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ABSTRACT

The standard quality metric for audio source separation
is the signal-to-distortion ratio (SDR), despite correlating
poorly to human perception. In this paper, we investigate
the correlation between subjective listener evaluations and
multiple objective quality metrics, including the SDR. Mu-
sic tracks are separated using five source separation mod-
els, and the resulting separation quality is calculated us-
ing five objective evaluation metrics. A listener study was
conducted to also obtain subjective evaluations of the mu-
sic separation quality. It was found that none of the ob-
served objective metrics correlated well to human percep-
tion, with the best correlation coefficient being 0.246. We
also found that the objective metrics did not agree with
each other regarding which is the best and worst perform-
ing music source separation models.

1. INTRODUCTION

Music source separation is the task of isolating instru-
ments, or groups of instruments, from a mixture of mul-
tiple instruments playing at once. For example, the group,
or stem, for vocals would include background vocals in ad-
dition to the lead singer. The target stems can be specified
in many ways; the MUSDB18 dataset for music separa-
tion [1] features the stems bass, drums, vocals, and
other. Given a mixture of these four stems, the goal is
to generate four waveforms that correspond to each of the
original stems. In addition to being a well-studied topic
on its own, source separation is used in a variety of other
music information retrieval (MIR) applications, including
automatic music transcription, lyric recognition, and music
enhancement.

Source separation is continually advancing, improving on
prior work. As with many scientific endeavors, this ad-
vancement relies on an evaluation step. For music source
separation, this evaluation typically measures how “clean”
the separated audio is (i.e., whether or not there are extra
elements present that wouldn’t be in a recording of the in-
strument by itself), and how complete it is (i.e., whether
there are missing elements in the separated signal). There
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are many methods of evaluating audio quality, which fall
under two categories: human evaluation, and automated
methods. The latter can be further distinguished as either
a closed-form formula that calculates an amount of error
between the separator’s output signal and the expected sig-
nal, or a statistical model that estimates a “goodness” score
with information learned about either a data distribution [2]
or human evaluation data [3].

With audio data being the focus of MIR tasks, the gen-
eral goal should be to produce something that sounds good
to human listeners. Human evaluation is the most direct
way to determine whether we think some audio sounds
good, but it is expensive and requires a lot of time to col-
lect sufficient data to inform algorithm development. In re-
sponse to these shortcomings, several automated error cal-
culation methods have been proposed and used in various
MIR tasks, including music source separation.

The most commonly used metric for audio source sepa-
ration is the signal-to-distortion ratio (SDR), an error cal-
culation that finds the ratio of unwanted sound (i.e., dis-
tortion) that occurs in an audio signal to the entirety of a
target signal [4]. SDR is frequently cited in existing audio
source separation work and serves as the baseline measure
for many source separation challenges (e.g., Sony Demix-
ing Challenge [5] and the MUSDB18 benchmark [1]).

Despite its popularity, SDR has been proven to correlate
poorly to human perception [6,7], meaning an audio signal
that a listener would deem as having poor quality may still
get a good SDR value, or vice versa. With the objective of
making audio that sounds good to listeners, the correlation
between evaluation metrics and human perception should
be prioritized. This discrepancy has been acknowledged
in the speech domain, prompting the development of new
evaluation methods that achieve better correlation to hu-
man perception [8–17]; but this has not yet been realized
to the same degree in the music domain.

In this work, we investigate existing evaluation methods
for music source separation to determine if any of them
achieve a strong enough correlation to human perception
to be a reliable alternative to subjective human evaluation.

2. RELATED WORK

2.1 Subjective Evaluation of Audio Quality

Subjective evaluation of audio quality refers to the rating
of audio stimuli by human subjects. Participants of a sub-
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jective listening study may be asked to rate the audio gen-
erally (i.e., ”How good does the audio sound?”), or they
could be asked to evaluate a specific attribute (e.g., level
of interference, intelligibility, or musical intonation). In
addition to the types of questions that can be asked, there
are several evaluation protocols that are commonly used
in audio research. Some are designed for the evaluation
of individual stimuli one by one, while others have partic-
ipants evaluate multiple stimuli in comparison with each
other. These protocols also differ in the granularity of
data received. Evaluations on a scale of 1 to 100, as in
a MUSHRA study [18], tend to have tighter differences
between responses than evaluations on a scale of 1 to 5.

