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ABSTRACT

With a view towards the goal of modelling the performance
of classical music by human musicians, we have set our
focus on the question of collaborative music-making in a
MIDI environment. In previous work, we have presented
a model that plays a part of a score in real time together
with a live musician playing another part. We trained it to
resemble human musicians faced with the same task, by
tuning its systems built around a set of Kuramoto oscilla-
tors. Here we chose 3 musical works and conducted exper-
iments collaborating with a variety of pianists and record
the resulting performances as well as the testers’ subjec-
tive impressions. We reconciled each performance with
the corresponding music score, thereby defining a dataset
which we call an "interpretation". In addition to subjective
evaluation, we introduced objective criteria in the form of
discriminants that classify interpretations as being the re-
sult of human-human interaction or of human-machine in-
teraction. We considered the following qualities: desyn-
chronization, jerkiness, and velocity curves. Our trained
model performed similarly to humans with respect to the
first two discriminants, but significantly differently with
respect to the last. In light of this, it is notable that our ex-
periment subjects often failed to correctly distinguish the
two classes.

1. INTRODUCTION

Musical automata have exerted a fascination on musicians
and music lovers for centuries. In addition to their use
for recording and reproducing music, the possibilities of
collaborative performance involving humans and machines
together have received increased attention in recent years.
Creating interactive capabilities in accompaniment sys-
tems has become a lively area of research [1].

An obvious first issue to be tackled concerns enabling a
machine to recognize and process live human performance,
in order to be able to interact musically with it. An impor-
tant part of this is perceiving and "understanding" rhythm,
for which various approaches to machine listening have
proven fruitful, such as conducting post-factum probabilis-
tic analyses of perceived onsets [2].

Our direction of focus is guided by the goal of creating an
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"AI musician", thus necessitating processing in real time.
In the case of Western classical music, the nature of the
task is shaped by the existence of a score, with which the
performance is to be reconciled in a process called align-
ment or score-following. Effective methods have been de-
vised for usage with audio performances [3] [4] or MIDI
input [5]. Some primarily focus on the synchronization of
timing, while others additionally capture various features
of expression from human performances [6]. The develop-
ment of synchronization systems has often been inspired
by biological phenomena with little apparent connection
to music [7]. In particular, the Kuramoto model [8] has
been adapted and extended to describe observed aspects of
collaborative music making [9].

The complementary part of real-time musical collabo-
ration involves creating an output based on the informa-
tion received from the human performer and on the indi-
cations of the score. Approaches range from modifying,
or "time-warping" an existing audio recording to fit with
the instantaneous timing of the particular performance [4],
to generating a new digital performance of the accompa-
niment part from the score. Particularly germane to our
present approach is the work of Cancino-Chacón et al. [6],
which envisages a musician playing a physical piano that
automatically accompanies him/her, responding to spon-
taneous changes in tempo, dynamics, and expression. In
pursuing a similar goal, we have started from a more mod-
ular approach, by focusing first on the rhythmic aspect of
collaborative music making.

In our previous work [10], we developed and trained a
model on data that we collected from human musicians
whom we asked to perform, in a controlled environment,
a task identical to the intended application of the model.
Our work thus does not take perfect synchronization as
the ideal, but rather endeavors to imitate human responses.
In this paper, we describe a set of experiments that were
designed for testing the model’s performance in playing
along with human pianists. The rest of this paper is or-
ganized as follows: Sec. 2 defines our data structure for
representing musical interpretation in the MIDI environ-
ment; Sec. 3 reviews the construction of the present model,
and how it incorporates the Kuramoto coupling equations;
Sec. 4 describes our experiments; Sec. 5 presents objective
evaluations of their results; our experiment subjects’ im-
pressions are reported in Sec. 6; and discussion and con-
clusion are given in Sec. 7 and 8, respectively.
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Figure 1. The role of the classical musician. The tasks
within the dotted box apply when collaborating in an en-
semble.

