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ABSTRACT

The Charlie Parker Omnibook is a cornerstone of jazz mu-
sic education, described by pianist Ethan Iverson as “the
most important jazz education text ever published”. In
this work we propose a new transcription pipeline and ex-
plore the extent to which state of the art music technol-
ogy is able to reconstruct these scores directly from the
audio without human intervention. Our pipeline includes:
a newly trained source separation model for saxophone, a
new MIDI transcription model for solo saxophone and an
adaptation of an existing MIDI-to-score method for mono-
phonic instruments.

To assess this pipeline we also provide an enhanced
dataset of Charlie Parker transcriptions as score-audio
pairs with accurate MIDI alignments and downbeat anno-
tations. This represents a challenging new benchmark for
automatic audio-to-score transcription that we hope will
advance research into areas beyond transcribing audio-to-
MIDI alone.

Together, these form another step towards producing
scores that musicians can use directly, without the need
for onerous corrections or revisions. To facilitate future re-
search, all model checkpoints and data are made available
to download along with code for the transcription pipeline.
Improvements in our modular pipeline could one day make
the automatic transcription of complex jazz solos a rou-
tine possibility, thereby enriching the resources available
for music education and preservation.

1. INTRODUCTION

The automatic transcription of music from audio to a read-
able score represents a challenging area of research within
the field of music information retrieval (MIR). Success in
this task has the potential to revolutionise the way musi-
cians learn, teach, and preserve music. Despite its sig-
nificance, the task of converting an audio recording to a
score of similar quality to those of professional engravers
remains a challenging and open research area.

Among the many genres of music, jazz stands out as par-
ticularly complex due to its improvisation, syncopation,
and swing-feel elements that are quintessential yet difficult
to quantify and transcribe. The work of Charlie Parker, a
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leading figure in the development of bebop and modern
jazz, demonstrates many of these characteristics. Parker’s
solos are not only technically demanding but also helped to
define styles and idioms that have been adopted by subse-
quent generations of jazz musicians. This helps to explain
why the Charlie Parker Omnibook [1] has been in print
continuously since its publication in 1978. This collection
of 60 transcriptions of his solos is a widely used resource
for jazz students and professionals alike.

This paper investigates a pipeline approach to automatic
music transcription (AMT) that leverages recent advances
in source separation, MIDI transcription, and score gen-
eration technologies. By focusing on the solos of Charlie
Parker, we aim not only to contribute a new tool to the
field of music education but also to address a gap in the
literature concerning the automatic transcription of com-
plex jazz solos from audio to score. The choice of Charlie
Parker as the subject of this study is deliberate: his work
presents a challenging benchmark for evaluating the effi-
cacy of AMT systems on material that is culturally signifi-
cant and still widely studied today.

2. RELATED WORK

The transcription pipeline we propose in this work incor-
porates several topics, each of which could be discussed
in depth. Due to length constraints we give an overview
of important work and refer to more detailed summaries
elsewhere where necessary.

2.1 Jazz transcriptions

Transcription has been an essential part of jazz education
and musicology as jazz is mainly an aural tradition with
few written sources. Regarding Charlie Parker specifically,
an early example of academic work was Thomas Owens’s
(1974) PhD thesis [2], in which he transcribed a large num-
ber of Parker’s solos leading to the identification of ap-
proximately one hundred melodic formulas. These range
from concise four-note motifs to expansive multi-measure
phrases. Even today, this extensive analysis provides in-
spiration for what automated approaches may enable.

Shortly afterward, the Charlie Parker Omnibook was
published in 1978 and has been in print ever since. This
contains 60 solos transcribed by trumpeter Ken Sloane
with assistance from saxophonist Jamey Aebersold.

In the age of computational analysis, digital formats and
scores are required. The most ambitious work to date is the
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Weimar Jazz Database [3] 1 which encompasses approxi-
mately 200,000 tone events from 456 monophonic solos
by 78 jazz masters, providing high-quality score and MIDI
transcriptions. These transcriptions were carried out with
a semi-automated pipeline involving manual corrections.
The dataset includes 12 works by Charlie Parker.

Interest in generative modelling of Parker’s improvisa-
tions led to the release of a digitised version of the Omni-
book [4]. 50 of the 60 scores were released in MusicXML
format to aid further research.

More recently, the FiloSax dataset by Foster and Dixon
[5] includes 240 full length scores of jazz saxophone
performances along with audio stems and copious meta-
data. These resources are key to enabling the transcription
pipeline which we describe later in this work.