In this paper, we conduct a Mean Opinion Score (MOS)
study. Participants in a MOS assessment are asked to rate
stimuli individually on a rational number scale, usually as
follows: 1-Bad, 2-Poor, 3-Fair, 4-Good, and 5-Excellent.
MOS is one of the most common subjective assessment
methods in audio applications and is ideal to get a more
general idea of human perception.

2.1.1 Crowdsourcing

Studies to acquire subjective data traditionally have been
conducted in a laboratory, in which researchers can ensure
a controlled environment, such as the required environ-
mental features of standard MUSHRA. However, efforts
have been made to adapt subjective quality assessments to
an online crowdsourced format [19–22].

Typically, lab-based audio tests require participants to
complete assessments in rooms that meet specific acous-
tic qualities, using the same technology as all other partici-
pants (e.g. headsets, operating systems, etc.). Some proto-
cols additionally restrict participants to those that meet cer-
tain criteria such as level of expertise in an audio-related
field or not having been diagnosed with a hearing disor-
der [18] in order to eliminate the possibility of a partici-
pant’s evaluation being affected by extraneous noise or a
lack of understanding of the task. However, conducting
tests in a lab costs a significant amount of both time and
money; and subjective assessment trials that take place in
a lab attract fewer participants, leading to results that are
less statistically significant [21].

These drawbacks have led to the rise of subjective eval-
uations that take place online. Many efforts have been
made to adapt subjective assessment protocols to an online,
crowd-sourced environment [19–22], forgoing some of the
strict participant eligibility criteria and environmental con-
trol in favor of acquiring a larger and more diverse set of
results. Moving these assessments online is also more cost
effective; and it takes less time to acquire data than it takes
in a lab. Traditional MUSHRA trials, for example, can
take several hours for each participant to complete, de-
pending on the number of trials completed. Online evalua-
tion tasks, on the other hand, are designed to be completed
much more quickly. Lab-based assessments typically have
a small number of people evaluate a lot of things, whereas
online assessments are taken by many more people, but
each usually completes only a few tasks.

A shortcoming of online assessments is that they can-

not be directly monitored, making it possible for results
to be affected by the listening environment, the equipment
used, or the participants’ integrity. These effects cannot be
screened ahead of time, but there are a few methods that
can be implemented to filter online study results. For ex-
ample, the CrowdMOS platform [21] asks participants for
the type of listening device they used during the study (e.g.,
headphones, laptop speakers). It is expected that a per-
son listening on speakers would not be able to hear finer
details of audio as acutely as listeners using headphones.
Cartwright, et al. [22] also asked about listening device
in their web-based MUSHRA assessment, as well as the
quietness of the room in which the participant completed
the study. Asking these questions allows the researchers to
eliminate data from participants that do not fit their criteria
(e.g., using headphones, being in a quiet environment).

An online assessment can also contain a hearing test to
assess the participants’ hearing capabilities. For example,
the MUSHRA assessment from Cartwright, et al. [22] fea-
tures two hearing tests which require listeners to report
how many tones they hear in a sequence. This sequence
always includes a tone pitched at 55 Hz and at 10 kHz tone
with up to 6 other tones being between those pitches. It
is expected that a listener completing the study in a noisy
room or with an inadequate listening device would not be
able to hear the 55 Hz or 10 kHz tone. Researchers can also
hide anchor questions within the survey, as is already the
practice in MUSHRA. The answer should be obvious, so
researchers can easily identify participants that did not un-
derstand the directions or intentionally submitted inaccu-
rate responses. If participants do not answer these anchor
questions correctly, their data can be eliminated.

Despite the need to prune crowdsourced results, crowd-
sourced assessments can achieve comparable results to
those of their lab-based equivalents while costing signif-
icantly less and being quicker to execute [19]. More time
may be necessary to screen crowdsourced results, but this
is usually done computationally and does not take a signif-
icant amount of time from the researchers like in-lab as-
sessments do.

2.2 Objective Evaluation of Audio Quality

Objective evaluation of audio is achieved without human
subject data. Therefore, objective evaluation metrics are
more practical for researchers to use, being significantly
quicker and cheaper to execute than a subjective evalua-
tion study. There are many methods of evaluation that can
be applied to music source separation, and they typically
take one of two forms: closed form equations that com-
pute an amount of error, or models that predict an audio
quality rating. Objective evaluation methods can also be
classified by whether or not they require a ground truth
signal to which the source separation model’s output can
be compared; every closed form equation method requires
a ground truth.

