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ABSTRACT

We present a method that accurately estimates multiple
tempi simultaneously by acting on different time-scales
of the signal. We introduce the term sequency flux,
which refers to an audio feature derived from the Walsh-
Hadamard transform, as an alternative to the widely used
spectral flux. The signal derived from sequency flux is
further decomposed using the Empirical Mode Decompo-
sition (EMD) and multiple tempo hypotheses are formed
by evaluating the autocorrelation function on the intrinsic
mode functions (IMFs) over a range of analysis window
lengths. An inference method is then proposed that filters
out weak hypotheses. The inference lies on measuring the
inter-onset intervals (IOIs) found within each IMF, and on
how strongly these correspond to the respective tempo hy-
potheses. The method is extremely simple to implement
yet robust, because it does not rely on complex heuris-
tics, the use of arbitrary and signal dependent thresholds,
or learning.

1. INTRODUCTION

Tempo perception and beat induction are fundamental mu-
sical traits that allow one to enjoy and appreciate music.
It is because of these traits that one can dance to the mu-
sic, or participate in collaborative music-making activities.
As Honing nicely puts it [1]: “Without it no music”. It is
therefore no surprise that topics related to tempo estima-
tion and beat tracking have received much attention in the
music information retrieval community [2]. Most algo-
rithms aim to estimate at least one of the three following
metrical levels: the tatum (or temporal atom; [3]), the tac-
tus (or beat) and the measure (or bar). These levels relate to
the detection of musical events operating on different time
scales. The tatum refers to the shortest durational value
of events (e.g., a sixty-fourth note). The tactus is the most
prominent level and refers to the tapping-rate that a listener
is most likely to tap to while listening to music. Tempo is
usually derived from the tactus level. The measure level
relates to the rate of harmonic changes, or to the period of
rhythmic and melodic patterns.

In the fields of computational ethnomusicology and es-
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pecially in performance studies, one may be interested in
analyzing the morphological structures of musical events
that occur on metrical levels other than the tatum, tactus,
and measure. Stylistic conventions (related to a particular
genre, for example) and aesthetic principles of perform-
ers and composers may appear both in macro and micro
time scales, other than the measure or tatum levels [4].
However, the vast majority of algorithms aim at estimating
just one metrical level, which is often related to tactus (i.e.,
the tempo). Although one may assume that tempi that are
multiples or submultiples of the basic tempo are equally
valid, this assumption may not always agree with listen-
ers’ perceptions (Section 2). This is because actual events
may not be present (or cannot be implied) on hypothetical
metrical levels. As Goto mentions in [5], “The principal
reason that beat tracking is intrinsically difficult is that it
is the problem of inferring an original beat structure that
is not expressed explicitly.” In addition, systems which de-
tect just one metrical level, may have limited success when
applied to musical pieces composed with polyrhythms.

In this work, we propose a method that aims to esti-
mate all the characteristic time scales in which musical
events occur. This is accomplished through a decompo-
sition method (i.e., the Empirical Mode Decomposition;
Section 3), and the formation of multiple tempo hypothe-
ses that are derived from the resulting components of the
decomposition. We are particularly interested in testing
whether these components actually carry tempo informa-
tion on metrical levels that match listeners’ perceptions. In
the following, we first present related work, and some algo-
rithms that were evaluated in the MIREX campaigns along
with results obtained from two of the most popular deep
learning approaches (Section 2). In Section 3, we present
the core elements of the proposed method, and in Section
4 the method itself along with evaluation results on a lim-
ited dataset from the MIREX campaign, which served as
a case study. In Section 5 we summarize our conclusions
and point to some future directions.

2. RELATED WORK & CHALLENGES

2.1 Onset Detection & Spectral Flux

Most tempo estimation methods start by first applying an
onset detection function to the signal in order to estimate
the positions of note onsets. The onset detection func-
tion can be energy-based or spectral-based. Energy based
methods usually consist of the following steps. The au-
dio signal is first rectified (e.g., by squaring it) and then
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smoothed by a low-pass filter in order to estimate its
(power) amplitude envelope. Sudden energy changes in
the amplitude envelope are then captured through differ-
entiation. For onset detection, it is usually assumed that
only the energy increments observed in the differentiated
amplitude envelope are relevant to note onsets and there-
fore, the signal is half-wave rectified in a subsequent step.
The last step involves a peak-picking strategy (e.g., [6, 7])
in order to eliminate spurious peaks, which may not cor-
respond to actual note onsets. Energy-based methods gen-
erally provide acceptable results when applied to musical
pieces that exhibit strong percussive onsets. However, the
results are relatively poor when these methods are applied
to musics which mainly consist of soft onsets (e.g., orches-
tral pieces, string quartets, chorales), or to dense musical
passages in which notes occur asynchronously and occupy
different frequency bands.