2.2 Source separation

Music source separation has seen a huge increase in inter-
est with the advent of capable neural network models. The
objective is to extract an individual part (stem) from an au-
dio mixture by learning a source specific filter. This is a
large and active research area and we refer elsewhere [6]
for a recent survey and discussion of state-of-the-art ap-
proaches.

For this work we use Demucs [7], a widely used solu-
tion proposed by researchers at Facebook AI. We note that
separation into drums/bass/vocals/other is widely available
due to the MDB18 dataset [8], however to date there are no
freely available models for separation of saxophone. This
work addresses this gap by training and releasing a solo
saxophone separation model which separates into “sax”
and “other” stems. Details of the training procedure are
discussed in section 3.2.

2.3 Transcription to MIDI

Automatic music transcription generally aims to convert
musical audio into a useful symbolic representation such
as MIDI. Benetos et al. [9] claim that monophonic tran-
scription is a solved problem, however recent work [10]
suggests that this is not true for more intricate sources like
jazz saxophone and traditional Irish flute.

Historically, approaches to the monophonic transcription
task have typically involved framewise pitch estimation
followed by some method to segment the pitch contour into
discrete notes. Pyin [11] (in particular the Pyin notes func-
tion) is still a popular tool for this purpose, but its accuracy
when classifying at the note level is not sufficient to avoid
manual corrections. CREPE Notes [10] improves on this
but it is still limited to 82.31% note level F-measure on the
FiloSax dataset.

Higher levels of accuracy have been achieved on piano
recordings in recent years due to high quality datasets and
several capable machine learning architectures for tran-
scription [12]. The issue of instruments beyond the piano
was recently addressed [13, 14] by using scores and exist-
ing transcriptions which were realigned to audio to pro-
duce training data.

1 https://jazzomat.hfm-weimar.de/dbformat/
dboverview.html

2.4 Score layout

The process of converting a human performance to a mu-
sical score is typically performed by highly skilled human
transcribers. Computational approaches have had limited
success so far in this task. Performance timing must be in-
terpreted in terms of musical units on a metrical grid and
note durations must be chosen which allow the score to be
parsed with minimal difficulty by human performers.

The qparse library [15] handles monophonic score layout
by combining these two stages, using a probabilistic gram-
mar defined by the user. We adopt this method in our work,
training a new grammar based on Charlie Parker’s notated
scores, as described in section 3.2.

Quantising a note to its nearest position on the grid is an
obvious approach, however this does not always account
for rhythmic variation in expressive human performance
such as the use of swing feel and playing “behind the beat”.
We explore these issues further in section 5. Polyphonic
score layout is more challenging and beyond the scope of
this work and we refer the reader to [16] for more informa-
tion.

2.5 Other pipelines and alternative approaches

The separate-transcribe-notate pipeline that we propose
has been used before, however not in a fully automated
setting. Work on transcribing jazz bass [17] used a sim-
ilar approach but the result required a number of manual
corrections.

Large scale jazz transcription has similarly relied on au-
tomated approaches with corrections by human annotators
[3,18]. The Dig that Lick project [19] attempted fully auto-
matic extraction of MIDI data for jazz solos but did not in-
clude the conversion to musical score. Their approach [20]
extracted main melody contours directly from audio mix-
tures which were then segmented into notes. Melodia [21]
was the previous state of the art for melody estimation from
monophonic and polyphonic sources. An alternative ap-
proach [22, 23] combines the source separation and tran-
scription stages as a joint learning problem, but these tech-
niques do not produce score output.

In the latter stages of completing this work, we became
aware of Martínez et al. [24], who present an approach for
end-to-end audio-to-score (A2S) transcription, specifically
applied to a newly constructed corpus of real and synthetic
saxophone recordings. The corpus is smaller than FiloSax
(3 hours vs. over 20 hours) and contains simpler melodic
material such as musical scales and short phrases. Their
method attempted to predict a text-based score represen-
tation (Kern) directly as model output, which differs from
the pipeline approach we have taken in this work. They
obtained similar results for their synthetic and real world
audio data which suggests that the approach is viable, how-
ever the model weights were not available at the time of
writing so we were unable to perform a direct comparison.
This will be a subject of future work.

In our work, we chose to investigate a more modular
pipeline, so that any improvements in performance of sys-
tem components will directly benefit our pipeline.
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3. METHOD

3.1 Dataset production

We used an existing corpus of digital scores from the Om-
nibook [4]. This consists of 50 of the 60 original tracks
in the published Omnibook, digitised to MusicXML. We
hope to digitise the remaining 10 tracks as part of future
work. We sourced recordings that corresponded to each
transcribed segment and uploaded these to the SoundSlice
platform 2 . The first author then added downbeats manu-
ally to all 50 tracks, using the variable speed and fine ad-
justment settings that the platform offers. Only sections
corresponding to the notated scores were annotated with
downbeats. This typically includes the main theme and the
saxophone solo. In most cases these form a continuous
segment but additional metadata is included to account for
gaps where other solos occur.

