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ABSTRACT

Tracking the musical score position from a user’s piano
performance is difficult in noisy environments and other
cases when the audio signal is unreliable. We present a
multi-modal score following method that seamlessly fuses
audio and hand tracking from top-down video of a pi-
anist’s hands on the keyboard, using a probabilistic model
and a feature-weighing mechanism. Experiments demon-
strate our method’s robustness under noisy environments
and when pieces contain mistakes, compared to a score fol-
lower based only on audio input.

1. INTRODUCTION

Online score following allows a given input music perfor-
mance to be continually temporally matched to its corre-
sponding symbolic score [1,2]. Score followers typically
use performance audio as the input. They are often for-
mulated as a Hidden Markov Model (HMM) whose states,
emission probability, and transition probabilities are de-
rived from the pitches and rhythms specified in the musical
score [3-5].

Audio-based score followers become unreliable when the
performance audio becomes unintelligible or inaudible, or
the user plays unexpected notes that cannot be reasonably
captured by the score follower’s acoustic model. When
audio cannot be relied on for score following, fusing com-
plementary modalities can be helpful. For instance, dur-
ing loud orchestral sections of a piano concerto, conduc-
tors might rely on visual cues from the pianist’s body lan-
guage. In a group music lesson where multiple students
play the same piece on the keyboard in the same room si-
multaneously, a teacher might look at each student’s hands
and fingers to get an idea of what a student is playing.
Audio-based score followers may also perform poorly if
the pitches and rhythms being played differ from the un-
derlying score, for example, in cases where the musician
makes mistakes. When human ensemble members en-
counter a collaborator who makes mistakes, they may use
a complementary source of information, like knowledge of
common errors, to help interpret the performer’s intention.
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Previous research has shown that multi-modal score fol-
lowers can mitigate tracking failures under low Signal-to-
Noise Ratio (SNR) conditions like the situations described
above. But, it is non-trivial to fuse the multiple streams
seamlessly. One line of work incorporates additional in-
puts at a few carefully chosen locations [3, 6] such as be-
fore the beginning of a piece or after a fermata. Another
line of work uses visual data as a complementary time se-
ries and chooses a media stream to track based on an esti-
mate of reliability. For example, IMuSE automatic accom-
paniment system [7] uses multiple score followers operat-
ing on different modalities, including audio and the center
of mass position of a pianist’s left/right hands. During a
performance, it uses tracking information from whichever
follower has the smoothest series of inferred note onsets.

In general, the advent of deep learning-based pose frame-
works such as MediaPipe [8] has made it easier than ever
to accurately incorporate gestural information from a video
feed into tasks in music informatics, such as multi-modal
piano transcription [9-11]. Given such progress, it is in-
creasingly important to explore its potential in score fol-
lowing and formulate a principled and simple mechanism
for media fusion.

We present a multi-modal score follower that combines
video and audio inputs for classical piano score following,
leveraging hand and individual finger positions obtained
from deep learning-based pose estimation alongside audio
data. The fused score follower learns the expected audio
and visual trajectory from a combination of the musical
score and a “rehearsal” video of a pianist playing the mu-
sic, then can track the pianist’s hand and finger positions in
a second, “performance” take. To integrate the audio and
video streams seamlessly, we introduce a feature weight-
ing mechanism to adjust the importance of each modality
dynamically, enabling multi-modal real-time score follow-
ing without the need for manual selection of modality. We
show in two different environments that the fused score
follower (1) can be tuned to largely retain the accuracy
of an audio-only score follower when the audio signal is
clear, (2) maintains a reasonable accuracy even when audio
background noise levels are raised to the point that the pi-
ano playing is inaudible to the human ear, (3) outperforms
an audio-only score follower when the pianist makes mis-
takes.
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Figure 1. Overview of our method’s training process (top), and test process (bottom).

