lated with time.

A simple ensemble of a baseline CNN and a DNN, both
previously pre-trained, performed remarkably well, re-
ferred as Hybrid Augmented form herein. The DNN por-
tion was fed with all 1714 features found to be relevant in
the same work used as a basis for the classical baseline.
The fused information is then post-processed by a smaller
DNN. This approach combined the information extracted
from both paradigms to enhance the overall classification,
with the addition of synthetic samples for pre-training the
CNN portion. The complete architecture can be seen in
Figure 2.

3.4 Segment-level Approaches

In our previous work, we utilized the complete 30-second
samples accessible on 4QAED as the model’s input. How-
ever, humans can easily recognize emotions in smaller
samples. Considering the small size of our datasets, break-
ing down these samples into smaller segments can benefit
us by increasing the number of training examples, which
is an indirect way of data augmentation. A straightfor-
ward approach that follows this idea is introduced in [18]

3 https://github.com/minzwon/sota-music-tagging-models

as ShortChunk CNN. During the model’s training phase,
each segment was treated as an individual sample, while
for testing, all the predictions related to the segments of a
sample were combined to obtain the final prediction, which
is known as a many-to-one approach.

Previous deep learning works commonly used convolu-
tional layers to extract features from spectral representa-
tions, which require specific parameters. However, the
ideal parameters are not architecture-independent, requir-
ing optimization should any of the layers change. To avoid
this issue, Lee et al. [6] propose an end-to-end architecture,
the Sample CNN. They suggest working directly with the
raw audio signal and using a sequence of one-dimensional
convolutional blocks, similar to the two-dimensional vari-
ant, and processing the output through a dense layer. It
is important to note that these models were originally de-
signed to output one of a set of labels, which varied de-
pending on the dataset used. They were later translated
from PyTorch to TensorFlow and reworked to output cate-
gorical labels.

3.5 Data Representations

As mentioned earlier, using Mel-spectrograms might not
be the best approach for training a machine learning model
to classify emotions. Embeddings, popular in Natural Lan-
guage Processing (NLP) due to providing a smaller, more
efficient representation of the location of words in sen-
tences in a lower-dimensional space, are considered as an
alternative to spectral representations. Recently, Koh et
al. [9] applied this idea to audio by using the OpenL3 deep
audio embedding library 4 and training classical ML tech-
niques classifier on its output. The embeddings are derived
from a Mel-spectrogram representation, resulting in a fea-
ture matrix of size 298×512.

The study’s baseline dataset yielded a 72% F1-score with
the Random Forest (RF) classifier from the scikit-learn
library 5 , which is almost similar to the classical base-
line. The experiment was further extended to the baseline

4 https://github.com/marl/openl3
5 https://scikit-learn.org/stable/
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Figure 2. Hybrid Augmented architecture. Both the CNN and feature processing DNN are previously pre-trained on
training data, with the addition of synthesized samples for the latter. Information from the aforementioned networks are
concatenated and further processed by a smaller DNN.

dataset extension, and the embeddings generated by the au-
toencoder used in the DeepSMOTE approach, described in
the next section, were also tested for comparison purposes.

3.6 Data Augmentation

We have delved deeper into both classical and deep learn-
ing (DL) approaches for augmenting data. In the classi-
cal approach, we have applied various audio augmenta-
tion techniques directly to the audio signal of a sample.
These techniques randomly increase or decrease a factor
associated with the transformation, such as time shifting
(shifts start or end by five seconds), pitch shifting (increas-
ing or decreasing pitch by two semitones), time stretching
(speeding up or slowing down by 50%), and power shifting
(increasing or decreasing amplitude by 10 dB), transforma-
tions used to obtain the synthesized sample for the Hybrid
Augmented methodology. More of these techniques were
experimented using the audiomentations library 6 , includ-
ing:

• Time-Frequency Masking (TFM), popular in the
field of SER, which applies a mask over a portion
of the time- and frequency-domain [20];

• Seven-Band Parametric Equalization (SB), applying
a seven-filter pass on the sample, changing its timbre
in the process;

• Random Gain (RG), randomly increasing or de-
creasing the loudness of a sample.