2. SCOPE

In this work, we represent scores as an ordered list of
events, each following the format (type, note number, score
position), where:

• "type" is "note-on" or "note-off";

• "note number" is the pitch designation according to
MIDI;

• "score position" is the number of beats since the be-
ginning of the piece.

The order of the list is determined by score position first,
type second, and note number last. This method allows us
to associate each relevant element of a score to a unique
index number. In particular, each note is composed of a
note-on event and a note-off event.

With our assumptions of a MIDI piano (excluding pedal)
as our instrument, and error handling being outside of our
scope, we can define an "interpretation" as the data of the
score, as set out above, combined with information on how
each event is performed. Specifically, to each event we as-
sociate the attributes of time and velocity. We may thus
record an interpretation as an array of dimension 2𝑁 × 6,
where 𝑁 denotes the number of notes in the score, such
that each row of this array follows the format of (index,
type, note number, score position, time, velocity). This
method also allows us to consider partial interpretations,
where all score events are included, but not all events’ at-
tributes are defined.

In this framework, we may visualize the task of collabo-
rative music making according to Figure 1.

3. MODEL

In this section we briefly recapitulate the essential as-
pects of our model. Its design is inspired by the appli-
cation of Kuramoto oscillators [8] to biological phenom-
ena [11], in particular to the synchronization of human
tapping [12]. Although music obviously involves many
complexities that do not appear in the referenced tapping
task, we can make use of the same fundamental concept
when we consider rhythm to be based on a more-or-less
consistent beat, whose changes are subject to synchroniza-
tion across players. We applied the model in the following
environment: a human plays a one-voice part on a MIDI
keyboard, while the model plays a second one-voice part,
which we call here the "accompaniment" (though it may,
in musical terms, instead represent the melody).

Figure 2. 3-oscillator Kuramoto model, as adapted for use
in our model.

The model consists of 3 oscillators 𝜔1, 𝜔2, 𝜔3 that are
coupled as in Figure 2. Their positions are determined by
the coupling equations:

𝑑𝜃𝑖(𝑡)

𝑑𝑡
=

∑︁
𝑗 ̸=𝑖

𝑘𝑖𝑗sin
(︀
𝜃𝑗(𝑡)− 𝜃𝑖(𝑡)

)︀
+Ω𝑖(𝑡), (1)

for 𝑖, 𝑗 ∈ {1, 2, 3}, where 𝜃𝑖 represent the positions of
the respective oscillators, Ω𝑖(𝑡) their intrinsic speed, and
𝑘𝑖𝑗 the coupling coefficients (with only 𝑘21, 𝑘23, 𝑘32 being
non-zero, as per Figure 2).

For our application, since we treat music as consisting
of discrete events, and no information is produced or ex-
changed between events, we must undertake certain non-
trivial adaptations to the Kuramoto model. (See our previ-
ous publication [10] for details.)

By extrapolating the movement of 𝜔3, the Kuramoto os-
cillator system produces a series of predictions {𝑇𝑚} for
the timings of subsequent events. Human instinct for
the behavior that we are seeking to model served as the
blueprint for integrating this system into our model. In par-
ticular, we presume that a human musician does not wait
for each note before reacting; instead, he/she predicts how
their partner will play, and how in consequence they should
play, adjusting their prediction with every piece of new in-
formation that reaches their ears. We model this behavior
by the following protocol:

1. the model makes a prediction of the timings of all
future events up to a certain number of beats ahead;

2. the expected output based on this prediction is en-
tered into a queue;

3. any time new information is received, a new predic-
tion is made, and the following actions are executed:

(a) output events that have already occurred will
not be repeated, even if according to the new
prediction they should be yet to occur;

(b) output events that have not yet occurred, but
that according to the new prediction should
have already occurred, are carried out at once;

(c) all other output events are updated in the
queue according to the new prediction.