2. METHODS

Our method matches a reference (“rehearsal”) piano per-
formance to a second performance of the same piece in
real-time, as seen in Fig. 1. Tracking can rely on pitch-
based features and hand landmark-based features. First,
the “rehearsal take” of a piece is used to build the states
of an HMM and set its emission and transition probabili-
ties. To track the second “performance take” in an online
manner, we use the rehearsal HMM to decode a state se-
quence, where state x; in the decoded sequence is the state
with the highest filtered probability at time ¢. Note that this
method of online state assignment does not ensure a linear
progression through the score — in the decoded state se-
quence, states are not guaranteed to appear in score-order
and may jump around. This could make our state decod-
ing method less-than-ideal for a real-world score following
application. However, we find this method is sufficient for
comparative evaluation of different score following strate-
gies.

2.1 Hand landmark feature extraction

From the video stream, we extract a 12-dimensional po-
sition feature corresponding to the locations of 1) finger-
tips and 2) left hand/right hand center of mass, along the
axis of the span of the keyboard. MediaPipe’s Hand Land-
marker [8] is first used to identify 21 “landmark locations”
on each hand in every frame of the input video. Fig. 2
shows examples of labeled landmarks. In cases where a
landmark is not detected, or a hand is absent from the
frame, the missing landmark positions are set to their last
observed positions.

The raw landmark positions are then adjusted using an

affine transform to align with a pre-selected piano tem-
plate. Before proceeding with further processing, align-
ment is visually confirmed for each recording. The trans-
form is initialized based on the assumption that the middle
finger of each hand would be positioned near the border
between black and white keys. This initial transform is
subsequently refined to maximize the enhanced correlation
coefficient of the two images. This process ensures trans-
formed coordinates are reliable and consistent for both
takes, particularly along the horizontal axis, assuming that
the middle fingers in the reference image were in the ex-
pected locations.

The Hand Landmarker model provides zx, y, and z co-
ordinates for each landmark point. Following the warp-
ing process, x denotes the horizontal position on the pi-
ano keyboard, y denotes the vertical position of the finger
on the keyboard, and z denotes the finger depth with the
wrist at z = 0, representing the extent to which the finger
was raised or depressing a key. Preliminary analysis found
that the trajectory of the z-coordinate exhibited the high-
est similarity across different takes of the same piece. This
finding is logical since the horizontal position of the fingers
directly corresponds to the notes being played. Although
the trajectories of y coordinates showed moderate simi-
larity, technical challenges during preprocessing led us to
focus solely on the x coordinates for our landmark-based
score follower.

Subsequently, we refine the landmark features by com-
puting each hand’s center-of-mass and retaining only the
locations of the fingertips, yielding a total of 12 hand posi-
tion features across both hands. These features were cho-
sen because fingertips are directly involved in producing
piano sounds, and hand center-of-mass was shown to be

324




L

Figure 2. Frames of top-down performance videos with
MediaPipe landmarks colored. The top frame is from no-
mistake dataset; the bottom frame is from mistake dataset

an effective tracking feature in Ritter et al. [7].

2.2 Multi-modal HMM for Score Following

The purpose of this study is to evaluate whether a fused
audio-visual HMM-based score follower performs better
than an audio-only HMM-based score follower. Thus, we
opt for a simple, prescriptive approach in assigning states
and transition probabilities. We focus more on the method
to train the different emission probabilities, as these differ
for visual and audio features.

We represent the score by a sequence of n hidden states,
{1 ...x,}. These hidden states are matched to m frames
of observed features {y; ...y }. The features of y could
consist of (1) audio features only, (2) hand landmark
features only, or (3) a combination of the two.

States of the HMM are created by partitioning the piece’s
score by the union of note onsets and running sextuplets
(1/6 beat units). For example, say a measure in the score
has notes of length [2 beats, 1 beat, 1/12 beat, 1/12 beat].
This measure would translate to 20 total states, with 18
states corresponding to a 1/6 beat unit, and 2 states corre-
sponding to a 1/12 beat unit.