A factor is chosen randomly from a set of predefined in-
tervals for each transformation. For instance, the RG pre-
defined interval lies between [-12.0, 12.0] dB. These inter-
vals have been kept the same as the default values in the
library.

6 https://github.com/iver56/audiomentations

The use of Generative Adversarial Networks (GANs)
[21] for Deep Learning techniques has been tested by our
team with less than satisfactory results. Beyond the overly
complex process of training a GAN, the lack of constraints
when sampling the learned space from the data can result
in noisy and emotionally ambiguous samples.

We considered using SMOTE [22] to generate samples
with some constraints but found that applying it to raw
audio signal produced noisy samples due to the high di-
mensionality of the audio signal. Thus, we used the au-
toencoder applied for training the above-mentioned GAN
to reduce the dimensionality of the sample, leading to a
significant decrease in the number of values from around
482k to 60k, similar to the DeepSMOTE approach [23].
To the best of our knowledge, this was the first time this
technique was applied to music samples.

It can be challenging to determine the best SMOTE im-
plementation to use due to the many alternatives available.
Kovács’ article on SMOTE variants [24], along with the
accompanying repository 7 , provides a comprehensive re-
source for making a decision. The article compares over
80 variants, but we focused on the most widely used ones,
namely SMOTE, BorderlineSMOTE, and Adasyn. After
conducting preliminary tests, BorderlineSMOTE, particu-
larly the Borderline_SMOTE2 implementation, was found
to be the most suitable option.

3.7 Transfer Learning

One way to address the challenge of dealing with a small
dataset is to leverage the knowledge learned from a domain
with a larger data corpus. This involves transferring the
learned weights from a pre-trained network to a new net-
work with a different task. Our team has previously experi-
mented with this approach by utilizing the learned weights
of a network trained for genre recognition to improve emo-
tion recognition. Instead of using a larger dataset, we took

7 https://github.com/analyticalmindsltd/smote_variants
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Table 2. Datasets used for evaluation with respective sam-
ple distribution.

Dataset Q1 Q2 Q3 Q4 Total
Original-4QAED 225 225 225 225 900
New-4QAED C 434 440 397 358 1629
New-4QAED B 343 343 343 343 1372

advantage of the learned information about genres, which
are closely linked to specific emotion quadrants. For in-
stance, heavy metal is typically associated with Q2, while
reggae is connected to Q4 [25].

In the same direction, we conducted experiments to trans-
fer the knowledge from the models introduced by Park et
al. [8] in their article on artist classification. We opted for
the simpler model in our work, which encompasses a series
of 5 one-dimensional convolutional blocks, a global aver-
age pooling layer, and a dense layer that produces a 256-
value vector. To carry out the experiment, we retrieved the
model’s weights from the article’s accompanying reposi-
tory 8 , loaded and froze them, and substituted the last layer
with a dense layer that outputs to one of the quadrants.

We also evaluated the impact of utilizing data from larger
music datasets using the available weights for the CRNN
model on Won’s repository trained on three datasets, but
for this article we focus on MagnaTagATune (MTAT) [26]
as it provided the best results. It should be noted that
the CRNN model was trained for multi-label classifica-
tion. The optimization process for the model was adaptive,
which means that it changed during certain epochs of train-
ing. It started with Adam optimizer and a learning rate of
1e-3 until epoch 80, then shifted to the SGD optimizer with
a learning rate of 1e-4, which decreased to 1e-5 at epoch
100, and finally to 1e-6 at epoch 120. According to the au-
thors, this approach leads to a more stable training process
and better results at 200 epochs. The model was optimized
with a batch size of 16, which minimized the necessary
computational resources for the training process.