In this framework, it seemed reasonable to introduce a
parameter 𝑡𝑟 reflecting reaction time. That is, the above
protocol is carried out after 𝑡𝑟 has elapsed from the note
having received. We denote by {𝑇 *

𝑚} the timings of the
output events hereby generated.



After performing a behavior-capturing experiment [10]
with 20 subjects, for a total of 120 recordings, we searched
for the parameters 𝑘21, 𝑘32, 𝑘23 and 𝑡𝑟 that best fit the re-
sulting data. Applying a gradient descent method over
𝑘𝑖𝑗 , 𝑡𝑟 revealed a landscape with many local minima of
similar value in the region of 5 ≤ 𝑘𝑖𝑗 ≤ 10 and 𝑡𝑟 ≈
0.1 seconds. We thus chose the values used in subsequent
experiments to be 𝑘21 = 𝑘32 = 𝑘23 = 5, 𝑡𝑟 = 0.1 seconds.

We programmed our model in Python, connecting it to
MIDI input and output with RtMidi 1 . The program makes
use of a clock (current_time), two queues (input and
output), and 3 threads:

• inputreading records MIDI input events and
their timing into the input queue;

• calculating matches each object as it appears
in the input queue to the score, generating {𝑡𝑛}, and
computes 𝜃1 up until current_time by linear in-
terpolation of the input onsets {𝑡𝑛}. It then calcu-
lates 𝜃2, 𝜃3 according to Equation (1) and by extrap-
olating 𝜃3 produces a sequence {𝑇𝑚} of output tim-
ings;

• worker applies the protocol described above to
output the notes at time {𝑇 *

𝑚}.

While error-handling is outside the scope of this research,
we included a simple method to redeem minor mistakes.
The calculating thread continuously keeps track of
the last input note received, say, the 𝑛th note. When it
receives (from inputreading) the next event, it first
checks if the pitch corresponds to (𝑛 + 1)th or (𝑛 + 2)th

input note according to the score. In the former case, the
action proceeds normally; in the latter case, the (𝑛 + 1)th

note is inserted with an identical timestamp. In any other
case, the event is simply ignored. With this method, errors
of the following nature — replacing a note with a wrong
note, playing an extra note, or omitting a note — will only
cause at most a local disturbance.

Furthermore, we implemented a simple method for fol-
lowing the human player’s dynamics: with each new input,
the program calculates the average of velocities of all (cor-
rectly played) input notes whose score position falls within
the last beat at the time of calculation. This produces a run-
ning average 𝑣𝑛, to which we apply a linear transformation
𝑉𝑛 = 𝛼𝑣𝑛 + 𝛽 (the parameters determined by perceived
musical preference – when the output represents a melody,
we set 𝛼 to be greater than when it is an accompaniment).
All subsequent output notes are then provided with veloc-
ity 𝑉𝑛. Upon the arrival of the (𝑛 + 1)th note, the output
velocity will become 𝑉𝑛+1, and so on.

4. EXPERIMENTS

To test the performance of our model, we designed a test
in which a collaboration between a human and our model
could be compared in near-identical conditions to a col-
laboration between two humans. We set up two MIDI

1 https://spotlightkid.github.io/python-rtmidi/

Figure 3. Hardware and human-interaction setup in the
experiments

keyboards, and connected them to a computer which ran
on macOS Catalina (version 10.5.7) with Intel Core i5
1.6GHz Dual-Core CPU and 4 GB RAM, as in Figure 3.
All sound was routed through the computer’s MIDI out-
put, connected to a set of speakers. This setup allowed for
the sounds to be indistinguishable, whether they are occa-
sioned by an input on either of the keyboards or generated
by the computer.