Transitions from the current to the next state depend on
the ratio of their score-based lengths. Formally, the proba-

bility of staying in state x,, is [ — and the probability
of moving from state z,, to state T, 11 is ; ljl““, where

l,, is the length (in beats) corresponding to the note value
used to create state z,. In the above example, [, would
correspond to 1/6 or 1/12. Backward transitions or skips
have a zero probability.

Emission probability for each state x,, is a multivari-
ate normal distribution constructed from 1) z,’s audio
emission distribution, N (uﬁf), »(a) ), and 2) z,,"s landmark

emission distribution, N (u%”% E,(f)). We assume audio

and landmark features are independent. Therefore, we can

form p,, by concatenating u%a) and ;Lgf]).

S, by combining = and 2 in a blocked diagonal
structure. To adjust the audio and visual features’ rela-
tive contribution to the combined score follower, we in-
troduce a video variance penalty parameter ¢ and an au-
dio variance penalty parameter - such that 3, is given as
diag([yng), ¢E£LU)]). See Figure 1 for a visual representa-
tion of this fusion method.

To create the audio-based emission distribution
N (MS:‘),ES‘)), a “score reference audio” is first gen-
erated by rendering the symbolic score with the “Steinway
Piano" virtual instrument in Logic Pro X [12]. The audio
is transformed into a 12-feature constant-Q chromagram
measuring the observed amount of each pitch class in
the Western scale. Audio is then normalized such that
each frame sums to one. MIDI from the rehearsal take is
similarly translated to “rehearsal audio” in Logic Pro X,
then transformed into a normalized chromagram. Next,
the score reference chromagram and the rehearsal take
chromagram must be parsed into states. Since our state
definition is score-based, this means we first need a score
match to the audio. In the score reference audio, state
boundaries can be automatically computed by considering
the tempo used to render the audio — since the score
is translated literally, the “onset time” of each state is
proportional to its position in the score. For the rehearsal
audio, we first perform an offline score match using the
Orchestra program [13]. Rehearsal audio may contain
wrong notes, omitted notes, or additional notes (e.g.
the player could play a short sequence of notes several
times until it was error-free). These cases require manual
correction to the alignment. If a note p is played at the
wrong pitch, p’s onset time is still set to the beginning of
the intended note. If p is omitted, a note onset location
for p is extrapolated based on the parsed note onset
locations of notes p + 1 and p — 1. If a sequence of
k notes corresponding to score positions {p...p + k} is
repeated, the note onsets times of {p...p + k} are assigned
to either the first or last repetition. After obtaining a
score match, state onset times are determined by further
segmenting the score via running sextuplets, as described
above. For each state, ugf) is set to the sample mean of
the state from the score reference chromagram — this way,
expected pitch content would not be “polluted” by wrong,
omitted, or repeated notes found in the rehearsal take.
25{1) was computed by obtaining the sample covariance
of frames in both the score reference chromagram and the
rehearsal chromagram. Based on our state partitioning
method, certain states may have insufficient unique frames
to compute sample variance. We thus manually select a
minimum covariance. This minimum covariance is set
as the emission covariance should the state be too short
for covariance computation; otherwise, this minimum
covariance is added to the computed covariance values.

To create the landmark-based emission distribution
N (MSJ’), E%U)), we first obtain landmark trajectories for
both hands’ centers of mass and all fingertips using the pro-

We can form
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Nomistake dataset: Affect of different types and levels of noise on
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Figure 4. Two types of noise, music (a recording of
Beethoven’s Symphony No. 5) and clapping, are added in
varying amounts to the synthesized piano. At higher SNR
(e.g., 0 dB), the original signal is still clearly visible, while
at lower SNR (e.g., -15 dB), the original signal is much
harder to see and hear.

cedure described in Section 2.1. The trajectory sequences
are then parsed into states using the state boundaries de-

(v)

rived from the rehearsal audio. p,, ’ is set to the sample

mean of landmark features in state n, and EE«Z’) is based on
sample covariance. In this computation, we assume three
groups of independent features: the right hand’s center of

mass, the left hand’s center of mass, and fingertips. A sim-
ilar minimum covariance construct is used to ensure E,(f)

can is defined for all states.