Spectral-based methods [8] offer an improvement over
energy-based methods because the differentiation occurs
within particular frequency bands of the audio signal, and
therefore minimize the possibility of an onset to go unno-
ticed due to energy masking. The first step in spectral-
based methods is the computation of spectral-flux, which
refers to the computation of the short-time Fourier Trans-
form (STFT) followed by differentiation (across time) over
each frequency band. Alternatively, some methods [9]
group the frequency bins of the STFT into several bands
(e.g., according to Mel-scale) and differentiation take place
between those bands instead of the individual frequency
bins. Many methods also use the power instead of the mag-
nitude of frequency bands or some other form of logarith-
mic compression [10] prior to differentiation. The dif-
ferences are then half-wave rectified and summed across
all frequency bands. The last step usually involves some
peak-picking strategy as in the energy-based methods.

Dixon [11] compared several different methods related
to the computation of spectral flux for the purpose of on-
set detection, but found that the magnitude-based spectral
flux (as described above) performs in par with other more
complicated methods (e.g., methods that also take phase
into account). Energy fluctuations in a particular spec-
tral band (e.g., tremolo) may lead to the detection of er-
roneous onsets. Although thresholding through a peak-
picking strategy may improve the results, fluctuations in
frequency (e.g., vibrato) also cause “blurring” of the peaks
in the final onset detection function. A solution to this
problem was proposed by Böck et al. [12] through an
onset detection algorithm with vibrato and tremolo sup-
pression ("Superflux"), which reduces the number of false-
positive onset detections for musical pieces that exhibit
strong vibrato. However, it should be noted that the re-
duction of false positive onsets through some form of sup-
pression require the use of carefully chosen thresholds and
that the optimal values of which may vary across musical
genres, or instrumentation.

2.2 Periodicity Analysis & Tempo Estimation

Tempo estimation usually relies on finding the dominant
periodicity of the onset detection function. One of the most

commonly used methods in detecting such periodicities is
the autocorrelation function (e.g., [13, 14]). Other meth-
ods include the Fourier Transform [10] and comb filter-
banks [9, 15] or a bank of resonators applied to chroma
features derived from the harmonic and percussive compo-
nents of the signal [16]. Peeters [17] explores the fact
that octave uncertainties present in Fourier-based meth-
ods and autocorrelation-based methods occur in inverse
domains (i.e., in frequency domain and time-lag-domain,
respectively) and proposes a combination of the two. An-
other group of methods detect dominant periodicities di-
rectly from the inter-onset intervals (IOIs) found in the
onset detection function through histogramming [18], or
some clustering scheme [19]. Many tempo estimation sys-
tems are also equipped with an induction algorithm [19]
in order to make more accurate predictions given a set of
tempi candidates, which possibly correspond to different
metrical levels (e.g., tatum, tactus). Common algorithms
used for this task include the use of Hidden Markov Mod-
els (HMMs; e.g., [9,17] ) and dynamic programming (e.g.,
[16, 20]).

In relation to modelling multiple hierarchical metrical
levels, one of the first systems was proposed by Goto [5].
The system potentially recognizes hierarchical beat struc-
tures consisting of the quarter note level, the half-note
level, and the measure-level. The latter is computed under
the assumption that the time signature of the musical track
is 4/4. In relation to quarter note level (i.e., the beat level)
the system assumes that the tempo range is between 61
BPM and 185 BPM for drum tracks, or between 61 BPM
and 120 BPM for music without drums. Klappuri et al. [9]
proposed a method that simultaneously estimates the met-
rical levels of tatum, tactus (i.e., the beat), and measure.
The HMM is designed to take into account temporal de-
pendencies between successive estimates of each metrical
level, and imposes explicit dependencies between the pe-
riods and phases of the tatum, tactus and measure levels.
Lartillot et al. [21] present a method that tracks hierar-
chical metrical structures at various levels expressed as a
set of detected periodicities in pairwise harmonic relations.
This method requires no training (compared to the method
presented in [9], for example) and relies on signal pro-
cessing (e.g., by using methods similar to spectral flux and
autocorrelation) as well as heuristics-based peak tracking.