2.2.1 Closed Form Evaluation Methods

The Signal-to-distortion ratio (SDR) [4] is the current stan-
dard evaluation metric for music source separation. An
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estimate of source ŝi is assumed to be composed of four
separate components:

ŝi = starget + einterf + enoise + eartif

where ŝi is the true source, and einterf , enoise, and eartif
are terms for interference, noise, and artifacts, respectively.
These equations also assign equal weights to the different
error terms. So it is assumed that each type of distortion
contributes equally to the overall quality of the source ŝi
[6].

From these attributes, we are able to compute different
energy ratios by the relation of these terms to the true
source. SDR, or the overall measure of how good the
source estimate sounds in comparison to the true source
can be represented as:

SDR = 10log10

(
||starget||2

||einterf + enoise + eartif ||2

)
(1)

SDR is measured in decibels (dB), and higher values are
better.

Since the original proposal of SDR, several issues with
the metric have been discovered, including an easy way
to boost one’s scores by changing the amplitude scaling
of source estimates. This prompted the proposal of a ver-
sion of SDR that is not dependent on amplitude scaling, SI-
SDR [23]. They first rescale the target s by finding the or-
thogonal projection of the estimate ŝ on the line spanned by
s. The scaled reference is denoted as etarget, which allows
us to break down the estimate ŝi as ŝi = etarget + eres.
From this, we can define SI-SDR by the equation

SI-SDR = 10log10

(
||etarget||2

||eres||2

)
(2)

As with SDR, SI-SDR is measured in decibels (dB), and
higher values are better. And despite the potential improve-
ments SI-SDR has over SDR, SDR remains the standard
evaluation metric for the task of music source separation.

Although SDR is the established standard, most loss
functions that are normally used in neural network train-
ing can also be used to evaluate the quality of audio source
separation. For example, L1 and L2 losses can be used to
evaluate the similarity between an estimated signal and the
target signal. These loss functions have been previously
implemented in music source separation, being parts of the
training architectures for source separation algorithms De-
mucs [24,25] and Spleeter [26]. L1 can be observed as the
absolute error, and L2 as the squared error.

In the context of music source separation, these calcula-
tions are typically done on the power spectrograms of the
target and estimate signals, and lower values are better.

2.2.2 Audio Quality Prediction Models

The second type of objective evaluation is an audio qual-
ity predictor, or in other words, a non-human system (i.e.,
neural network) that is trained using existing audio evalu-
ation data to predict the evaluation of other audio stimuli.
These evaluation methods can be further distinguished by
the type of data on which they are trained. The PEASS
Toolkit 1 [10] and MOSNet [14] are two evaluation sys-

1 PEASS can operate in both the music and speech domains.

tems that are trained on human data - MUSHRA and MOS,
respectively - to predict quality scores for the input audio.
Alternatively, audio quality predictors can be trained on
data that is another quality evaluation model’s output. For
example, Quality-Net [11] is a speech quality assessment
model that is trained on PESQ [3] data and outputs a PESQ
score prediction for an audio input. PESQ, or Perceptual
Evaluation of Speech Quality, is a model developed for
telephone networks and codecs that predicts Mean Opin-
ion Score.

A shortcoming of audio quality prediction models oper-
ating in the music domain that is being addressed in the
speech domain is the requirement of an available target
signal, or ground truth separated signal. The previously
mentioned speech models, Quality-Net and MOSNet, are
two examples of evaluators that only take as training inputs
estimated signals and their PESQ or MOS scores, respec-
tively. PEASS, however, requires the target signal of each
stem and the estimated mixture signal as inputs. This is a
significant issue when no target audio is available.

An alternative approach to a “referenceless” model is
given by the Fréchet Audio Distance (FAD) [2]. Inspired
by the Fréchet Inception Distance (FID) [27], which was
developed to evaluate generative models for images, FAD
compares statistics computed on a set of estimated signals
to reference statistics computed on a large set of studio
recorded music.

FAD uses a VGGish [28] model to generate embeddings
for the reference set and the evaluation set. Like how
Fréchet Audio Distance, it is derived from Fréchet Incep-
tion Distance, VGGish is derived from the VGG image
recognition architecture. Multivariate Gaussians are com-
puted on both the evaluation set embeddings Ne(µe,Σe)
and the reference embeddings Nr(µr,Σr); and Dowson,
et al. [29] define the Fréchet distance between two Gaus-
sians as:

F (Nb, Ne) = ||µb−µe||2+ tr(Σb+Σe−2
√

ΣbΣe) (3)

where tr is the trace of a matrix. As a distance measure,
lower FAD scores are better. FAD was developed for the
task of music enhancement, but the metric could also be
effective for music source separation.