3. EXPERIMENTS

We evaluated the effect of incorporating audio and visual
features in our score follower, depending on the audio vari-
ance penalty . We also tested the performance of audio-
only, landmark-only, and fused score followers when per-
formances contained mistakes or varying amounts of back-
ground audio noise.

3.1 Data Collection

We obtained rehearsal and performance takes of multi-
modal piano performance data (two takes of each piece),
capturing performance MIDI and top-down video. Data
collection was performed with two pianists at different in-
stitutions (Yamaha and Indiana University Bloomington).
See Figure 2 for sample frames from the two recording
sessions. For the Yamaha dataset, Burgmiiller’s 25 etudes
for piano were recorded by a late-intermediate to early-
advanced pianist on a digital piano (Yamaha P125). The
camera was suspended above the piano to give a top-down
view covering most of the piano’s width. As can be seen in
Figure 2, a few of the leftmost keys were outside the cam-
era’s view. The player was not given specific performance
instructions and was allowed to make mistakes. For exam-
ple, when the pianist did not play a phrase to her satisfac-
tion, she would sometimes repeat the phrase one or more
times before continuing on with the performance. Of the
25 etudes, twelve were retained for analysis ' Six etudes
were used for parameter tuning as described in Section 3.2,
and six were used a validation set. 'We will henceforth
refer to the validation set from this recording session as
the mistake dataset.

The second dataset was collected at Indiana University
Bloomington on a Roland electric piano (study done un-
der the approval of Indiana University IRB #22017). This
dataset was recorded to create an error-free version of
pieces from the mistake dataset. In these recordings, the
musician was explicitly asked to 1) not make mistakes and
2) play both rehearsal and performance takes with the same
fingerings and hand distribution. We also positioned the
camera in the second dataset to capture a top-down view.
However, the camera in the second dataset was placed
slightly higher so that all piano keys would be in-frame.
We will henceforth refer to data recorded in this ses-
sion as the no-mistake dataset.

For all performance takes, audio was synthesized from
performance MIDI using the “Steinway Piano" virtual in-

! Two etudes contained too many mistakes, two contained pickup notes
that were incompatible with the pipeline, and nine could not be effectively
pre-processed for other reasons.
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strument in Logic Pro X [12]. To obtain ground truth onset
labels, performance data (rendered audio and video record-
ings) were score-matched — i.e., for each etude, all notes in
its symbolic score were matched to a unique timestamp in
the performance. This offline score match was achieved
with a combination of custom code, the Orchestra pro-
gram [13], and hand corrections, yielding a labeling res-
olution of 33 milliseconds. The mistake dataset lacked a
one-to-one relationship between note onsets specified in
the score and actual onsets in the performance, thus ground
truth note onset labeling was performed using the onset la-
beling method described in Section 2.2.

3.2 Parameter Tuning

Six of the twelve etudes from the mistake dataset were used
as a “tuning” dataset to hand-tune (1) ¢, the penalty associ-
ated with the hand landmarks; (2) the minimum covariance
for each data source; and (3) a good score-to-state parti-
tioning strategy (See Section 2.2 for details). These pa-
rameters were used in creating the score following HMM
trained by each rehearsal take. The same rehearsal-training
pipeline described in Section 2.2 was used for both the mis-
take and no-mistake datasets.

Note that in the tuning set, the performer would some-
times play wrong notes, omit notes, or repeat a sequence of
notes several times until she was ready to move on. These
types of mistakes involve pressing keys with low horizon-
tal distance to their correct counterparts (e.g. a wrong note
can happen as the result of accidentally hitting the adjacent

black or white key). Thus, picking ¢ > 1 could allow the
emission probability of a physically close mistaken note on
a correct state to still be fairly high.