Deep learning approaches to tempo estimation include
the models of [22] and [23]. In addition to being widely
cited and having publicly available open-source implemen-
tations, these methods are also considered to be some of
the most accurate in relation to particular datasets. Table
1 provides the evaluation results of these two approaches,
and the rest of the methods mentioned above. These re-
sults stem from the MIREX tempo estimation campaigns
in which the task was to estimate two tempi correctly along
with their perceptual salience (see also Section 4).

From this table we can see that the deep learning ap-
proaches perform better than the other methods in estimat-
ing at least one tempo correctly (although perhaps in some
cases with questionable statistical significance). However,
their accuracy in estimating correctly a second tempo is
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Reference [22] [23] [16]
One tempo correct 0.99 0.98 0.94
Both tempi correct 0.69 0.66 0.62
Reference [9] [20] [21]
One tempo correct 0.94 0.93 0.92
Both tempi correct 0.61 0.46 0.57

Table 1. Evaluation results of some algorithms submitted
to the MIREX campaigns over the years. (Results from
[21].)

relatively low. Interestingly, methods designed for mod-
elling multiple hierarchical levels perform less well in this
task compared to other generic methods. These results are
rather discouraging in relation to the relatively high 8%
tolerance level, which was used in the MIREX campaigns,
instead of the widely accepted 4% tolerance level and ac-
cording to which Accuracy 1 (Acc1) is measured.

Another popular and relatively accurate deep learning ap-
proach for simultaneously tracking tempo, beat, and down-
beat is proposed by Böck et al. [24]. While this method
estimates a single tempo (based on datasets with tempo
and/or beat tracking data), an additional tempo hypothe-
sis could potentially be formed through the estimation of
downbeats. However, downbeats do not always directly re-
late to the measure level. Table 2 lists the evaluation results
of this method on tempo estimation, alongside some previ-
ously mentioned methods on specific datasets, as reported
in [24]. Comparing these results to those for secondary
tempo estimation in Table 1, it can be inferred that nearly
perfect Accuracy 2 (Acc2) scores rarely reflect listeners’
perceptions of tempo.

Reference [24] [23] [16] [13]
Lowest Acc1 0.830 0.769 0.651 0.506
Highest Acc1 0.870 0.821 0.725 0.733
Lowest Acc2 0.950 0.926 0.922 0.924
Highest Acc2 0.990 0.976 0.979 0.972

Table 2. Evaluation results of the method presented in [24]
compared to other algorithms. "Lowest Acc" and "High-
est Acc" represent the minimum and maximum accuracy
scores observed across the datasets used in the study. (Re-
sults from [24].)

3. SEQUENCY FLUX & THE EMPIRICAL MODE
DECOMPOSITION

3.1 The Walsh-Hadamard Transform & Sequency
Flux

It is well known that narrow-band signals that possess har-
monic structures such as voiced speech, or sustained and
pitched instrument sounds, can be well represented by the
FFT through a small number of harmonic complex expo-
nentials. Abruptly changing signals, such as percussive on-
sets, unvoiced speech, or complex musical passages, are

often random-like, “noisy”, and require a large number of
Fourier coefficients in order to be accurately represented,
and therefore may not be characterized efficiently. Such
broadband signals can be characterized more efficiently by
a broadband class of basis functions such as the Walsh
functions [25]. The Walsh-Hadamard transform is anal-
ogous to the Fourier transform, but instead of sinusoids
it consists of a set of periodic and aperiodic rectangular
waves that take only two amplitude values of +1 and -1.
These waves are characterized by their sequency (as op-
posed to frequency in the Fourier transform), which de-
notes the number of zero-crossings the function makes per
unit time.

Hadamard matrices of order M = 2k can be generated
recursively from the following relationship [26]:

H(k + 1) =

[
H(k) H(k)
H(k) −H(k)

]
, k = 0, 1, 2, ..., (1)

with H(0) = 1.The Walsh-Hadamard transform of a real
valued signal x of length M can then be computed from:

X = x ·H(M), (2)

where the coefficients of X correspond to the weights of
the Walsh functions.

