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ABSTRACT

We present an approach to geometrically represent and
analyze the harmonic content of musical compositions
based on a formalization of chord sequences as spatial tra-
jectories. This allows us in particular to introduce a tool-
box of novel descriptors for automatic music genre clas-
sification. Our analysis method first of all implies the
definition of harmonic trajectories as curves in a type of
geometric pitch class spaces called Tonnetz. We define
such curves by representing successive chords appearing
in chord progressions as points in the Tonnetz and by con-
necting consecutive points by geodesic segments. Follow-
ing a recently established hypothesis that assumes the ex-
istence of a narrow link between the musical genre of a
work and specific geometric properties of its spatial rep-
resentation, we introduce a toolbox of descriptors relating
to various geometric aspects of the harmonic trajectories.
We then assess the appropriateness of these descriptors as
a classification tool that we test on compositions belong-
ing to different musical genres. In a further step, we de-
fine a representation of transitions between two consecu-
tive chords appearing in a harmonic progression by vectors
in the Tonnetz. This allows us to introduce an additional
classification method based on this vectorial representation
of chord transitions.

1. INTRODUCTION

Using the Tonnetz — that is primarily defined to describe a
spatial organization of pitch classes — as the main frame-
work for automatic music genre or music style classifica-
tion is a task put forth by recent works in Computational
Musicology and Music Information Retrieval.

In terms of common formalization and usage, the Ton-
netz can be considered to be a two-dimensional triangu-
lar grid, whose vertices represent different pitch classes
pE Z/IZZ' The neighboring relationships between these
pitch classes are determined by three pitch-class intervals
ir € L9y (for k € {1,2,3)}), that describe the intervallic
relations between pitch classes along each of the three axes
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Figure 1. Representation of the Tonnetz based on a two-
dimensional triangular grid. The different vertices of the
grid represent pitch classes from 0 (or C) to 11 (or B).
In this example, the neighboring relationships between the
different pitch classes are generated by the pitch class in-
tervals 1 = 3 (along the horizontal axes), io = 4 (along
the vertical axes) and i3 = 5 (along the oblique axes).

of the Tonnetz grid. An example of a geometric realization
of the Tonnetz is illustrated in Figure 1.

In recent approaches, Bigo et al. [1,2] and Karystinaios et
al. [3] introduce formalizations that allow to represent the
entire harmonic content of musical pieces by trajectories
in the Tonnetz. More precisely, by basing themselves on a
vision of the Tonnetz as a simplicial complex, they propose
to represent chord progressions by chord complexes. These
chord complexes are constructed as the union of the pitch
classes forming the considered chords and all the edges
connecting these pitch classes. Louis Bigo then establishes
the hypothesis that there exists a significant link between
the style assigned to musical — and especially harmonic —
content and certain geometric aspects of the spatial repre-
sentation of this musical content. In particular, he intro-
duces a measure to assess the compactness of such a rep-
resentation in the Tonnetz.

Following the research paradigm implying such har-
monic trajectories, we present, in this paper, a novel
method to spatially represent chord progressions by curves
in the Tonnetz. Contrary to the works of Bigo et al. and
Karystinaios et al., our mathematical formalism involves
describing the Tonnetz as a continuous space by embed-
ding it on a flat torus (section 2.1). This allows us to de-
fine a procedure to represent chords by individual points in
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this continuous Tonnetz (section 2.2). Relying on this the-
oretical context, we then construct curves — our Tonnetz
trajectories — that represent entire chord progressions by
gradually connecting the positions in the Tonnetz of suc-
cessive chords (section 2.3). Once these trajectories have
been constructed, we consider a formalism that allows us
to represent transitions between two consecutive chords as
vectors in the Tonnetz, that we shall call transition vectors
(section 2.4).

In order to measure various geometric aspects of our Ton-
netz trajectories, we introduce a toolbox of several trajec-
tory descriptors that are conceived to relate to specific ge-
ometric properties and spatial qualities of the trajectories
(section 3). We then use both trajectory descriptors and
transition vectors as features for automatic style classifica-
tion (section 4).

