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ABSTRACT

Chord diagrams are used by guitar players to show where
and how to play a chord on the fretboard. They are use-
ful to beginners learning chords or for sharing the hand
positions required to play a song. However, the diagrams
presented on guitar learning tools are usually selected from
an existing database of common positions and rarely repre-
sent the actual positions used by performers. In this paper,
we propose a tool which suggests a chord diagram given a
chord label, taking into account the diagram of the previ-
ous chord. Based on statistical analysis of the DadaGP and
mySongBook datasets, we show that some guitar chord di-
agrams are over-represented in Western popular music and
that some chords can be played in up to 108 different ways.
We argue that taking the previous position into account as
context can improve the variety and the quality of chord di-
agram suggestion, and compare this approach with a model
taking only the current chord label into account. We show
that adding previous context improves the F1-score on this
task by up to 32% and reduces the propensity of the model
to suggest standard open chords. We also define the no-
tion of texture in the context of chord diagrams and show
through a variety of metrics that our model improves tex-
ture consistency with the previous diagram.

1. INTRODUCTION

On the guitar, a chord can be played in multiple ways,
each position having its own pitch, timbral and biomechan-
ical specificities. Chord diagrams can be used to repre-
sent the position at which a chord is played. They can
be notated with a graphical representation as shown in
Figure 1, or in text form (compatible with ASCII tabla-
tures) with a number indicating which fret is played on
each string. For instance, the chord diagrams from Fig-
ure 1 can be annotated, respectively, as x.0.2.2.1.0,
and 5.7.7.5.5.5. The former contains both an open
(0) and a muted (x) string and is the most common shape,
used by beginners for its simplicity and in pop music for
the resonance of open strings. The latter is a barré chord
and is harder to play, but can be shifted along the fretboard
to play other minor chords without changing hand shapes.
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Figure 1: Two guitar chord diagrams for an A minor chord.

We propose the task of chord diagram suggestion to as-
sist composition. Chord diagram suggestion research has
so far been focusing on playability [1–3] with limited abil-
ity to take into account the relationship between consecu-
tive chords. We can see similar problems in the sugges-
tions of the most popular guitar learning services, which
only provide catalogs of standard chord diagrams. While
such an approach provides agency to the user, it might also
drive beginners towards using the same diagrams over and
over again. In this paper, we propose a model that sug-
gests a chord diagram, given a chord label and the previ-
ous notated diagram. The contributions of this work are
as follows: (i) a context-aware approach for guitar chord
diagram suggestion; (ii) a set of metrics to assess perfor-
mance in this task and characterize texture for guitar chord
diagrams; (iii) an illustrative application of this task for
rhythm guitar tablature continuation; (iv) openly released
code and data for all of the above. The rest of this paper
is organized as follows: In section 2, we present related
work on symbolic music for guitar in Western popular mu-
sic repertoire. We then present our proposed approach and
models in section 3. In section 4, we discuss in details
the datasets and the data augmentation procedure we used.
After discussing evaluation metrics, we finally share our
results in section 5, before showing how it could be used
for rhythm guitar continuation in section 6.

2. RELATED WORKS

A large part of research on guitar focuses on tablatures as
a notation system, especially when studying Western pop-
ular music. From the audio realm, tablatures are often the
output medium for guitar transcription [4–6], but they can
even be used as a source of additional data to improve
automatic transcription [7, 8]. In a field related to audio
transcription, chord recognition from audio is an important
task in Music Information Retrieval [9], as attested by its
recurring occurrence in MIREX 1 and ongoing research in

1 https://www.music-ir.org/mirex/wiki/2021:
Audio_Chord_Estimation
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the neighboring field of multipitch estimation [10]. Chord
recognition from audio was also specifically studied in the
case of guitar, exploiting knowledge of the instrument to
improve algorithms dedicated to it [4, 5, 11]. Once or
when available, tablatures can also be both the input and
the output, like for symbolic music generation (symbolic
referring here to the use of a notation format, like sheet
music or tablatures). This topic was already studied us-
ing Markov chains [12] and benefited from the advance
of deep neural networks [13]. The release of the dataset
DadaGP in 2021 [14] also had a significant impact in the
field, fostering all kinds of research on guitar tablature gen-
eration [15–19]. To assist composition, research has also
been conducted on how to jazzify chords [20] or generate
style-conditioned chord sequences [21]. Tablatures and
guitar chord research is also intertwined with the field of
guitar fingering research, as deriving tablatures from audio
– or scores – requires choosing string/fret combinations
to play the notes, which will ultimately be influenced by
the fingers used to press the strings and the accompanying
biomechanical constraints. This problem has been tack-
led by a graph-search approach [22] or HMM-like mod-
els [23–25] and can then be used for tasks like automatic
arrangement [26]. When it comes to guitar chord diagrams
however, they are mostly studied with playability consider-
ations in mind [1–3] or in a musicological analysis of their
use [27]. In this paper, we consider chord diagram sug-
gestion as an assisted composition task, to help beginner
guitar players choose how to play a new chord in a pre-
existing sequence, or assist composers in creating guitar
accompaniment parts.