4. EVALUATION DETAILS

As previously stated in Section 2, our team utilized the
4QAED dataset 9 for experimentation. The dataset, which
consists of 900 samples, was evenly distributed across Rus-
sell’s four quadrants. Each quadrant corresponds to a spe-
cific set of emotions: Q1 for happiness and excitement;
Q2 for anger and frustration; Q3 for sadness and melan-
choly; and Q4 for serenity and contentment. The dataset
provides 30-second excerpts of complete songs and two
sets of emotionally relevant handcrafted features as data
sources. The first set contains 1714 features found to be
relevant for emotion recognition, while the second set con-
tains the top 100 features obtained after feature selection.
The dataset also provides categorical labels for one of the
four quadrants as targets.

An expanded version of the dataset is also considered,
increasing the number of available samples from 900 to

8 https://github.com/jongpillee/ismir2018-artist
9 Available at: http://mir.dei.uc.pt/resources/MER_audio_taffc_dataset.zip

1629. The datasets are referred as Original-4QAED and
New-4QAED, respectively. Table 2 shows the quadrant
distribution of the datasets, including two variations of the
New-4QAED dataset, a complete (C) version and a bal-
anced subset (B) that has 1372 samples. The balanced
subset takes into account the distribution of genre in each
quadrant to prevent any potential bias.

4.1 Data Preprocessing

The input data for these methodologies were obtained
through Mel-spectrogram representations generated us-
ing the Python library librosa 10 with default parameters.
However, the sample rate was set to 16 kHz after exper-
imenting with different values. This was done to reduce
the computational complexity of the model and reduce the
necessary resources for training and inference.

It is worth noting that DL-based architectures are robust
to a lack of information related to lower sample rates when
compared with higher rates, as has been observed in other
studies [27].

4.2 Experimental Setup

The experiments were conducted on a server that was
shared among the team. The server had two Intel Xeon Sil-
ver 4214 CPUs, which had a total of 48 cores and ran at a
clock speed of 2.20GHz, and three NVIDIA Quadro P500
GPUs with 16GB of dedicated memory. The latter were
necessary to develop and evaluate each network within a
reasonable time frame. However, due to high demand,
we also used Google Collaborator 11 during the evaluation
process. Depending on availability, this platform offered a
similar GPU and either an NVIDIA PCIE or an NVIDIA
T4, both with 16GB of dedicated memory.

Almost all DL-based approaches were developed using
the TensorFlow Python library 12 . This library enables the
creation and optimization of intricate models in a straight-
forward and efficient manner. Additionally, in Section 3.7,
we discussed how pre-trained CRNN models’ provided
weights were utilized with the PyTorch library 13 .

5. RESULTS AND DISCUSSION

In this section, we begin by describing the metrics con-
sidered and the evaluation strategy for the conducted ex-
periments. The outcomes for each approach and datasets
taken into consideration are presented in accordance with
the broad categories discussed in Section 3.2. Refer to Ta-
ble 3 for the comprehensive summary of the results.

In order to evaluate the performance of a classification
model, three common metrics are Precision, Recall, and
F1-score. Precision measures the proportion of true pos-
itive predictions within all positive predictions made by
the model. Recall measures the proportion of true positive
predictions within all actual positive samples. F1-score is
a combined metric that takes into account both Precision

10 https://github.com/librosa/librosa
11 https://colab.research.google.com/
12 https://github.com/tensorflow/tensorflow
13 https://pytorch.org/
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and Recall, and is defined as the harmonic mean between
the two. These metrics can be easily calculated using the
scikit-learn library 14 , which is widely used for machine
learning tasks.

To obtain the metrics, we first optimized the relevant hy-
perparameters on Original-4QAED. We used a grid search
strategy to experiment with a set of possible values to serve
as a baseline for performance on New-4QAED. To ensure
a fair comparison, we utilized the same parameters.

To ensure reliable results and handle small dataset sizes,
a 10-fold and 10-repetition stratified cross-validation strat-
egy is employed. This results in a total of 100 different
train-test splits. In each repetition, the original dataset is
randomly divided into ten portions while maintaining an
equal distribution of quadrants. Nine of these portions
are used for training, while the remaining one is used for
testing. The portion held-out for testing changes for each
train-test split, resulting in ten different combinations for
each repetition.