Given the age of the source material (recorded in live and
studio settings before Parker’s death in 1955) there were a
number of issues with performances not being reproduced
at concert pitch (A440Hz). We first attempted to correct
for this using an automatic approach 3 however on review
these were found to be inaccurate, potentially due to the
poor recording quality. We chose to use the SoundSlice
pitch adjustment feature to make manual global pitch ad-
justments. These adjustments were applied to the source
audio files using the rubberband library 4 .

With downbeats and intonation resolved, we then aligned
the human transcriptions (in MIDI representation) to the
audio of the solo saxophone stem. This was done us-
ing Dynamic Time Warping (DTW, as implemented in the
SyncToolbox [25]). To fine-tune the DTW path, the MIDI
note onsets were aligned to the frame level activations of a
transcription model using a high-resolution alignment pro-
cedure [14].

To aid further research, we make the dataset freely avail-
able to other researchers. This includes MusicXML scores,
downbeats, performance-aligned MIDI files, links to the
original recordings and extracted saxophone stems tuned
to A440Hz standard. These can be accessed via the sup-
plementary site 5 .

3.2 Transcription Pipeline

We now describe the proposed transcription pipeline for
the task of transcribing a score from an audio recording
containing saxophone.

The first stage is beat estimation, for which we chose
Madmom [26] for its strong performance and convenient
implementation. This estimates the beat, downbeat and
time signature from the original audio mix which are later
used in score estimation. Initially we found that the default
parameters led to a number of failures on the Omnibook
recordings. To address this we first obtain a rough esti-

2 https://www.soundslice.com
3 https://librosa.org/doc/main/generated/

librosa.estimate_tuning.html#librosa.estimate_
tuning

4 https://breakfastquay.com/rubberband/
5 https://aim-qmul.github.io/

SaxTranscriptionPipeline/

mate of global tempo from the transcribed MIDI using the
distribution of inter-onset intervals [27]. We also constrain
the minimum tempo to 15 BPM below the prior estimate
(to avoid picking a tempo which is too slow) and the maxi-
mum to 350 BPM (to account for the extreme tempi found
in bebop music). Empirically this was found to improve
tempo estimation for this dataset.

The next stage is to separate the saxophone from the au-
dio mixture. The Demucs source separation model (ver-
sion 3) [7] was trained using audio from the FiloSax
dataset [5]. The complete set of 240 tracks was used for
training to maximise the amount of available training data,
with tracks divided into 6 second segments. The model
was trained for 180 epochs with a learning rate of 0.001
and a batch size of 8.

For transcribing the separated saxophone stem to MIDI,
we train a new model based on the high resolution piano
transcription work by Kong et al. [12]. We take an 80-10-
10% split (by pieces) of the FiloSax dataset. Each record-
ing is divided into 10-second samples, with a hop size of 1
second. We used a learning rate of 10−4 and a batch size
of 8. The training data came from tenor saxophone and
so audio was augmented with random pitch shifts, con-
tinuously distributed between ±5 semitones. This helps
to match the registers of the alto and baritone saxophones
respectively and increases training variety given the rela-
tively small dataset. Training ran for 27.5K steps, approx-
imately 55 epochs, scaling the learning rate by 0.9 every
5K steps.

Finally for the MIDI-to-score stage we used the “qparse”
package [15]. This handles rhythmic quantisation of MIDI
elements along with score engraving by treating it as a
parsing problem using a user-specified grammar which de-
fines probabilistic transition states between note types. We
first defined a grammar based on the transitions observed
in the Omnibook data using the method in [28], however
this led to an overly complex grammar which led us to sim-
plify some of the rules empirically. This was done to re-
duce the frequency of triplets in favour of quavers in the
predicted scores. The final grammar definition is available
with the code that is released alongside this work via the
supplementary site.

4. RESULTS

4.1 Beat tracking

We include results for automatically estimated downbeats
in Table 1. The method used is described in section 3.2.
From the results we see that the automatic estimation is
generally poor, albeit with a wide variance. As all the
pieces in the dataset are in 4/4, we also include results for
the optimal downbeat placement within a bar (i.e. select-
ing the best of all possible “rotations”). The improvement
when rotations are included suggests that the beat track-
ing is relatively accurate, but that downbeat estimation is
challenging on this source material. Since it requires little
user effort to specify the correct rotation, it may be desir-
able to compute multiple transcriptions for each possible
downbeat rotation and allow the end-user to select the best
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Method (Madmom) Mean F-measure Max
w/ init bpm 29.20± 25.11 92.52
w/ init bpm and rotations 61.27± 30.57 97.74

Table 1. Downbeat F-measure results calculated by
mir_eval for the proposed Charlie Parker dataset. The val-
ues are expressed as percentages and a default tolerance of
70ms was used.