3. LISTENER STUDY

To make comparisons between objective and subjective
evaluation methods, we performed source separation on a
subset of MUSDB18 using five selected algorithms. We
then conducted a crowdsourced listener study to collect
MOS ratings, and measured the separation quality accord-
ing to five objective metrics. These evaluations and the
correlation between them are discussed further in Section
4.

3.1 Dataset

MUSDB18 consists of 150 stereo mixtures of songs, about
10 hours of data, that span a variety of genres. The song
files are encoded at 44.1kHz and in the Native Instruments
stems format. This multitrack format is composed of five
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stereo streams corresponding to the mixture, drums, bass,
other, and vocals. MUSDB18 is among the most-cited
datasets for existing work in music source separation.

From the 150 songs in the MUSDB18 dataset, we curated
a subset of 30 songs, mostly from the test set, that repre-
sented a wide range of musical genres and were balanced
between male and female singers. We did not randomly
select songs because MUSDB18 skews in favor of male
singers and the Pop/Rock genre; manual curation makes it
easier to represent the genres and vocals that are less com-
mon in the MUSDB18 data set as a whole.

Each of the 30 MUSDB18 songs was truncated to a 7-
second segment. This duration is short enough to be sepa-
rated efficiently while also being long enough for listeners
to effectively evaluate. These segments were screened to
ensure that the clip contained enough of each stem - bass,
drums, and vocals - to be evaluated.

The source separation algorithms used in this experiment
are referred to as HDX [25], DMX [24], D3N [30], SPL
[26], and SSW [31]. These were chosen due to their rank-
ings on the Papers with Code leaderboard for average SDR,
seeking algorithms that represented the top, middle, and
bottom tiers. In addition to comparing the correlations of
existing metrics to human perception, we can determine
the reliability of an SDR-based leaderboard when consid-
ering human perception.

Each of these separators outputs tracks corresponding to
the stems bass, drums, vocals, and other. We disre-
garded the other track in this experiment due to its ambigu-
ity. The other stem could contain a keyboard synthesizer
or a harp - a solo saxophone or an entire string orchestra.

Ignoring the other track leaves us with 30 tracks sepa-
rated by five source separating systems into three stems, or
a data set of 450 stems to evaluate.

3.2 Listening Assessment

We conducted a MOS study in which participants were
asked to rate two separate attributes of the audio that was
presented: the level of “other instruments” present, and the
level of “artifacts” present. To clarify the term for partic-
ipants without audio training, “artifacts” were defined in
the introduction as “extra sound that cannot be recognized
as a musical instrument or voice.”

3.2.1 Participants

Participants were recruited and paid through Amazon Me-
chanical Turk (MTurk), a platform for crowdsourcing user
studies. They were paid $2.00 for each 10-question study
they completed. Participants were required to be at least
18 years of age, which is enforced by MTurk, and they
were strongly encouraged to complete the study with head-
phones or earbuds in a quiet environment.

3.2.2 Pre-Screening

The subjective assessment started with a hearing screening
similar to the screening defined by Cartwright, et al. [22] in
their online MUSHRA assessment. Participants were first
asked to adjust the volume of a 1000 Hz sine wave to a

comfortable level and encouraged to not change the level
afterward.

They then listened to two 8-second audio clips and
counted how many separate sine wave tones they heard.
Each clip contained at least a 55 Hz and a 10 kHz tone,
with the possibility of up to six more tones between 55 Hz
and 10 kHz. It is expected that a participant in a suitable
listening environment with an appropriate listening device
should be able to hear the 55 Hz and 10kHz tones.

Participants had three attempts to answer both screening
questions correctly. Incorrect answers would be followed
by a prompt for the participant to change their listening
environment or device and try again. Failing this check
three times would prompt the participant to submit their
responses; they would not be able to view the rest of the
study and they would not be compensated.

3.2.3 Procedure

Following the hearing screening, a description of the rat-
ing system was given to the participants who passed the
hearing test. It was explained that they would give two rat-
ings for each audio example on a 1-5 scale - one for pres-
ence of artifacts and another for presence of sounds from
other instruments. A rating of 1 indicated “Bad: a lot of
sound from other instruments or artifacts”, and 5 indicated
“Excellent: no sound from other instruments or artifacts.”
They were presented with example audio clips and descrip-
tions of what was meant by presence of other instruments
and presence of artifacts.