The values of the hyperparameters that were tested using
this approach varied depending on the methodology em-
ployed. In cases where the methodology was based on the
baseline CNN, adjacent values were tested to accommo-
date any potential variations in the data. When the reported
results did not have accompanying optimal hyperparame-
ters values, they were used, and if not, the baseline CNN
values were utilized as a fallback. However, regardless of
the approach used, it is possible to draw meaningful con-
clusions concerning the effects of different dataset sizes
and quadrant distributions.

Regarding improvements, increasing the dataset size had
a positive impact on the performance of the baseline CNN
with GRU and CRNN methodologies. The F1-score im-
proved from 60.07% to 61.99% and 60.35% to 63.33%, re-
spectively, when comparing the Original- to New-4QAED
C datasets. This improvement was better compared to the
DL Baseline. Additionally, the optimization phase was
more stable with the increased dataset size. However, there
was a slight decrease in performance when the balanced
variations of the latter were applied, highlighting the im-
portance of dataset size for optimal results.

Still, in terms of architecture improvements, it was found
that the Hybrid Augmented methodology produced the
best results. This particular methodology achieved an F1-
score of 80.20% on the balanced subset of New-4QAED.
The outcome was heavily influenced by both the size
and quadrant distribution, with the latter potentially being
linked to the biased nature of the DNN, much like tradi-
tional ML techniques.

It was also observed that using Time-Frequency Masking,
Seven-Band Parametric Equalization, and Random Gain
improved the results. These techniques achieved the best
results with an increase of around 1.5% F1-score compared
to the DL Baseline on Original-4QAED. They consistently
performed better on New-4QAED as well. These findings
suggest that more research is needed on data augmentation
in MER, as most of the existing techniques are borrowed
from other fields. As discussed in Section 1, the emotional

14 https://scikit-learn.org/stable/

impact of such techniques on the resulting samples is not
yet fully understood.

All of the segment-level methodologies were found to
perform similarly or worse than the DL Baseline. The poor
performance may be attributed to the smaller size of the
datasets used for training, compared to the ones used in the
original proposal of the architectures. This means that the
amount of available training data was limited, which may
have hindered the performance of the models. Addition-
ally, splitting the samples into smaller segments could have
introduced more variability in the data, making it harder
for the models to learn relevant features for distinguishing
each quadrant. Further investigation is needed to verify
this hypothesis.

The remaining methodologies related to knowledge
transfer and data representation did not perform well com-
pared to the baseline. The former significantly underper-
formed compared with the original implementations. This
may imply that such approaches are not useful for emotion
recognition, especially in the case of methodologies ini-
tially developed for multi-label classification, where larger
datasets are used. The inadequate performance of these
methodologies may be due to their significant differences
from the learned features required for the task. As a re-
sult, crucial information for emotion recognition may be
lost due to the abundance of irrelevant features. In the fu-
ture, it may be worth experimenting with an ensemble of
models trained for emotion recognition and other related
tasks.

Finally, regarding embedding-based methodologies, we
were not able to replicate the results presented for the
OpenL3 embeddings on Original-4QAED, which was a
72% F1-score, reaching at most 55.70%. It seems that
the unclear data splitting, where the authors followed an
80/10/10 train-validation-test data splitting instead of 10-
fold cross-validation, might have contributed to this. Addi-
tionally, the original approach did not disclose the param-
eters used for creating the RF classifier, so we assumed
default parameters from the scikit-learn implementation.
To maintain consistency, we applied the usual method
for cross-validation. As for the autoencoder embeddings,
these exhibited better performance on New-4QAED over-
all than OpenL3 embeddings. This observation suggests
that OpenL3 embeddings may not be the most appropriate
choice for MER.

Furthermore, the DeepSMOTE-based augmentation did
not show any significant improvement over the DL base-
line. The reason behind this lack of improvement could
be the high dimensional embedding space, which provides
little variability when sampled as compared to the original
samples. To overcome this, it might be helpful to reduce
the input data size by using the segments of the whole sam-
ples. This should decrease the embedding space dimension
and provide more relevant synthesized samples.