Through our research, we explore a novel way of ge-
ometrically representing and analyzing musical harmony.
By defining Tonnetz trajectories, transition vectors and
trajectory descriptors, we propose novel formalisms and
tools developed for analytical tasks in computational mu-
sic analysis and music theory. By using our tools as classi-
fier features, we demonstrate novel applications in the field
of automatic style classification of music.

2. TONNETZ TRAJECTORIES
2.1 Embedding the Tonnetz on a flat torus

The geometric and topological properties of the Tonnetz
and its generalizations as well as its suitability as a tool
for harmonic analysis have been the subject of numerous
mathematical and musicological studies (see e.g. [4-9]).
For the purposes of this article, we restrict our approach to
the Tonnetz generated by the pitch class intervals 3, 4 and 5
that we initially consider to be a pitch class based, labeled
graph. In this graph, the different nodes are labeled by the
12 pitch classes such that each pitch class is represented
exactly once and such that the neighbors of each pitch class
are exactly the pitch classes that are either a minor third, a
major third or a fifth away.

Our actual formalization of the Tonnetz — that, hence-
forth, we shall denote by 7 (3,4, 5) — is then based on the
observation that this graph is toroidal (see e.g. [5] for an
in-depth study of the geometric and topological properties
of different Tonnetz generalizations). This shall allow us to
naturally embed the graph of the Tonnetz on a flat torus ' .
To be more precise, we propose to consider the rectangular

flat torus 2 )

_R
T=" 4z x 32) M
together with the canonical projection
7:R? > T. (2

We then define our embedding of the Tonnetz graph on this
specific rectangular flat torus by associating, for i, j € Z,

! (seee. g.[10,11] for a detailed theoretical framework on flat tori)

2 An equivalent definition describes this rectangular flat torus as the
quotient space of R? under the identifications (z,y) ~ (x + 4,y) ~
(z,y + 3) for all (x,y) € R2.
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Figure 2. Visualization of the Tonnetz space 7 (3,4, 5).
The embedding of the Tonnetz on a flat torus is character-
ized by the rectangular fundamental region of the flat torus
with a pairwise identification of the opposites sides.

the node labeled by the pitch class (—3i +47) mod 12 with
the point (4, j) on the flat torus.

As visualized in Fig. 2, the resulting Tonnetz space corre-
sponds to the rectangular fundamental region of the under-
lying flat torus that pairwise identifies its opposites sides.
The pitch class 0 (or C) becomes assigned to the point with
coordinates (0,0). All horizontal axes represent interval
leaps corresponding to the pitch class interval 3, vertical
axes correspond to the pitch class interval 4, oblique axes
to the pitch class interval 5.

2.2 Placing chords in the Tonnetz

Aiming to use the Tonnetz as a harmonic space, we follow
the examples of Bigo et al. [1,2] and Karystinaios et al. [3]
and propose to expand the representation potential of the
Tonnetz as a pure pitch class space to that of a pitch class
set space. The two approaches mentioned tackle this rep-
resentation problem by considering chords as being repre-
sented in the Tonnetz by chord complexes built up from all
the pitch classes defining the chord in question as well as
the edges connecting these pitch classes.

In contrast to this approach, we propose a method that
represents chords as isolated points (rather than larger
complexes) in the Tonnetz. Therefore, we suggest to deter-
mine the centroid of all the pitch classes defining a chord.

More precisely, given a chord in the form of a pitch class
set C of size N € {1,...,12}, we consider the set of all
nodes {Py,}ncqo,. . n—1} in the Tonnetz space 7 (3,4,5)
(as defined in section 2.1 via an embedding on a flat torus)
that are labeled by the pitch classes defining C.

In a second step, we unfold our flat torus Tonnetz in or-
der to obtain, for n € {0,...,N — 1}, the preimages
7 1({P,}) C R? under the projection map 7 of these la-
beled nodes.

Among these preimages, we then construct all the N-
polygons® P of minimum perimeter whose corners are
labeled exactly once by the different pitch classes of the
initial pitch class set C.