The experiment runs as follows: the subject is seated
at keyboard 1 (KAWAI K-300 upright piano with AK-01
Touch Sensor), while an experimenter is seated at key-
board 2 (M-Audio ProKeys Sono 61), unseen by the sub-
ject. The subject is asked to play one part of a piece of
music. The experimenter, without announcing their inten-
tion, chooses for the single trial in question either proce-
dure 𝐴, in which the computer “plays” the second part by
running the model, or procedure 𝐻 , in which the experi-
menter plays it. 2 The subject, who has no knowledge of
which case applies, is then asked whether he believes to
have been playing with a computer or with a human. Lis-
teners present in the room, but not looking at the opera-
tion of the experiment, are also asked whether they heard a
human-computer or a human-human performance.

When the experimenter chose 𝐴, the program
generated records of the following sequences:
{𝑠𝑛} the timing of the subject playing the input

notes,
{𝑡𝑛} the input timing registered by the program,
{𝑇 *

𝑚} the model-computed timing of output notes,
and

{𝑈𝑚} the timing of the output actually being sent to
the MIDI device,

and saved these in a series of .txt files. For 𝐻 , another
program was run, which simply recorded the inputs of
both keyboards while transferring them for output through
the speakers. For convenience of notation, we reuse the
symbols {𝑠𝑛}, {𝑈𝑚} for the timings of the subject and the
experimenter, respectively.

For the above experiment, we selected 3 pieces of music:

1. W. A. Mozart: “Twinkle, Twinkle, Little Star”
K.265, Theme

2 In order to avoid giving clues through external phenomena such as
keyboard noise, in both cases the experimenter plays, but in the case 𝐴,
his keyboard is not connected.



2. W. A. Mozart: “Twinkle, Twinkle, Little Star”
K.265, Variation II

3. J. S. Bach/C. Gounod: “Ave Maria, Méditation sur
le Prélude de Bach”

In (1) and (2), the participant was to play the right hand part
while the computer (or experimenter) played the left hand.
Each participant was asked to provide four extra notes at
the beginning of each trial to indicate the intended tempo.
In (3), the participant was to play the Prelude by Bach
while the computer (or experimenter) played the melody
by Gounod. To facilitate the task for the participants and
minimize the confounding factor of their pianistic skill, for
(1) and (2) they played a simplified version of the melody
with only quarter notes.

We conducted the experiment with 12 participants, for
a total of 80 trials. Each participant, with the exception of
one, played each piece at least twice, and at least once with
each partner (unknowingly).

5. DATA PROCESSING AND ANALYSIS

With the computer having recorded each trial, regardless of
whether 𝐴 or 𝐻 was chosen, we proceeded to align the per-
formances to the corresponding scores and produce "inter-
pretations" in the form presented in Sec. 2. We constructed
the following automatic protocol:

• First, we separate the two parts, in preparation for
comparing them individually to the parts in the
score.

• Starting from the first MIDI event, we attempt to
identify the corresponding score event by search-
ing for a match within a beat of the next expected
score event. This means that if, for instance, at any
moment the performer consecutively played wrong
notes, or skipped all the notes, during a period of
up to one beat, the next correct note would still be
properly identified.

• Once the MIDI event is matched to the score event,
the time and velocity of the former are written into
the interpretation array, to produce an entry
in the form (index, type, note number, score posi-
tion, time, velocity) as required.

• If no match in the score is found, then the time and
velocity are set to 0.

Each trial of our experiment thus yielded an input inter-
pretation and an output interpretation. We rejected the tri-
als with too many wrong notes, or where the above proto-
col failed for whatever reason to produce a correct align-
ment of score and interpretation. We proceeded to an anal-
ysis of these data, separately and jointly, in the form of
discriminants designed to differentiate between 𝐴 and 𝐻
trials.

Piece Number of trials 𝜇Δ 𝜎Δ

1 14 0.0656 0.0533
2 14 0.0420 0.0344
3 11 0.0254 0.0219

Table 1. Statistics of desynchronization in the 𝐴 trials

Piece Number of trials 𝜇Δ 𝜎Δ

1 13 0.0872 0.0385
2 13 0.0506 0.0921
3 11 0.0478 0.0684

Table 2. Statistics of desynchronization in the 𝐻 trials

5.1 Desynchronization

The first question we investigate is whether between the
machine and the human, one follows "better", i.e. more
tightly. As stated in Sec. 1, our goal in making this model is
not to create "perfect accompaniment", but rather "human-
like accompaniment". Therefore this question, in the ideal
case, should be answered in the negative.