Each assessment consisted of 10 audio clips of the same
stem type - bass, drums, or vocals, and no audio clip was
repeated across the assessment versions. The assessments
were released in batches grouped by stem type; so one
batch would only contain audio clips of drums, for exam-
ple. A participant could decide to complete each assess-
ment in the batch, or just a few. MTurk does not have
the capability to randomize the order in which assessments
appear in a batch; so to ensure the latter assessments were
taken enough times, an assessment in the batch was un-
published when it had been completed by 10 participants.
Assessments that were submitted with a failed hearing test
were republished until it had been completed by 10 partic-
ipants who passed the hearing test.

For each of the 10 questions on an assessment, partici-
pants were asked to listen to a 7-second audio clip in its en-
tirety, then separately rate the level of “other instruments”
and “artifacts” present in the clip. At the end of the assess-
ment, participants were asked to report the type of listening
device they used to complete the assessment and a rating
on a 1-5 scale of how quiet their listening environment was
throughout the assessment, where 5 meant no noise and 1
meant extremely noisy. They were provided spaces to re-
port any changes to their listening environment that may
have occurred, as well as any additional comments.

4. RESULTS & DISCUSSION

In this section, we review the responses received from the
listener study described in the previous section, and com-
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Figure 1. Distribution of variance between subjective
ratings and the MOS of each audio example.

Figure 2. Distribution of Spearman rank correlation
coefficients between subjective ratings and the MOS of

each audio example.

pare those results to the evaluation of selected objective
metrics.

4.1 Listener Responses

Fig. 1 shows the distribution of variance between an in-
dividual rating of an audio example and the MOS of that
example. For both types of distortion, artifacts and other
instruments, most individual rater scores varied, on aver-
age, by about 1.0 from the MOS. This amount of variation
seems logical since participants can only respond with in-
tegers within the small range of 1 through 5; and it would
be unlikely for a listener to rate an audio example as a 5
when the majority rate it as a 1.

We also investigated the Spearman rank correlation be-
tween the ratings a listener gave and the mean opinion
scores for the same songs. The distribution of these cor-
relation coefficients is shown in Fig. 2. Most listeners had
a correlation coefficient around 0.5 to the MOS of the ex-
amples they rated. It also shows a significant number of
assessments that were negatively correlated to the others.
Specifically, 78 out of 450 assessments had negatively cor-
related ratings; 25 bass assessments, 28 drum assessments,
and 25 vocals assessments.

SDR SI-SDR L1 L2 FAD
Bass -0.301 -0.235 0.238 0.246 0.076

Drums 0.003 -0.021 -0.006 -0.027 -0.020
Vocals -0.006 -0.055 0.035 0.023 0.204

Table 1. Spearman rank correlation coefficients for each
objective metric compared to MOS for presence of artifacts

SDR SI-SDR L1 L2 FAD
Bass -0.088 -0.043 -0.026 -0.000 -0.122

Drums 0.017 0.027 0.034 0.023 -0.036
Vocals 0.027 0.000 0.049 0.053 -0.003

Table 2. Spearman rank correlation coefficients for each
objective metric compared to MOS for presence of other

instruments

We considered excluding data that had a negative corre-
lation. However, it is possible that these participants gen-
uinely heard the audio differently. Given the information
acquired through the listening assessment, it would be im-
possible to prove that these participants, or which of them,
were not completing the study with integrity.

We also noticed that many submissions from unique par-
ticipants had either all 4s and 5s as their ratings, or all 1s
and 2s. Because the audio clips were created with source
separation algorithms of varying quality, according to av-
erage SDR, responses like these are highly unlikely. We
investigated the correlation on a subset of the responses
that excluded those that gave all of the same or two ad-
jacent ratings. However, excluding such data did not sig-
nificantly affect the distributions of variance or correlation.
Given these observations, the rest of this paper uses the full
set of subjective evaluation responses.

4.2 Correlation Between Objective and Subjective
Evaluation

We have chosen five existing objective metrics to exam-
ine: SDR [4], scale-invariant SDR (SI-SDR) [23], L1 loss,
L2 loss, and Fréchet Audio Distance (FAD) [2]. SDR
serves as the baseline for these experiments, being the cur-
rent standard metric for music source separation. SI-SDR
was chosen to see if the scale-invariant aspect affects the
outcome. L1 and L2 losses are typically used in training
prediction models, but not in the final evaluation of audio
quality. FAD is a music evaluation metric that does not
require the ground-truth target signal.

First, we compare the MOS of each audio example
against the corresponding score from each objective met-
ric, as shown in Fig. 3 and 4. Clearly, there isn’t a strong
correlation in any of the plots, regardless of metric or stem
type.