In a last step, we determine the centroids (or geometric
centers) Gp of all these polygons of minimum perime-
ter and place them back into Tonnetz space 7 (3,4, 5) via

3 (i.e. polygons with exactly N corners)
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Figure 3. Illustration of the placement procedure for the
pitch class set [0, 4, 7, 10] (corresponding to the chord C7)
in the Tonnetz 7 (3,4,5). We therefore place ourselves
in an unfolded version of the Tonnetz (upper part of the
figure). In this unfolded Tonnetz embedded in R?, we first
determine all the polygons bounded by the pitch classes
0, 4, 7 and 10 that have minimum perimeter (marked in
blue) and computer their centroids (marked in red). These
centroids are then transported back to the original folded
version of the Tonnetz via the projection map 7 and finally
define the position that represents our given pitch class set
[0,4,7,10] in the Tonnetz.

the projection map 7.* Finally, we choose to define the
placement of the pitch class set C by the set of all points
m(Gp) € T(3,4,5) found through this procedure.

In Fig. 3, we illustrate the hereabove described placement
procedure for the pitch class set [0, 4, 7, 10], corresponding
to the chord C”.

Having defined a procedure to represent chords (given
in the form of pitch class sets) by isolated points in the
Tonnetz, we are now set to represent chord progressions
by trajectories (defined in the following section 2.3) and
chord transitions by vectors (defined in section 2.4) in our
Tonnetz space T (3,4, 5).

4 In this step, it becomes apparent why it is necessary to first unfold the
Tonnetz space. Indeed, some chords, such as the chord described by the
pitch class set [1,4, 7, 10], allow multiple equally valid positions in the
Tonnetz. By unfolding the Tonnetz, line segments connecting the pitch
class 4 to the pitch class 7, or connecting the pitch class 1 to the pitch
class 4, or connecting the pitch class 10 to the pitch class 1, or finally,
connecting the pitch class 7 to the pitch class 10, all describe polygons of
minimum perimeter that pass through all the pitch classes of the chord.
Thus, these line segments induce four valid positions for the pitch class
set [1,4,7,10] in the Tonnetz under the projection map .

3 In the following sections, we shall use the term chord progression
to denote a succession of pitch class sets, the term chord transition to
denote a chord progression of length 2, i.e. a succession of two directly
consecutive pitch class sets.

2.3 Trajectories representing chord progressions

Basing ourselves on the above described procedure to rep-
resent chords by points in the Tonnetz, we propose to intro-
duce a method to represent chord progressions by curves.
Intuitively, given a chord progression (Cy,...,Cn_1),
we therefore trace a piecewise affine curve in the Tonnetz
that connects the successive positions associated with the
different pitch class sets C,, (forn € {0,...,N — 1}).

As a matter of comprehensibility, we here present our
construction algorithm for such Tonnetz trajectories by as-
suming that the first chord of a given chord progression ad-
mits only one unique representation, i.e. as a single point
in the Tonnetz. ¢

Under this assumption, the construction algorithm for
Tonnetz trajectories is iteratively established as follows:

First of all, the position of the initial chord C shall define
the starting point z¢ € 7 (3,4, 5) of the trajectory.

Then, forn = 1,..., N — 1, it is necessary to distinguish
between two cases.

If the chord C,, is represented by a unique point z,, in
the Tonnetz, we newly construct the minimal geodesic seg-
ment joining the position x,,_1 € T (3,4, 5) (which is the
position of the previously placed chord C,,_;) to the point
Ty € T(3,4,5).

If, however, the chord C,, admits several positions in the
Tonnetz, we propose to arbitrarily privilege the position
closest to the point z,,_1 € T(3,4,5) (which is, again,
the position of the previously placed chord C,,_). If then,
still more than one point comes into question, we privilege
the position such that the oriented angle between the vec-
tor (1, 0) and the velocity vector of the newly constructed
geodesic segment becomes minimal.

In any of these cases, we denote the newly constructed
minimal geodesic segment by 7y, : [n—1, n] = T (3,4, 5).

Our final trajectory shall eventually be given by the
concatenation of the N — 1 found geodesic segments 7,
(forn=1,...,N —1).

By way of example, we show, in Fig. 4, the
step by step construction of the trajectory represent-
ing the chord progression Cmaj—C7 —Fmaj—Fdim’
— or, in terms of pitch class sets, the progression
([0, 4,7, [0,4,7,10], [0,5,9], [0,3,6,10]).