3. METHODOLOGY

3.1 Proposed Model

In this work, we suggest a diagram dt for a chord, based
on its label ℓt and the previous diagram dt−1 (Figure 2).

Figure 2: Summary of the proposed approach.

The task consists in finding the diagram which probabil-
ity is highest in the provided context. To do so, we con-
vert the chord labels and diagrams into vectors and train a
neural network on chord pairs. For each chord label, we
first extract its bass note, which might be different from
its root note in case of inverted chords. This bass note in-
formation is then converted into a one-hot vector of size
12 where enharmonic equivalents of the twelve-tone equal
temperament are merged together (the Bass Note Vector).
Then, the pitch-class content of the chord is converted into
a many-hot vector of size 12 (the Chord Nature Vector).

Figure 3: Computed vectors for an Asus4 chord, played
with the diagram shown Figure 2.

An example of such vectors for the Asus4 chord from Fig-
ure 2 is shown Figure 3.

The diagrams are converted into many-hot arrays of size
[6, 25 + 1], each row accounting for a string (6 on a stan-
dard guitar) and its 25 frets (counting the open string as a
zeroth fret). An additional per-string coefficient is added
to account for muted strings. This ensures that all vectors
always have a non-zero value for a string, which ultimately
permits normalizing predictions and using them as proba-
bilities. In summary, input data contains 180 values for
dt−1 – the previous diagram – and ℓt – the new chord la-
bel, from which the bass note and chord nature vectors are
computed. As a result, the model outputs 156 probabilities,
26 per string, for dt.

To evaluate to which extent adding the context informa-
tion improves chord diagram suggestion, we define the
baseline as the same model, but removing information
about the previous diagram. In that case, the baseline
model takes only 24 values as input, but still returns 156.

3.2 Implementation Details

We use a fully connected neural network as an architec-
ture. Hyperparameters were tuned – through manual ex-
ploration – to maximize performance of both the base-
line and the proposed model, ending up with no hidden
layer for the baseline and one hidden layer of size 150
for the full model. Performance is evaluated with a Bi-
nary Cross-Entropy loss on the output, the model using
a Sigmoid activation function, and string-wise normaliza-
tion of the predictions (to enforce a single prediction per
string). Training uses the Adam optimizer with (β1,β2) =
(0.9, 0.999), and a learning rate λ = 0.001. The train-
ing is stopped whenever the validation loss does not im-
prove by at least δ = 0.001 for two consecutive epochs.
Full training of the model can be done in a few minutes
on a standard laptop CPU. The Python implementation is
openly available, along with a demonstration website, at
algomus.fr/code.

4. DATA

4.1 Corpora

This study is conducted on two corpora of guitar tabla-
tures containing chord diagram information. The first one
is DadaGP [14], a community-based corpus of more than
25000 songs spanning a wide variety of styles, though
mostly focusing on rock and metal. The second one is the
proprietary dataset mySongBook 2 (MSB), which consists
of about 2500 songs professionally transcribed.

2 mysongbook.com
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The .gp file format of these datasets allows including
chord diagrams with the tablature data. We only use tracks
which contain chord diagram data, reducing the datasets to
2766 and 520 tracks for DadaGP and MSB respectively.
From these tracks, we extract chord pairs that occur within
a 2 bars interval and finally keep one occurrence of each
unique transition (ℓt−1, dt−1) → (ℓt, dt) per track. By do-
ing so, we acknowledge the fact that a chord transition can
be more common in a given repertoire and occur in many
songs, but we remove duplicate transitions that are inher-
ent to the repetitive nature of Western popular music. This
processing step leaves us with 31321 and 7365 transitions
for DadaGP and MSB, respectively.

4.2 Statistical Analyses

In this subsection, we provide detailed statistics of the
chords used in the datasets. This analysis aims at em-
phasizing the bias towards more common diagrams and
key signatures, due to guitar affordance. Furthermore, be-
cause of the considered repertoire, and the large amount of
pop/rock/metal tracks, some chord natures are more com-
mon than others. However, we also want to underline that
this bias is not at the expense of variety, but results in
highly unbalanced datasets.

A first dimension to analyze on chords is on what root
note they are built. Observation shows that the distribu-
tions of root notes are similar between datasets (Figure 4),
with more than half the chords having A, G, D, C or E as
root.

Figure 4: Distribution of the root notes of chords in both
datasets.

In both datasets, major chords (M) are the most com-
mon (Figure 5), followed by minor chords (m) and power
chords (5). The tail of the distribution then includes more
complex chords, like seventh, suspended or added-tone
chords. The distribution of chord natures is in fact highly
unbalanced towards the three first classes, making the sug-
gestion of diagrams for less common chords a bigger chal-
lenge. Besides, this plot shows that notation between files
can vary, MSB containing lots of 7M and maj7 labels that
are both representing major seventh chords.