¢ was chosen such that a score follower using only the
landmark features worked reasonably well for every piece
in a tuning dataset with mistakes. ¢ = 100 was used in
all experiments below, while y, the audio variance penalty,
varied depending on the experiment.

3.3 Experimental Conditions

Score followers were created to track three types of input
data: (1) audio alone, (2) hand landmarks alone, and (3)
combined audio and hand features. For each piece in the
validation set, the rehearsal take was used to train three
HMM-based score followers corresponding to these three
types of input data. Each score follower was tested by feed-
ing it audio and/or video of the performance take in 30-
millisecond frames. After receiving each new frame, the
score follower HMM was used to compute the state with
the maximum probability in the current forward posterior
distribution.

To evaluate the effectiveness of each score follower, we
computed note onset error as the difference between the
observed note onset times in the performance take and the
inferred note onset times from the HMM. Given our on-
line state determination method, certain states correspond-
ing with note onsets may be skipped or repeated. We thus
computed the observed time of each note onset state x, as

obs(z,) = max{max(l(x < x,)), min(l(x > x,))}

where [(x) is the frame in the test sequence where state
is observed. This definition ensures an onset time exists
for every note. Below, we describe the effect on different
performance conditions and score followers on onset error.

3.3.1 Effect of Audio Variance Penalty

As can be seen in Figure 6, our ~y penalty was success-
ful in weighing the behavior of the audio vs. video input
streams in our fused score follower. We can see that at low
~ values, the fused score follower more closely tracked the
audio-only score follower’s behavior, while at larger v val-
ues, the combined score follower’s behavior was more sim-
ilar to the landmark-only one. Note that aside from weigh-
ing the audio and landmarks’ relative strengths, - also di-
rectly affected the emission variance of states in the audio-
only score follower, and by extension, the audio-only score
follower’s note onset accuracy. When v < 1, the audio-
feature variance shrinks, potentially overfitting to the ex-
pected audio content and reducing accuracy when the per-
formance differed from the rehearsal. If ~ is increased too
much, it can become difficult to distinguish between emis-
sion distributions of different score-based states. Notably,
at the v where audio score follower error is lowest, the
fused score follower tends to also be at or near its lowest
value. In Figure 6 we highlight a potential v “sweet spot,”
5 < v < 20, where the fused score follower’s behavior is
close to or better than whichever single-source score fol-
lower has higher accuracy.

327




Score Follower Accuracy Across Different y Values

“Ideal” Conditions (No Mistakes or
Added Noise)

0 dB Background Noise + Mistakes

Background music Background clapping

—F~ Chromagram MAE + 2 standard error
Hand Landmarks MAE 2 standard error
—F— Chromagram & Hand Landmarks MAE = 2 standard error

Mean absolute note onset error (seconds)

—F~ Chromagram MAE = 2 standard error
Hand Landmarks MAE = 2 standard error
—F- Chromagram & Hand Landmarks MAE = 2 standard error

Mean absolute note onset error (seconds)

10! 102 103 104 10°

v multiplier values

a

Mistakes Only

—J— Chromagram MAE + 2 standard error
Hand Landmarks MAE + 2 standard error
—F— Chromagram & Hand Landmarks MAE = 2 standard error

10°

107

Mean absolute note onset error (seconds)

10! 102 10°

y multiplier values

b

10t 102
v multiplier values

10° 10t 102

v multiplier values

10°

T

0 dB SNR Background Noise + No Mistakes

~

e
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3.3.2 Effect of Noise on Score Following

We evaluated the score followers as different noises were
added at different levels to the piano performance audio.
We prepared two kinds of noise signals: (1) background
music audio [14] and (2) background clapping audio. Both
noises were tested at a signal-to-noise ratio (SNR) of
—30dB to 30 dB in 15 dB increments. Clapping audio was
meant to simulate clapping during a live show, while music
audio was intended to simulate a “backstage” or “practice
room” environment where alternate music sources cannot
be isolated from the input audio. Figure 4 visualizes the
effect of different types and amounts of background noise
with piano performance audio.