2.4 Transition vectors representing chord transitions

Based on this trajectory construction procedure, we natu-
rally define a way of representing a transition between two
chords by a vector in the Tonnetz. For this purpose, let
(Co, C1) be a chord transition represented by a trajectory
consisting of a geodesic segment between two points g
and x; in the Tonnetz space 7 (3,4,5). We furthermore
consider the parametrization:

7:[0,1] = T1(3,4,5), ©)

6 As seen in section 2.2, some chords, especially chords showing spe-
cific symmetries, indeed admit more than one valid position in the Ton-
netz. Diminished seventh chords, for instance, are represented by 4 sym-
metrically distributed points.
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Figure 4. Step by step construction of the
trajectory  representing  the chord  progression
([Oa 47 7]7 [O? 47 77 10]) [Oa 9, 9]’ [07 3,6, 10]) The be-

ginning of the trajectory is given by the minimal geodesic
segment connecting the positions of the chords [0,4, 7]
and [0,4,7,10] (upper right part of the figure). We
then determine the minimal geodesic segment between
the positions of the chords [0,4,7,10] and [0, 5,9], that
visually passes through the four sides of the rectangular
fundamental region of the Tonnetz space (lower left part
of the figure). The last step requires determining the
point closest to the chord [0, 5,9] among the four points
representing the chord [0,3,6,9] in the Tonnetz (lower
right part of the figure).

with v(0) = xo and (1) = x; of this geodesic segment.
Then, we define the transition vector associated with the
chord transition (Cy, C;) by the velocity vector:

7' (0) € T, T(3,4,5) = R?, @)
where T,,7(3,4,5) denotes the tangent space of
T(3,4,5) in the point (.

3. TRAJECTORY DESCRIPTORS

As an essential part of the framework of our research, we
globally follow the paradigm — significantly put forth by
the works of Bigo et al. [1] and by Karystinaios et al. [3]
— that presumes the existence of a narrow link between the
stylistic nature assigned to the harmonic content of a mu-
sical piece and specific geometric characteristics of its cor-
responding spatial representation. In order to measure or
capture various properties of our Tonnetz trajectories, we
introduce a toolbox of several descriptors that we specifi-
cally designed to describe geometric aspects of these tra-
jectories and that can potentially be related to harmonic
characteristics of the represented chord progressions.

In Table 1, we give an overview of all the trajectory de-
scriptors introduced below.

Later, in section 4, we propose an application towards
testing these trajectory descriptors as features implied in
an automatic classification tool for chord progressions.

In the following sections, we assume that a Tonnetz tra-
jectory of length IV, i.e. a trajectory representing a chord
progression of length IV, is given by the parametrization:

®

where, forn = 0,..., N — 1, the point I'(n) corresponds
to the position associated to the trajectory’s nM chord in
the Tonnetz.

I': [0, N-1] — T(3,4,5),

3.1 The number of different transition vectors

From the definition of transition vectors introduced in sec-
tion 2.4, it follows intuitively that chord transitions of the
same nature are represented by vectors of the same length
and direction.” In particular, this entails that any suc-
cession of specific scale degrees (e.g. the progression
II- V7 —vi in a major scale) is represented by the same
succession of transition vectors when being transposed.

This simple observation leads us to introduce a first tra-
jectory descriptor that counts the number of different tran-
sition vectors that appear within a given trajectory. This
shall allow us to obtain a first estimation on the variety of
chord transitions used in a chord progression and, thereby,
an estimation on the richness of the harmonic language in
use.

3.2 The number of different vector orientations

As a descriptor that is closely linked to our first descrip-
tor (counting the number of different transition vectors in a
trajectory), we propose to additionally take count of the
number of different vector orientations. Practically, we
therefore consider collinear vectors as being part of a same
collinearity class and by counting the number of collinear-
ity classes. Geometrically, this boils down to counting the
number of axes in the Tonnetz along which a given trajec-
tory evolves.