To measure how well-synchronized the two parts are, we
examine those notes which are meant to sound together
according to the score. That is, we extract subsequences
{𝑠𝑘}, {�̃�𝑘} from {𝑠𝑛}, {𝑈𝑚}, respectively,including only
the elements with indices 𝑛,𝑚 such that 𝑝𝑛 = 𝑃𝑚. We
define the desynchronization of a given trial as

∆ =
1

𝑙

𝑙∑︁
𝑘=1

|𝑠𝑘 − �̃�𝑘|, (2)

where 𝑙 is the number of the synchronization points ac-
cording to the score (i.e. the number of elements in the
sequences {𝑠𝑘}, {�̃�𝑘}). In practice, by force of extract-
ing this information from the interpretation arrays, we only
took into account synchronization points that were cor-
rectly played.

In the 𝐴 trials, the statistics of ∆ are shown in Table 1.
The mean 𝜇Δ and standard deviation 𝜎Δ are calculated fol-
lowing the removal of trials where the computer suffered
from unusually high lag (see Section 7). Similarly for the
𝐻 trials, Table 2 shows the statistics following the removal
of outliers containing too many wrong notes for identifying
synchronization points to be practical.

As expected, the average desynchronization is highest for
piece 1, as the score contains the least amount of informa-
tion that a musician can make use of for synchronization.
On the other hand, piece 3, with its running 16th notes in
the accompaniment, allows the player of the melody to ac-
curately predict the arrival time of the next beat in order to
play their corresponding melody note with it.

It is interesting to note that the model, notwithstanding
the fact that it was trained on human behavior, was in all
cases slightly less desynchronized on average than the hu-
man.



Piece Trials 𝜇𝐽 𝜎𝐽

1 A 19 0.719×103 1.405×103

2 A 22 2.817×105 2.556×105

3 A 24 0.716×102 1.355×102

1 H 17 3.074×102 4.069×102

2 H 11 1.205×105 0.947×105

3 H 17 0.699×102 1.546×102

Table 3. Statistics of total jerkiness in the 𝐴 and the 𝐻
trials

5.2 Jerk

It is sometimes said that machine performances sound
jerky when compared to human performances. We tested
this hypothesis using a traditional definition of jerk in me-
chanical movement as the third derivative of position (the
second derivative being acceleration).

From the 2𝑁 × 6 interpretation arrays resulting from hu-
man and machine performances, we extracted the columns
"time" and "score position" of note onsets, and com-
puted the 3rd-order differences to generate a sequence
𝑗1, ..., 𝑗𝑁−3 of jerk values. We then defined a measure of
total jerkiness:

𝐽 =

𝑁−3∑︁
𝑖=1

𝑗2𝑖 . (3)

Table 3 shows the mean 𝜇𝐽 and the standard deviation
𝜎𝐽 of the total jerkiness in the 𝐴 trials and the 𝐻 trials
for the three pieces, respectively. We indeed observe that
for pieces 1 and 2, the computer accompaniment is jerkier
than the human. The fact that this is not the case for piece
3 may be due to the nature of the voice part, which con-
sists mainly of long notes. According to this measure, the
model, with its stated goal of accompanying in a human-
like manner, performed particularly well in piece 3. In Sec-
tion 6, we see that 𝐴 trials of piece 3 were often misidenti-
fied as 𝐻 by participants and listeners alike.

5.3 Velocity Curves

As described at the end of Sec. 3, our model’s output
follows the velocity of its input according to a running-
average-based method. We investigated whether humans,
when performing the same task, exhibit a similar behavior.
To this end, we supposed the MIDI velocity of each output
note of an 𝐻 trial, that is, each note played by the exper-
imenter, to be a linear combination of the velocities of 11
preceding input notes. We then performed linear regres-
sion, with results shown in Figure 4.