The Walsh-Hadamard transform can be applied sequen-
tially to (possibly overlapping) frames of x in a similar
way to the short-term Fourier Transform (STFT) with the
only minor restriction being that the frame size should be
a power of two. If we let X(n, s) represent the sth se-
quency of the nth frame, then the computation of sequency
flux (SeqF lux) becomes identical to the computation of
(magnitude-based) spectral flux:

SeqF lux[n] =
S∑

s=1

|X(n, s)|− |X(n− 1, s)| (3)

3.2 The Empirical Mode Decomposition (EMD)

The Empirical Mode Decomposition (EMD) [27] is a non-
linear and adaptive method for analyzing non-stationary
signals and data. With this method, the signal is repre-
sented as a sum of zero-mean amplitude and frequency
modulated (AM/FM) components. In the context of EMD,
these components are called Intrinsic Mode Functions
(IMFs) and (in theory) must satisfy the following two con-
ditions: (i) the number of extrema (i.e., the local maxima
and local minima of the signal) and the number of zero
crossings must be equal, or differ at most by one; and (ii)
the envelopes defined by local maxima and local minima
must be symmetric, or in other words, the mean value of
the upper and lower envelopes must be zero.

EMD is based on an iterative process that successively re-
moves the fine structure of the signal through some form of
adaptive and signal-dependent time variant filtering. The
IMFs are computed according to the following steps [28]:

1. Estimate all the maxima and minima of the signal
x(t)
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2. Construct the upper (u(t)) and lower (l(t)) en-
velopes of the signal by interpolating the maxima
and minima, respectively

3. Compute the mean envelope m(t) = (u(t)+ l(t))/2

4. Extract the detail d(t) = x(t)−m(t)

5. Iterate from step (1) to (4) on d(t) until it can be
considered zero-mean (and therefore an IMF)

6. Set d(t) to be an IMF, i(t) = d(t)

7. Repeat from the beginning on the residual,
r(t) = x(t)− i(t) as the data

8. Stop the process if r(t) remains approximately con-
stant, or is monotonic

The procedure of repeated iterations that occur in step 5
is known as sifting. The algorithm will eventually con-
verge, because the number of extrema is decreased when
progressing from one residual to the next.

To the best of authors’ knowledge, there are only a few
approaches for tempo estimation using the EMD algorithm
[29, 30]. In [29], Pikrakis et al. used EMD to segment
music recordings into regions that exhibit similar rhyth-
mic characteristics, and to analyze the diagonals of the
self-similarity matrix of those regions in order to extract
the tempo. The method presented in [30] is conceptu-
ally similar to the one we present here, and therefore mer-
its some discussion. This method computes IMFs of the
input signal, and estimates their corresponding amplitude
envelopes using low-pass filtering and half-wave rectifica-
tion. The periodicities of each IMF are estimated through
the autocorrelation function (ACF). Tempo induction is
made in two steps. In the first step, the IMFs that do not
exhibit harmonically related peaks in the respective ACF
are removed. In the second step, the induction algorithm
searches for one-to-one (peak) correspondences and har-
monic relations (in terms of time-lags) between the ACF
peaks of a particular IMF in relation to subsequent ones. If
no match is found, the induction method fails to evaluate
the tempo. Although this method is conceptually similar to
the one presented in this paper, it is fundamentally differ-
ent to the one proposed in this work and which we detail
in the next section.

4. MULTIRESOLUTION TEMPO ESTIMATION

4.1 Formation of Multiple Tempo Hypotheses

The method starts with a pre-processing stage that includes
the following steps: conversion to mono by selecting the
channel with the highest root mean square amplitude; re-
sampling to 22.5 kHz; and removal of the global DC offset.
After this stage, the Walsh-Hadamard transform is com-
puted using a window length of 512 samples and a hop-
size of 256 samples, which corresponds to about 11.6 ms.
The sequency flux is then computed according to Equation
(3). We deliberately avoid the use of half-wave rectifica-
tion (HWR) on sequency flux, because we assume that off-
sets also play a role in tempo perception [1]. To achieve a

better resolution, the frame rate of sequency flux gets up-
sampled to 200 Hz. The next stage is the computation of
EMD in order to derive the IMFs of sequency flux. For the
computation of EMD the algorithm of [31] is used with
the default settings provided by the authors.