3.3 The number of triangular regions visited by a
trajectory

The Tonnetz 7 (3,4, 5) being generated by interval classes
corresponding to the minor and major thirds as well as the
fifth, it naturally turns out to be a geometric space that is
well-suited for representing major and minor triads. In-
deed, it is obviously apparent that the pitch classes defining
major and minor chords delimit triangular regions inside
the Tonnetz space 7 (3, 4,5). In order to estimate the tonal
mobility of a given chord progression, we propose to take
advantage of this property and count the number among
these triangular regions that the trajectory of this chord
progression passes through. We particularly reckon that
highly modulation progressions, by visiting a high number
of tonalities, imply trajectories that traverse a high number
of triangle regions.

7 The formal framework presented in this paper does not, however,
allow to establish a one-to-one correspondence between the set of possi-
ble transition vectors and the set of all possible chord transition natures.
In other terms, two vectors of the same length and direction may repre-
sent two chord transitions of different nature. A more refined representa-
tion method, for instance by assigning different heights to different chord
types, may help remedy this issue, but is not required in the context of the
basic definitions of our trajectory descriptors.
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3.4 Distances between chords and angles between
transition vectors

Still pursuing the idea of estimating characteristic aspects
of the tonal path of a composition, we take into account
the average distance between two successive chords. More
formally, given the parametrization of a Tonnetz trajectory
as defined by (5), the average distance between two suc-
cessive chords can be given by the formula:

N-1
distances(I") := % Z d7(3,4,5) (F(n)a F(n+1)), (6)

n=0

where d7 (3 4 5) denotes a distance function on the Tonnetz
space 7 (3,4,5).

As a further descriptor that estimates the average evolu-
tion of a trajectory, we propose to also assess the angles be-
tween consecutive transition vectors. Formally, we there-
fore determine the absolute values of the cosine similarity
between two consecutive transition vectors. 8 Our descrip-
tor is then given by the average of these values along an
entire trajectory i.e., considering again the parametrization
(5), we obtain:

2

-2

- 1 .

cos similarities(I") := Vi Vntl , (D
N1 2 |[vall Vol

where, forn = 0,...,N — 2, v,, and v,, 41 denote the

transition vectors originating from the n™ and the (n + 1)
chord respectively and where v,, - v,, 1 denotes the stan-
dard Euclidean dot product between these two vectors.
Having introduced these two descriptors, we additionally
propose to include in our descriptor toolbox the standard
deviation associated with these latter average values.

3.5 The width of a trajectory

In order the get a certain impression of the width of a tra-
jectory (starting with chord I'(0) and ending with chord
I'(n — 1) according to the parametrization (5)), we pro-
pose to compare it to a straight line connecting I'(0) with
I'(n — 1). As such a comparison turns out to be not triv-
ial in a quotient space such as our flat torus Tonnetz space,
we propose again to unfold our Tonnetz and, thereby, also
unfold our given trajectory.

Similar to the unfolding done in section 2.2, we therefore
consider the preimage under our canonical projection 7 of
the given trajectory I'([0, N — 1]). The obtained preimage

n~t (I‘( [0, N— 1])) shall then correspond to unfolded and

connected versions of the initial trajectory that are now em-
bedded in R?. Among these preimage trajectories embed-
ded in R2, it shall be sufficient for our purposes to select,
as a representative, an arbitrary trajectory that we denote
by I'. Through this unfolded version of our trajectory, we
finally, assess its width by computing the Hausdorff dis-
tance between the curve I'([0, N — 1]) and the straight line
connecting its starting and end points f(O) and f(N —1).

8 This shall give us values closer to 0 the closer two vectors are to
being orthogonal, values closer to 1 the closer two vectors are to being
collinear.

More precisely, we denote by o the straight line passing
through I'(0) and T'(N — 1) in R? and by ©* and ¥~
the half-planes of R? determined by o. Then, our width
descriptor shall be defined by the formula:

width(T) := dg(T NEH, 0) + du(T'NE™, 0), (8)

where dy denotes the Hausdorff distance in R2.

3.6 The inconstancy of a trajectory

Our final descriptor is largely inspired by the work of Jean-
Paul Allouche and Laurence Maillard-Teyssier [12] on the
inconstancy of sequences and curves. The idea that we
adopt in the context of our paper is to assess the global as-
pect of a given curve in R? in terms of its fluctuations or its
curviness, i.e. the more a curve looks irregular, the higher
its inconstancy should be, whereas the more it resembles
to a straight line, the lower its inconstancy should be (and
eventually tend to 1).