6. CONCLUSION AND FUTURE DIRECTIONS

The study aimed to compare the effectiveness of ML and
DL methodologies for static emotion recognition in mu-
sic with audio with datasets of different sizes. The fo-
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Table 3. Datasets used for evaluation with respective sample distribution.

Methods Original-4QAED New-4QAED C New-4QAED B
P R F1 P R F1 P R F1

SVM Baseline 75.63% 76.03% 75.59% 69.92% 70.26% 69.79% 70.03% 70.05% 69.82%
DL Baseline 61.60% 61.21% 60.62% 62.46% 63.99% 61.66% 61.39% 63.42% 60.28%

Baseline with GRU 61.58% 61.01% 60.07% 62.29% 62.46% 61.99% 60.69% 60.01% 58.85%
CRNN 65.14% 65.07% 64.63% 64.20% 64.03% 64.09% 63.31% 63.34% 62.54%

Hybrid Augmented 67.81% 68.08% 68.04% 68.15% 68.14% 67.85% 80.56% 80.50% 80.24%
ShortChunk CNN 64.66% 61.48% 60.61% 64.07% 62.13% 61.84% 60.23% 59.19% 57.07%

Sample CNN 62.64% 61.26% 60.92% 65.17% 62.62% 60.78% 62.43% 56.70% 54.46%
OpenL3 55.67% 56.75% 55.70% 53.92% 54.49% 53.62% 53.03% 53.18% 52.85%

Autoencoder 50.63% 50.40% 50.18% 53.78% 55.45% 53.56% 53.56% 54.76% 53.69%
Baseline + TFM 63.05% 62.75% 62.03% 62.51% 62.17% 61.82% 62.33% 61.85% 61.39%
Baseline + SB 63.38% 62.79% 62.12% 62.54% 62.16% 61.73% 62.13% 61.71% 61.01%
Baseline + RG 63.37% 63.13% 62.24% 63.02% 62.80% 62.08% 62.35% 62.10% 61.36%

Baseline + DeepSMOTE 61.91% 61.61% 60.70% 62.40% 62.02% 61.47% 61.62% 61.62% 60.48%
Artists CNN 51.95% 53.93% 50.85% 51.81% 53.29% 50.27% 51.56% 52.43% 50.22%

CRNN Pre-trained MTAT 51.93% 51.71% 50.21% 52.97% 53.72% 51.70% 52.16% 52.50% 51.44%

cus was more on DL to address the semantic gap found
in traditional ML approaches by exploring various ap-
proaches, such as improving existing architectures, using
segment-level models, applying data augmentation, per-
forming knowledge transfer, and using different data rep-
resentations as input.

The proposed Hybrid Augmented achieved the best re-
sult overall on the New-4QAED balanced dataset with an
80.20% F1 Score. This methodology is an ensemble of
a CNN trained with additional synthesized samples and
a DNN, which use Mel-spectrogram representations and
previously extracted features from each song as input, re-
spectively. Another notable improvement was observed by
using CRNN on the increased size of the New-4QAED
datasets. This approach outperformed the DL Baseline by
around 2% on the complete set, outperforming methodolo-
gies that applied classical data augmentation techniques.

When comparing different methodologies, it was found
that classical audio augmentation techniques and archi-
tectural improvements effectively improved performance.
However, segment-level architectures, knowledge transfer
from related tasks, and embedding-based input representa-
tions did not show as much improvement. Nevertheless, as
discussed earlier, there is room for improvement in these
areas. The results also revealed that, in most cases, the size
of the dataset has a greater impact on classification perfor-
mance than class balance.

The findings suggest that there is a need for continued re-
search aimed at developing new classical features and en-
hancing DL architectures for improved performance. Ad-
ditionally, exploring data augmentation techniques specif-
ically for MER could be a promising approach to fully
leverage DL models’ ability to automatically extract rel-
evant features. As more training data becomes available,
future DL architectures should include an RNN compo-
nent to capture time-domain-specific features. Finally, us-
ing various spectral representations as inputs is an exciting
area for further research, as demonstrated by early experi-
mental studies. However, it is important to address the un-

stable nature of these approaches before they can be fully
utilized.
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