Method SDR (dB)
LALAL.AI Wind Stem 14.03± 2.38
Ours (Demucs + FiloSax) 14.22 ± 2.10

Table 2. Source Separation: Signal-to-Distortion Ratio
(SDR) results calculated by mir_eval for two methods. The
SDR values are expressed in decibels (dB) and include the
standard deviation. Higher is better.

result.

4.2 Solo saxophone source separation

We evaluate our source separation model on a private
dataset of 10 professionally produced jazz quartet record-
ings featuring saxophone. To the best of our knowledge,
there are no recent source separation models for saxophone
discussed in the literature, therefore we have compared our
results with a commercial offering 6 to provide a baseline.
As we can see in Table 2, our method performs better,
but it should be noted that the Lalal.ai results were for a
more general “Wind” stem, whereas ours was specifically
trained for saxophone.

4.3 MIDI transcription

This stage of the pipeline was evaluated on two datasets
using standard metrics for note-level accuracy (no offsets,
50ms tolerance) provided by the mir_eval library. Evalua-
tion results for a test split of the FiloSax dataset are shown
in Table 3, and results for the Charlie Parker Omnibook
dataset are shown in Table 4.

Here we estimate a MIDI transcription using the source
separated saxophone stems as input, which is then com-
pared with the aligned MIDI created from the ground truth
scores. We evaluate our method alongside CREPE Notes,
which previously demonstrated state-of-the-art results on
FiloSax over a number of other methods [10]. We also in-
clude results for Başaran et al. [20], as this was the method
selected to produce automated transcriptions for the Dig
That Lick project.

On the FiloSax data, our method demonstrates a large im-
provement over previous methods, but this should be taken
with caution as the test data is from the same distribution as
the training set. On the out-of-distribution Omnibook data,
our method also achieves the highest F-measure score, but
the results are considerably lower than those achieved for
FiloSax. The three systems tested gave results that were re-
spectively over 12%, 16% and 20% worse than the Filosax

6 https://www.lalal.ai/

P50 R50 F50

CREPE Notes [10] 82.35 83.05 82.67
Başaran et al. [20] 87.68 92.57 90.01
Ours 96.47 95.90 96.19

Table 3. Note level transcription (FiloSax): Results for
note-level transcription accuracy (no offsets) on a 25 track
test split of FiloSax. P50, R50, and F50 are Onset-only Pre-
cision, Recall and F1-measure, expressed as percentages,
at 50ms resolution.

P50 R50 F50

CREPE Notes [10] 70.93 70.63 70.41
Başaran et al. [20] 70.60 77.98 73.68
Ours 74.70 76.96 75.43

Table 4. Note level transcription (Omnibook): Results for
note-level transcription accuracy (no offsets) on the pro-
posed Omnibook dataset alignments using stems from sec-
tion 4.2. Abbreviations are described in Table 3.

results, suggesting that the Omnibook can be considered a
very challenging dataset.

4.4 Score timing

The task of producing a score from a MIDI representation
of a human performance has received less attention than
the audio-to-MIDI stage and as a consequence there is less
agreement in the literature on which metrics are most ap-
propriate. We have used a subset of the metrics proposed
by Cogliati et al. [29] to give an indication of the edit dis-
tance between our transcribed scores and the ground truth.

For comparison we include a baseline from the Music21
package [30], which is used to import the transcribed MIDI
with quantizePost=True. This is to give an indica-
tion of score quality when handled by basic quantisation
alone.

The results in Table 5 show mean error rates, normalised
by the number of notes in each piece. We find that our pro-
posed qparse workflow requires fewer edits than the basic
quantisation method, showing particular efficiency regard-
ing the number of rests that need to be edited (34.50% in-
sertions vs 791.93% for the baseline method). This means
our method requires less work to reach the level of a human
transcribed score, however there is still room for improve-
ment.

We also present some excerpts of transcribed scores with
their associated ground truth in Figure 1 and Figure 2. The
complete set of scores is available for detailed comparison
via the supplementary site 7 . From these we see that our
proposed method performs well at producing “readable”
scores, at the expense of some rhythmic accuracy. Offbeat
eighth notes are often quantised to be on the beat, for ex-
ample, which suggests that further work is required to re-
fine the grammar rules provided to qparse. In Figure 2 we

7 https://aim-qmul.github.io/
SaxTranscriptionPipeline/
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Figure 1. An extract of “Marmaduke” with ground truth on the upper staff and our transcription on the lower staff.