As the inconstancy formula presented by Jean-Paul Al-
louche and Laurence Maillard-Teyssier implies curves em-
bedded in the Euclidean plane, we shall again, as described
in the previous section , unfold any given Tonnetz trajec-
tory I in order to obtain a corresponding unfolded trajec-
tory I' embedded in R?.

We then can express, according to the theoretical frame-
work described in [12], the inconstancy of the Tonnetz tra-
jectory I' by the formula:

2 -len(T)

_cenl) 9
per(conv(I")) ®

inconstancy(I") :=

where len(I') denotes the length of the curve I' and
per (conv(f)) the perimeter of its convex hull in R

We introduce this descriptor particularly to verify its ade-
quateness to keep track of the potential tonal unsteadiness
and harmonic richness of given chord sequences. As illus-
trated by Fig. 5, our inconstancy descriptor specifically re-
turns the value 1 for a sequence of descending fifths, while
it returns a higher value for a sequence that moves more

irregularly through different chords and/or tonalities.

4. APPLICATIONS TO STYLE CLASSIFICATION

In order to assess the suitability of our trajectory formal-
ism and specifically the trajectory descriptors introduced
in section 3 as a tool for automatic style classification, we
propose two applications — using, first of all, trajectory de-
scriptors and, in a second step, transition vectors as fea-
tures for classification.

4.1 Data sets, chord extraction and preprocessing

Our method implies the use of MIDI file data sets that
provide pieces belonging to a range of different musical
styles from which we retrieve the harmonic content in or-
der to compute their corresponding trajectories in the Ton-
netz. For all analyses performed within the context of this
paper, we use MIDI files belonging to the MuseData cor-
pus [13] and the Nottingham database [14]. We collected
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Descriptor name Explanation

{transition vectors}

Counts the number of different transition vectors that appear within a given trajectory.

{vector orientations} ’

Considers collinear vectors as being part of a same collinearity class and counts the
number of different collinearity classes within a trajectory.

{visited triangular reglons}’ through.

Counts the number of triangular regions of the Tonnetz grid that a trajectory passes

distances

Computes the average distance between two successive chords.

std(distances)

Computes the standard deviation of all the distances between two successive chords.

cos similarities

Computes the average cosine similarity between two successive transition vectors.

std(cos similarities) transition vectors.

Computes the standard deviation of all the cosine similarities between two successive

Computes the width of a trajectory by considering the Hausdorff distance between the

width unfolded version of the trajectory and the straight line connecting its starting and end
points.
. Estimates the global aspect of a trajectory in terms of its fluctuations or its
mconstancy .
unsteadiness.
Table 1. Overview of all the trajectory descriptors defined in section 3.
0 \9 6 3 0 0 9 6 3 0 4.2 Trajectory descriptor based classification
¢ N \\ . e s s NANT X II.I ord.er to implement a trajectory descriptor based clas-
sification method, we propose to base ourselves on the k-
\ \ X | " : X nearest neighbors (k-NN) algorithm that we use in the style
: ! N\ LI of binary and multiclass classifiers.
\ Therefore, we first perform measures using our descrip-
0 o 6 3 00 9 6 0 tors on the trajectories of randomly chosen pieces be-

Figure 5. Comparison between the trajectories of the chord
progression Dmaj—Gmaj— Cmaj— Fmaj— Bbmaj—Ebmaj
— correspoding to a sequence of descending fifths —
(left side of the figure) and the chord progression
Ffimaj — Bmin — Cmaj— Dmaj— Gmaj—Emaj (right side of
the figure) in terms of their inconstancies. While the first,
very regular progression has an inconstancy of 1.0, the sec-
ond progression, seeming more irregularly fluctuating, has
an inconstancy of about 2.17.

284 pieces in total from the MuseData corpus (including
chorale harmonizations by J. S. Bach, Trio Sonatas by A.
Corelli and various pieces by W. A. Mozart) and 287 pieces
from the Nottingham database (consisting of a large collec-
tion of British and American folk tunes). Throughout the
following sections, these four stylistic contexts shall define
our target classes (referred to as Corelli, Bach, Mozart and
Nottingham) for all classification tasks undertaken.