The periodicities of sequency flux along with the peri-
odicities of each IMF are estimated using a windowed-
autocorrelation function. The (normalized) autocorrelation
function is computed using a set of window lengths rang-
ing from 2 s to 12 s with 1 s increments and a hop-size of
5 ms. The dominant periodicities of each frame per win-
dow length are estimated by finding the global maxima of
the ACFs within the range of 30 to 600 BPM. Another set
of periodicities is computed using the peaks of the ACFs
that occur after the first minima, which in some cases may
coincide with the global maxima.

A first set of tempo hypotheses for each IMF and the orig-
inal sequency flux, and for each window length, is formed
using the median values of the dominant periodicities (al-
though it is acknowledged that the mode in some cases
could give a more reliable estimate). Hypotheses that do
not agree with the medians of the second set of periodic-
ities are removed from this set. This “filtering” stage is
done to ensure that the estimations are relatively stable,
because if the ACF is noisy it may not exhibit a clear peak
structure.

A second set of tempo hypotheses is formed using the
medians of the second set of detected periodicities. Only
tempi that are lower than the minimum tempo of the first
set of hypotheses are kept. This “filtering” stage is specifi-
cally done to utilize the periodicities found in higher IMFs
(i.e., lower tempi): in these IMFs the ACF decays slowly
to zero and therefore, the peak of the ACF that occurs after
the first minimum is a more robust estimator of the domi-
nant tempo than the global maximum.

4.2 Induction

Depending on the complexity of the signal, some of the hy-
potheses formed according to the description given above
might be wrong, including hypotheses derived from the
original sequency flux. This could be due to various rea-
sons such as: signals having a weak periodic structure and
the inability of the ACF to detect periodicities within these
structures; inaccurate IMFs generated from EMD due to
over-iteration [28]; or even the choice of the summary
statistic that is used to estimate the global tempo, which
in this case is the median.

In the induction stage, we seek rational related tempi. For
each hypothesis and from its respective waveform (i.e., se-
quency flux, or an IMF), we compute the total number of
occurrences of the IOI that matches that hypothesis. The
IOIs are rounded to the nearest BPM value of the ACF’s
resolution. This computation considers all possible inter-
val pairs, not just consecutive ones. In the next step, we
check whether integer multiples of the hypothesis that has
the maximum number of IOI occurrences exist. If that is
the case, that hypothesis along with its multiples is consid-
ered as valid.

If no multiples are found, we use the hypotheses derived
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from sequency flux. As a reminder, there are as many hy-
potheses as the number of different window lengths, which
are used in the computation of windowed ACF. From these
hypotheses we choose the one that has the fastest tempo.
Multiples and submultiples of this hypothesis (which may
also be found in IMFs) are also considered to be valid. The
decision to use the fastest tempo estimated from sequency
flux, is based on the rationale that one has to first estimate
the tatum before estimating the beat, or similarly, to first
estimate the beat before estimating the measure.

4.3 Results

The proposed method was evaluated on twenty music ex-
cerpts provided by the 2006 Music Information Retrieval
Evaluation eXchange campaign (MIREX06) for the Au-
dio Tempo Extraction Competition from 2006 to 2018.
The excerpts have a 30-seconds duration and are of con-
stant tempo. The dataset includes a wide range of tempi,
musical styles, genres, instrumentation and tempo estima-
tions (derived from tapping-data) made by 40 listeners. It’s
also worth noting that some excerpts contain high levels
of background noise, making them useful for testing al-
gorithmic robustness in such scenarios. The ground-truth
data consist of two tempi with their respective salience,
because not all listeners were tapping on the same metrical
level (e.g., the second tempo could be two, or three times
faster than the first one). The algorithms were evaluated
according to their ability to track both tempi correctly, and
a P-score which relates the two estimations with their re-
spective salience levels.

In this work, we are interested in evaluating: the accu-
racy of multiple tempo hypotheses formed in subsection
4.1; and whether the induction method presented in sub-
section 4.2 actually filters out the weak hypotheses while
retaining the correct tempo. We also used a 4% tolerance
level (Acc1 value) on the estimations instead of the 8%
used in the competition. The evaluation showed that the
proposed method generates hypotheses that include at least
one of the two tempi in 100% of the cases, and hypotheses
that include both tempi in 85% of the cases. The induction
algorithm preserved 95% of the correct tempo hypotheses
by incorrectly rejecting one correct tempo, which indicates
that the induction step could be improved.