To confirm this notion, we can look at the Spearman’s
rank correlation coefficients, shown in Table 1 and Table 2.
We can see that the strongest positive correlation occurred
with L1 and L2 loss for the MOS of artifacts present in bass
examples. With a correlation coefficient of 0.246, however,
this is still not a strong relationship. This implies that, as
MOS improves, only a quarter of L1 and L2 evaluations do
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Figure 3. Objective metrics vs. MOS for presence of artifacts. The axes for SDR and SI-SDR are log-scaled.

Figure 4. Objective metrics vs. MOS for presence of other instruments. The axes for SDR and SI-SDR are log-scaled.

so as well.

4.3 Ranking Source Separation Performance by
Different Evaluation Criteria

In addition to correlation analysis, we considered how each
evaluation metric would rank the performance of the five
source separation algorithms. We also compare the rank-
ing from the observed metrics to that from the MUSDB18
leaderboard 2 .

4.3.1 Rank Order from Objective Metrics

As shown in Table 3, no observed metric maintained the
same exact rank order as the MUSDB18 leaderboard. This
includes SDR, which the leaderboard uses. The difference
between the average SDR from this experiment and that
from the leaderboard is likely due to using a subset of the
MUSDB18 instead of the full 50 song test set.

Among the five objective metrics, the order most similar
to the MUSDB18 leaderboard was given by L2 loss, plac-
ing HDX as the best separator and SPL and SSW as the
worst. The least similar rankings to the leaderboard were
from FAD, which only agreed with SSW being at the bot-
tom.

4.3.2 Rank Order from Listener Study

We also looked at the rank orders from the objective met-
rics in comparison to the collected mean opinion scores,
also shown in Table 3. We can see that the rank order
according to MOS is completely different from the order

2 https://paperswithcode.com/sota/music-source-separation-on-
musdb18

according to both the MUSDB18 leaderboard and the ob-
served objective evaluation metrics.

These subjective results may tell us that the outputs of
these source separation models are more similar than SDR
and other objective metrics would indicate. However, there
are other factors that could have affected the listeners’ re-
sponses. Despite being provided with examples of what to
listen for, participants may not have fully understood the
task. They could have also been affected by the environ-
ment in which they completed the study. The responses at
the end of the assessment showed that 27.55% of the sur-
veys were completed in an environment that was “some-
what noisy” or worse. There is also the possibility that
participants who reported an appropriate level of environ-
mental noise could not have been genuine. These are both
caveats that come with conducting an online crowdsourced
study.

5. CONCLUSION

We have investigated the relationship between objective
and subjective evaluation of music source separation. We
collected mean opinion score data for separated stems from
five different source separation algorithms, and compared
those results to evaluations from five different objective
metrics.

With the goal of producing audio that sounds good to lis-
teners, the objective metrics used in MIR work would ide-
ally correlate to human evaluation. We found that none of
the observed objective metrics correlated well with the lis-
tener opinion data, with the best correlation being 0.246.
We also found that no evaluation metric agreed on which
source separation algorithm was the best, worst, or in be-
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Rank MUSDB18 SDR SI-SDR L1 L2 FAD MOS (Artif.) MOS (Inst.)
(Best) 1 HDX HDX HDX D3N HDX D3N SSW SSW

2 DMX DMX DMX HDX D3N SPL D3N SPL
3 D3N SPL SPL DMX DMX HDX SPL D3N
4 SPL SSW SSW SPL SPL DMX HDX HDX

(Worst) 5 SSW D3N D3N SSW SSW SSW DMX DMX

Table 3. Relative rank order of source separation algorithms according to the MUSDB18 leaderboard, the five observed
objective metrics, and the mean opinion score (MOS) when listening for presence of “Artifacts” or “Other Instruments.”

tween. On the MUSDB18 leaderboard, there was a 4.1 dB
difference in average SDR between the best and worst sep-
arator used in this paper. However, human listeners evalu-
ated all five separators very similarly and in a vastly differ-
ent order.

5.1 Future Work

We confirm that the most commonly used evaluation met-
ric for music source separation does not achieve a strong
correlation to the opinions of listeners, and none of the
other observed metrics does either. One could use these
insights to develop a new evaluation metric with the intent
of correlating well to human perception. While possible, a
robust dataset of audio as well as listener evaluation data
would be required to achieve this goal. It is also possible
that listeners would be able to hear the differences in audio
quality more acutely if the audio examples were presented
in comparison with each other, instead of one at a time. If
so, a MUSHRA assessment would be worth pursuing.
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