For each of the MIDI files in our data set, we extract the
harmonic content in the form of sequences of pitch class
sets using the Python library music21 [15]. Then, for each
of theses sequences of pitch class sets (or, returning to
the term used above in this paper, for each chord progres-
sion), we determine its Tonnetz trajectory. Subsequently,
we consider all the values measured using our trajectory
descriptors as well as all the transition vectors implied by
the chord transitions represented by the trajectory.

longing to two or more different styles represented in our
database. As we are dealing with descriptors that might
be impacted by the lengths of the analyzed trajectories, we
propose, at this stage of our method, to randomly select
trajectory extracts of the same length IV to eliminate any
length-related bias. More precisely, each of the pieces of
our database shall be represented by exactly one trajectory
of length IV that is selected from a random starting posi-
tion within the considered piece. Throughout all the clas-
sification tests described here below, we propose to set the
length of each of the computed trajectories to N = 20.

In a next step, we apply the different descriptors defined
in section 3 to each of these extracted trajectories and nor-
malize the obtained values with respect to their mean and
standard deviation.

In a final step, we use the k-NN algorithm to assess the
adequateness of our trajectory descriptors as features for
binary and multiclass classification. For this purpose, we
choose, for each series of tests, two to four classes present
in our data set (e.g. Bach chorales and folk tunes from the
Nottingham database for a series of binary classification
tests). We then split the chosen data into a training and
a test set such that the test set contains exactly 10 pieces
(represented by their respective trajectory extracts). We
eventually train our k£-NN classifier on the training set and
evaluate its predictions with respect to the test set using the
accuracy metric implemented by the formula:

number of correctly classified pieces

accuracy := . (10)

total number of pieces

In Table 2 and Table 3, we give an overview of all the re-
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Styles to classify Avg. accuracy
Corelli | Bach 0.80
Corelli | Mozart 0.82
Corelli | Nottingham | 0.95
Bach Mozart 0.84
Bach Nottingham | 0.94
Mozart | Nottingham | 0.92

Table 2. Results obtained by using trajectory descriptors
as features for binary classification.

Styles to classify Avg. accuracy
Corelli, Bach, Mozart 0.69
Corelli, Bach, Nottingham 0.73
Corelli, Mozart, Nottingham 0.73
Bach, Mozart, Nottingham 0.75
Corelli, Bach, Mozart, Nottingham | 0.67

Table 3. Results obtained by using trajectory descriptors
as features for multiclass classification.

sults obtained throughout our descriptor based binary and
multiclass classification tests.

All the tests in the series referred to in Table 2 and Ta-
ble 3 were performed by using values obtained using six
of our total of nine trajectory descriptors: the number of
different transition vectors, the number of different vector
orientations, the number of visited triangular regions, the
average distance between successive chords, the standard
deviation of all these distances and the inconstancy. We
justify this selection by our observation that this specific
set of descriptors allowed us to achieve the most consistent
results over all our test series.

For each of the considered classes, we repeated our test-
ing procedure 10 times by randomly resplitting the respec-
tive data sets each time. We provide, in Table 2 and Table
3, the average value of all the accuracy scores obtained
across each of these series of 10 tests.

4.3 Transition vector based classification

As a second classification method explored during our re-
search, we propose to rely exclusively on the nature of
the different transition vectors retrieved from the harmonic
content in our data sets. Thereby, instead of relying on
global characteristics of geometric representations as mea-
sured by our trajectory descriptors, we focus, in this sec-
tion, on local aspects of Tonnetz trajectories as expressed
by individual transition vectors. From a music theoretical
point of view, we base this approach on the assumption that
the harmonic style of a corpus becomes implicitly defined
through its harmonic content and, specifically through its
individual chord transitions. Moreover, we presuppose that
two music corpora relating to two different harmonic styles
can be distinguished through specific characteristic chord
transitions that are contained in one corpus and that are not
contained in the other corpus.