We can see that the relationship between the velocities of
the two voice parts is much less direct than assumed. For
comparison purposes, Figure 4 includes the coefficients for
piece 3 in the 𝐴 setting, which are derived from the fact
that since in this part each beat contains 4 notes, our model
averages the 4 input velocities received during the previous
beat.

Figure 4. Regression coefficients for velocity prediction

6. SUBJECTIVE EVALUATION

Immediately following each trial, we asked the subject to
guess the identity of the partner, and inquired about their
reasoning and degree of confidence 𝐶 (from 0 to 100) in
the guess. Separated according to the piece, the results are
shown in Table 4.

Piece Trials Correct Success Rate 𝜇𝐶

1 28 18 64% 69.5
2 28 22 79% 67.1
3 27 9 33% 59.3

Table 4. Subjects’ success rate and their mean confidence
in guessing the identity of the partner (𝐴 or 𝐻)

We asked the same questions to listeners present, with the
results shown in Table 5. These tables are tallied by trials
and persons jointly; if two listeners were present at a trial,
their opinions are counted as if one listener were present at
two trials.

Piece Trials Correct Success Rate 𝜇𝐶

1 14 12 86% 79.3
2 14 5 39% 75.0
3 10 1 10% 74.0

Table 5. Analogous data to Table 4 for the listeners

In total, 49/83 (59%) of the guesses by the performing
participants themselves were correct, vs. 18/38 (47%) by
the listeners. However, the listeners had higher average
confidence in their guesses than the performing partici-
pants.

The fact that both groups’ guesses for piece 3 were sig-
nificantly worse than chance suggests the presence of false
expectations. We experienced subjectively our model’s
performances of the Gounod melody as not sounding “me-
chanical” in the way that one might be preconditioned to



Piece 𝜇 max 𝜎
1 0.0101 0.0620 0.0068
2 0.0105 0.0942 0.0069
3 0.0116 0.2095 0.0088

Table 6. Statistics of the input lag (in seconds)

Piece 𝜇 max 𝜎Δ

1 0.0052 0.0508 0.0070
2 0.0053 0.1131 0.0076
3 0.0041 0.0588 0.0061

Table 7. Statistics of the output lag (in seconds)

assume.
Though our focus is on the "musicality" of collaborative

performance, other factors inevitably come into play when
dealing with responses to such a general question as iden-
tifying a partner as human or machine. For instance, the
synchronization of key noises to the accompaniment heard,
despite our best effort to play along on a disconnected key-
board in 𝐴 trials, might have served as a clue. The presence
or absence of missing or wrong notes in the accompani-
ment also revealed itself as a telling difference, as errors
were unique to the human partners. We tried to minimize
this factor by playing our part carefully, and, in the event
of being asked by the participant, suggesting that we pos-
sibly programmed the model to introduce random errors.
Nevertheless, the participants might have drawn upon this
rationale all the same to distinguish between our model and
the human.

7. DISCUSSION

In the course of setting up our experiment, we determined
by trial and error that the highest framerate at which our
equipment was able to run the program smoothly was
about 𝑓 = 100/sec. That is, the output timing predictions
(see Sec. 3) were updated 100 times per second. Note that
the input and output timestamps were not quantized, but
rather calculated with the maximum precision offered by
our MIDI interface.