Although these excerpts were meant to be used as a
“training” dataset for the algorithms submitted to the
MIREX campaigns, in this work this dataset was used as
a case study. This allowed us to: (i) test whether there is
any particular advantage of using a set of different win-
dow lengths when computing the ACF instead of just one;
(ii) inspect the relative contribution of each IMF and se-
quency flux to the formation of correct tempo hypotheses;
and (iii) identify pitfalls related to the induction process.
Fig. 1 shows the number of occurrences of sequency flux
and each IMF in the set of correct tempo hypotheses per
excerpt. Notably, for some excerpts, the correct tempo
was estimated exclusively from the IMFs and not from se-
quency flux. This is also the case for the slow tempi of
the dataset, for which the correct tempo could only be es-
timated from the high IMFs.

5. CONCLUSIONS

We presented a multiresolution method that is capable
of estimating multiple tempi from a detection function.
In this work, the detection function was computed us-
ing the Walsh-Hadamard transform and it was therefore
termed sequency flux, as opposed to the widely used spec-
tral flux. The method acts on different time scales of the
signal because it detects periodicities using a set of differ-
ent window-lengths for the computation of the windowed-
ACF, and because the EMD decomposes the sequency flux
into signals that exhibit different characteristic time scales.
In this way, the dominant periodicities of sequency flux
that correspond to different time scales are emphasized
and most importantly, these periodicities can be directly
and more clearly observed from the IOIs of each IMF. The
method is simple to implement and does not rely on empir-
ically set thresholds or values that depend on the complex-
ity of the signal (e.g., genre, instrumentation).

In general, the method generates some tempo hypothe-
ses that could be considered as incorrect, and which are
not harmonically related. This is the major reason why an
induction stage was employed. However, the existence of
metrical levels that are not harmonically related may in-
dicate harmonic changes or rhythmic structures that occur
within a “harmonic” time scale, but further work is needed
to verify this hypothesis. In addition to the generation
of non-harmonically related tempo hypotheses, in some
cases, the method failed to estimate both tempi correctly,
which indicates that some tempi cannot be directly derived
from sequency flux or the IMFs. These results could be due
to various reasons, some of which are already mentioned in
Section 4. Some reasons that are specifically related to the
EMD include the possible over-iteration, which may have
occurred in the sifting stage, and the so-called “mode mix-
ing” problem. Sifting the signal too much may have gen-
erated artificial modes that do not actually appear in the
data [28]. The mode mixing problem refers to the pres-
ence of similar time scales in different modes, which may
have distorted the median periodicity values found from
these IMFs. This issue could potentially be addressed by
using variants of the EMD such as the EEMD [32] or the
CEEMD [33]. However, in this work the EMD was pre-
ferred over other methods because of its simplicity.

Clearly, a more sophisticated and robust induction algo-
rithm is needed for this method to work on musical pieces
with polyrhythms. However, the simple induction algo-
rithm presented here achieves 95% accurate results on this
case study but obviously, the method needs to be evalu-
ated on larger datasets before making any claims related
to its overall accuracy. Additionally, this method is cur-
rently not suitable for real-time applications due to its com-
putational complexity. While the Fast Walsh-Hadamard
transform is computationally more efficient than the Fast
Fourier Transform (since it utilizes only real number ad-
ditions and subtractions) the proposed method is still slow
for real-time applications. This is because the ACF com-
putation with multiple window lengths, the chosen EMD
algorithm, and the current induction process, all contribute
to the overall complexity. Nonetheless, the method finds
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Figure 1. Number of occurrences of each IMF and sequency flux in the set of correct tempo hypotheses per excerpt.

many (offline) applications in areas such as: computational
musicology (e.g., studying the interaction between rhyth-
mic components in music); audio-to-MIDI transcription
systems (e.g., capturing multiple rhythmic layers in poly-
phonic music); content-based music retrieval (e.g., search-
ing based on rhythmic similarities); and automatic accom-
paniment generation (e.g., creating accompaniments that
better follow a melody’s rhythmic structure).

In the future, we plan to adapt this method for pieces with
non-constant tempi and explore its beat tracking capability
on different metrical levels. In conclusion, according to
the results of this case study, our initial hypothesis is justi-
fied: the IMFs do carry tempo information on multiple hi-
erarchical metrical levels. Hopefully, this information will
be used to improve existing approaches related to meter
induction in general, and more specifically to compound
meter induction.
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