A violin plot of absolute error pieces in the no-mistake
dataset with v = 10 is shown in Figure 3, and the mean
absolute onset error in Figure 5. Figure 6d and Figure 6e
highlight behavior at 0 dB and 15 dB SNR across differ-
ent v values. Figure 5 shows how while the audio-only
score follower had the best performance at > 15 dB SNR,
it became significantly worse than the other score follow-
ers when audio quality degraded to < —15 dB SNR. As

SNR decreases, performance with background music de-
graded more quickly than performance with background
clapping. This is expected because another music signal
is more likely to confuse the pitch-based audio score fol-
lower by giving a high emission probability in incorrect
score states. The landmark-only score follower had an (in-
variant) mean absolute error of ~150 milliseconds.

These results show that when the noise level varies or
is unexpected, it is important to fuse the streams to take
advantage of the more useful modality. In most cases,
the fused score follower had a note onset error between
the audio-only and landmark-only score followers. At
~v = 10, it tended to perform more similarly to the source
with lower error. In high-noise situations, the fused score
follower performed more similarly to the landmark-only
score follower, while in low-noise situations, the fused
score follower more closely tracked the behavior of the au-
dio score follower. Occasionally, the fused score follower
performed better than either the audio or landmark score
followers alone (for example, 0 dB SNR background mu-
sic).
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3.3.3 Mistake vs. No Mistake Conditions

The behavior of the different score followers on the mis-
take versus no-mistake datasets can be observed by com-
paring Figure 6b with Figure 6a. The presence of mistakes
severely degrades the performance of the audio-only score
follower. Without mistakes, the audio score follower was
able to achieve mean absolute error of below 50 millisec-
onds, a level of error potentially tolerated within certain
real-world score following applications. With mistakes,
the average error never fell below 10 seconds — this is
excessive error for any real-world score following appli-
cation. Our landmark-only score follower and combined
score follower showed much better resistance to performer
error than the audio-only score follower. The landmark-
only score follower performed comparably with and with-
out performer mistakes — without mistakes, the average er-
ror was ~150 milliseconds, while with mistakes, the av-
erage error was only raised to ~290 milliseconds. The
mistake-resistance shown by the landmark-only score fol-
lower is likely a result of how we approached determining
¢ from the tuning set as described in Section 3.2. Figure 6¢
shows how this mistake-resistance is retained even in the
presence of background music or background clapping.

4. CONCLUSION

Most score followers currently rely on audio as their sole
input source. Our work highlights the fragility of this strat-
egy. In “good” audio conditions, i.e., when background
noise is low or the performer executes a take without ex-
tensive errors, the performance of an audio-only score fol-
lower is hard to beat. However, disruptions like back-
ground noise and mistakes can quickly derail a score fol-
lower or cause catastrophic failure if they are not specifi-
cally accounted for in the model.

We presented a multi-modal score following system that
fuses deep learning-based pose features with audio. We
demonstrated how this system mitigated the effect of noise
and mistakes, and could be configured to harnesses the
low error the audio-based score follower under “good” au-
dio conditions and the noise/mistake robustness of a hand
landmark-based score follower under “bad” audio condi-
tions. We further showed that our hand tracking method
is robust enough to be used in different video conditions
— the combination of a generic hand-landmarker model
and rehearsal-based training allowed successful tracking
in recordings made in separate spaces, with different per-
formers and pianos. We believe our work expands the ap-
plicability of piano score following in noisy environments,
such as practice rooms or music genres for which cheering
or clapping during a performance is the norm.

In the future, we hope to continue investigating how this
system performs in less ideal lighting conditions that more
closely simulate a live concert scenario. We also hope to
investigate methods that allow for training the landmark-
based features via piano fingering annotation [15], instead
of a rehearsal take.
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