To reconnect with the formalism of our transition vectors,

Styles to classify Avg. accuracy
Corelli | Bach 0.97
Corelli | Mozart 0.95
Corelli | Nottingham | 1.00
Bach Mozart 0.96
Bach Nottingham | 0.98
Mozart | Nottingham | 0.96

Table 4. Results obtained by using transition vectors as
features for binary classification.

given two musical corpora containing pieces belonging to
two distinguishable harmonic styles €; and €, we deter-
mine the Tonnetz trajectories of all the pieces contained in
these two corpora and, subsequently, all the corresponding
transition vectors. We denote the set of all transition vec-
tors related to the corpus €; by U1, the set of all transition
vectors related to the corpus €z by 0.

We then propose to introduce the set of transition vectors
that are exclusively found in corpus ¢;, and that do not
occur at all in corpus &, that we denote by

%1\2 = ‘,Ul \mg (11)
and, similarly, the set of transition vectors that are exclu-
sively found in corpus €5, and not present in corpus €y :

‘172\1 = mg \ %1. (12)
Our classification method can now be described as fol-
lows. Given an unknown ’ piece, we determine its Tonnetz
trajectory and all of its corresponding transition vectors. If
then, among these transition vectors, there are more vec-
tors that can also be found in U1\ 2, we assign the unknown
piece to the harmonic style of corpus €;. Otherwise, if
there are more vectors that can also be found in Uy, 1, we
assign it to the harmonic style of corpus Cs.
In Table 4, we give an overview on several results obtained
throughout our vector-related classification tests. The tests
in this series were performed using different couples of
data sets and by repeating the classification procedure 10
times using randomly selected pieces out of each data set
and determining the average accuracy score obtained.

4.4 Comparison between descriptor based and vector
based classification

Contrary to the use of trajectory descriptors as classifier
features, the current design of our method for transition
vector based classification is only optimized for binary
classification. In order to compare both types of appli-
cations, we summarize the results obtained throughout all
our binary classification test series in Table 2 (descriptor
based classification) and Table 4 (vector based classifica-
tion). Overall, the results obtained using transition vectors
appear to be systematically more accurate, with only the
test series involving the Nottingham class leading to com-
parable results.

9 The term unknown would, in this context, signify that it is not known
whether the piece would belong to corpus € or corpus Ca.

613




On a more technical level, our vector based method re-
quires a particularly careful compilation of the used data
sets. In fact, the proposed procedure seems to be highly
sensitive to the total amount of different transition vectors
contained in the trajectories retrieved from the considered
classes. We particularly notice that the use of imbalanced
classes (in terms of numbers of different transition vectors)
leads to considerably less accurate results.

5. CONCLUSIONS

We presented a formalization allowing to represent chord
progressions by curves — the trajectories — and chord tran-
sitions by vectors — the transition vectors — in the Tonnetz.
Based on this mathematical framework, we introduced a
toolbox of novel trajectory descriptors relating to several
specific geometric aspects of Tonnetz trajectories. We have
shown that using trajectory descriptors and transition vec-
tors have yielded promising results when being used as
features in frameworks designed for automatic harmonic
style classification. Therefore, future work should aim for
a more comprehensive evaluation of the proposed descrip-
tors, for example by using a larger number of styles. More-
over, we emphasize that, by definition, our Tonnetz trajec-
tories can only account for a subset of all the aspects that
could make up the richness of a harmonic language. Thus,
future work may also imply a larger amount of harmonic
parameters, such as chord positions, voice-leading, or har-
monic rhythm, as well as other musical parameters in gen-
eral, in particular rhythm and timbre. This may demand a
more profound work on richer, higher-dimensional musical
spaces and, eventually, a re-formalization of the concept of
trajectories.

Specifically with regard to vectors, a further analysis
might involve a reflection on a connection between the
transition vectors presented in this paper with the theory
of harmonic vectors by Nicolas Meeus [16], which has al-
ready been applied in the context of stylistic analyses by
Philippe Cathé [17].

While the testing results found throughout our research
seem interesting, we also reckon that the formal framework
on Tonnetz trajectories might have applications outside of
a classification context. For instance, in an educational
environment, tracing trajectories in the Tonnetz might be-
come a useful learning or creative tool when implemented
in a way that allows to draw curves by hand on a Tonnetz
interface and, through this, to freely create new chord pro-
gressions.
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