Figure 2. An extract of “The Bird” with ground truth on the upper staff and our transcription on the lower staff.

Note Rest
Insert Del Insert Del TimeSig

qparse [15] 23.26 54.74 34.50 80.23 2.55
baseline [30] 45.36 48.41 791.93 41.26 2.69

Table 5. Score quantization: Mean error rates for score
timing expressed as percentages of the ground truth score
length. Results are shown for the 31 scores that qparse
could successfully process. The baseline is described in
section 4.4.

also see issues with tracking pitches in the upper register
of the alto, as discussed in Section 5 below.

4.4.1 Stability of qparse

In this work we adopted the latest version of qparse, how-
ever we encountered a number of issues that remain unre-
solved at the time of writing. This resulted in only 31 out of
50 scores being available for comparison, with the others
failing to find a valid parsing result. In the released code
we provide a fallback option to offer more basic parsing
in cases where qparse fails, and we will continue to work
with qparse authors to improve the robustness of the code.

5. DISCUSSION

In attempting to reconstruct this corpus of saxophone tran-
scriptions, we have encountered several challenges de-
scribed in the prior sections. In spite of these, we are
pleased to note that our proposed pipeline obtains the high-
est accuracy of existing methods for the audio-to-MIDI
stages and that the MIDI-to-score stage outputs useful
scores in many cases.

Some of the difficulties we faced in producing scores
from performance MIDI were surprising, even in the rela-
tively simple monophonic case which our work focused on.

We hope to explore this issue further in upcoming work to
find a robust method for conversion from performance tim-
ing to score timing. The goal would be to handle the trade
off between rhythmic accuracy and score complexity. We
also consider that renewed research into metrics and mea-
sures of score transcription quality would be beneficial in
this area.

A particularly challenging problem was that of beat de-
tection, which traditionally assumes that the performers
share a concept of a single shared pulse. In jazz however,
there has been some work to suggest that participatory dis-
crepancies (PDs) are a central feature of the music. This is
where a soloist, for example, might “lay back” and phrase
their part deliberately late [31]. This idea is obliquely sup-
ported in a 1949 DownBeat interview with Charlie Parker
himself: when pushed to define the new genre of “bop” he
gave the answer:

“The beat in a bop band is with the music,
against it, behind it,” Charlie said. “It pushes
it. It helps it.”

This suggests that his placement of notes (“the music”)
was deliberately manipulated in reference to the pulse
(“the beat”) and indeed, this is something we observe in
our data. For example, we see that short note values at
the ends of bars are often quantised to the start of the next
bar. Given the lack of synchrony between performers, it is
clear that future MIDI-to-score solutions need to be flexi-
ble with the concept of a downbeat in order to succeed in
transcribing jazz in a human-like fashion.

The separation and MIDI transcription parts of our
pipeline are shown to perform well, however we feel that
their generalisation to all types of saxophone could be en-
hanced further. Empirically, our system struggles with the
extreme upper register of the alto saxophone (altissimo,
harmonics etc.) but we believe this is due to the available
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training data being in a conservative range of the tenor sax-
ophone. This could be improved in future iterations with
access to more diverse data (including alto saxophone) and
with more aggressive data augmentation strategies.

Despite these challenges, we do find that the best case
outputs of our proposed method produce usable scores.
With further refinement of this pipeline we take a step to-
wards transcribing music accurately at scale. This opens
up new possibilities for management of large collections,
and also the potential for time savings for the transcription
workflows of individual musicians.

6. CONCLUSIONS

In this work we present a new pipeline for end-to-end tran-
scription of solo saxophone from audio to score. Each
stage in the pipeline is discussed and evaluated where pos-
sible, with state-of-the-art results for source separation of
saxophone and MIDI transcription of solo saxophone.

Alongside the transcription pipeline, we release a new
dataset of audio-score pairs of 50 Charlie Parker record-
ings. These feature accurate alignments and timing infor-
mation which allow for use in tasks such as transcription,
expressive performance analysis and generative modelling.

We also publish our automated transcriptions alongside
the ground truth scores to demonstrate what is currently
possible in difficult cases of monophonic transcription
from audio to score. The results are not yet at the level of
a human expert, but are a promising step towards more re-
liable transcription methods in future. We hope these will
serve as a baseline to stimulate future research in this area.
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