Nevertheless, even with the program running smoothly,
non-negligible sources of lag affected both the input and
the output; the program received the input events later than
they occurred, and the output sent to the speakers was de-
layed with respect to the actual calculated output of the
program. In the notation of Sec. 4, 𝑡𝑛 > 𝑠𝑛 and 𝑈𝑚 > 𝑇 *

𝑚.
We measured the input lag (𝑡𝑛 − 𝑠𝑛) and its mean, max-

imum value, and standard deviation across all trials of a
given piece are shown in Table 6. Similarly, the statistics
for the output lag (𝑈𝑚 − 𝑇 *

𝑚) are shown in Table 7.
As we see, the severity of the lag depended on the rates

of input and output notes, the second piece being heavy
in output and the third being heavy in input. Due to the
construction of the model, input lag mainly affects the re-
freshing of the predictions (as prompted by the protocol
described in Section 3), which while undesirable, is often
unnoticeable since with a reasonably consistent tempo the
new predictions are usually similar to the old ones. How-

ever, output lag has a more noticeable effect, as it directly
delays what the listener hears. In the second piece, which
requires up to approximately 10 output notes per second,
notes were on occasion sounded up to 0.1131 seconds later
than intended.

Our experiment subjects frequently commented on the
feeling of being slowed down by their partner. It is reason-
able to surmise that the lag described here is a significant
contributor to this phenomenon.

A priori expectations regarding automatic accompanists
play a significant role in experiments such as ours. Not
only do they impact subjective evaluations after the exper-
iment, they might also affect how the subjects play during
the experiment. We have attempted to separate such effects
through our "blind trial" design, in which the partner was
chosen at random between a human and a machine.

We have chosen the repertoire pieces primarily based on
their prevalence. That is, most people who have learnt the
piano are familiar with the works in question, and poten-
tial problems of being unable to read or play them flu-
ently were avoided. There exist surely classical works
which, in a comparable test situation, would make the dif-
ferences between human and machine performance more
or less apparent. At one end of the spectrum, a piece where
the part includes extended and important solos would lead
to the performer being recognizable, and in particular, a
machine being identified as such. On the other hand, a
recitative-like accompaniment might be relatively easy to
imitate. Indeed, this idea is upheld by the fact that our
participants correctly identified the partner in the piece
with the busy accompaniment (Mozart, Variation 2) much
more often than in the piece where the roles are reversed
(Bach/Gounod).

It is somewhat surprising that although the velocity-based
discriminant presented in Section 5.3 identified an obvious
difference between human and machine performances, it
apparently did not have a bearing on the subjective evalu-
ation by our participants. Further experiments may eluci-
date whether this aspect might be considered unimportant,
or the present results were confused by unclear or diverse
expectations. For example, if half of the participants con-
sider that following their dynamic curve is a characteristic
machine trait while the other half considers it to be char-
acteristically human, analyzing the data as we have done
would yield no result.

Compared with a real musician, our model only makes
use of a small portion of the information theoretically
available during a collaborative performance. Beyond the
knowledge of the notes of a score, it has no intrinsic un-
derstanding of its musical content, simply continuing at a
constant tempo and dynamic in the absence of continued
external input. In fact, it only listens to the timing of its
partner and, somewhat crudely, to their dynamics. Other
aspects, such as the length of notes (often referred to as "ar-
ticulation") as well as more complex paradigms of phras-
ing would appear intuitively desirable for natural-seeming
musical collaboration.



8. CONCLUSION

In the context of creating an AI performer in a classi-
cal music environment, our model represents an attempt
to capture certain aspects of how human musicians inter-
act with each other during an ensemble performance. To
this end, we have designed it starting from concepts re-
flecting our experience as musicians, and adjusted it using
data gleaned from accompaniment and collaboration trials.
When we set the trained model to play together with ex-
ternal experiment participants, we were able to collect in-
formation that allows us to analyze its performance, com-
pared with that of humans recorded under nearly identical
circumstances. As part of the experiment, participants and
listeners were asked to distinguish, in a blind-trial-like set-
ting, between human and machine. In this paper we pre-
sented some measures that quantify salient aspects of the
quality of collaboration. A certain number of them, when
applied to our data to evaluate the extent to which our
model resembles human musicians, produce results that
appear to be in accordance with, and perhaps explicative
of the participants’ responses.
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