Wordcloud representations of the chord labels are also
provided (Figure 6) to give an overview of the combined
root notes and chord natures. This representation further
confirms the unbalanced nature of the datasets but also

Figure 5: Distribution of the 15 most used chord natures in
each dataset.

Figure 6: Wordcloud representation of chord labels in
DadaGP (left) and MSB (right)

illustrates their differences in the relative importance of
chords. For instance, power chords are more prominent
in MSB than in DadaGP.

While chord labels are already numerous and varied, even
more variety comes with the different diagrams that can be
used for each label. One can get a sense of it through the
median number of diagrams per label: 11.5 for MSB and
24 for DadaGP. This observation illustrates the number of
possibilities when suggesting a diagram for a chord, while
also showing how a bigger dataset comes with more variety
(which could be considered noise). This variety and noisi-
ness of data is particularly noticeable on the most common
chords, G Major having 33 and 108 diagrams in MSB and
DadaGP, respectively. The variety of diagrams observed
comes mostly from the fact that transcribers might write
some strings as muted instead of open or played, which can
yield different diagrams for the same hand position on the
fretboard. The staggering amount of diagrams in DadaGP
comes both from the same issue, worsened by the size of
the corpus, and occasional incorrect labeling. For instance,
some diagrams notated as a G Major can actually represent
a G/B or a G5.

All diagrams observed for each chord label are available,
along with the extracted chord pairs, on algomus.fr/
data.

4.3 Data Augmentation Strategy

The previous statistical analyses showed that a wide vari-
ety of diagrams and labels are represented in both datasets.
However, more common chords are over-represented and
might prevent the model to suggest less used diagrams. We
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want to improve the robustness of the proposed approach
and reduce its bias towards key signatures more frequent
in the datasets so that the model can suggest diagrams even
for rare tonalities and chord nature. To do so, we apply the
augmentation technique from [12]. For each chord pair,
both diagrams are shifted one fret down and the chord la-
bels transposed one semitone down accordingly, until one
of the diagrams contains an open string. Similarly, chord
pairs are also shifted one fret up until reaching the 15th
fret. This maximum is chosen based on the highest dia-
grams observed in data and to prevent the model from sug-
gesting chords on higher frets, which are used far less in
rhythm guitar. Using this augmentation strategy makes the
training sets more than three times larger.

5. EXPERIMENTS

5.1 Metrics

Like most tasks on probability estimation, we can evaluate
the performance of the model through its Precision (P), Re-
call (R) and F1-score. However, in the case of this musical
task, it could be argued that the so-called ground-truth is
not perfect nor the only acceptable answer. For instance, a
G major chord can be played with the following diagrams:
3.2.0.0.0.3 and 3.2.0.0.3.3 either repeating the
B or the D, and they might be considered equivalent by
guitar players. For this reason, we propose hereafter sev-
eral automated metrics to account for the different errors
that can be encountered on diagram prediction.

Pitch Metrics Similarly to [6], we want to measure to
which extent the model suggests diagrams that contain all
the expected notes for a given chord label. For this pur-
pose, we compute for a chord diagram d the set of pitch
classes it contains and compare it with the pitch classes as-
sociated with the chord label ℓ.
From these sets, we can compute Pitch Precision (PP),
Pitch Recall (RP) and a Pitch F1-score (F1P).

Tablature Metrics Drawing insights from [6], we also
define metrics to measure how similar the model sugges-
tions are to the reference diagrams, when comparing them
on the fretboard. Similarly to the pitch metrics, we com-
pute the set of string/fret (SF) pairs on the predicted di-
agram and compare them with those of the expected dia-
gram. We can use those sets to compute String/Fret Preci-
sion (PSF), String/Fret Recall (RSF) and the corresponding
F1-score (F1SF).

Detect Unplayable Diagrams To evaluate how often the
model can return an unplayable diagram, we implement a
playability metric inspired by [2]. In this paper, the authors
define an anatomical score to evaluate the ease of playing
a chord. They use a custom fitness function that penalizes
chords containing uncomfortable stretches between fingers
based on an optimal fingering computed beforehand. This
metric allows us to detect unplayable diagrams when ob-
taining a low anatomical score, like in chords spanning
over 5 frets or more. We settled for a threshold of t = 0.2
after manual analysis of anatomical scores and playability
of the model’s suggestions.

Ease of Transition While it is necessary that the sug-
gested diagrams are playable, playability of chord se-
quences also depends on the chord transitions involved. To
assess the ease of the transitions suggested, we also imple-
ment the chord change (CC) metric proposed in [4]. This
metric analyzes the transition between the diagrams d1, d2
through two movements: wrist movement mw, which is
obtained as the absolute difference of the index finger fret
in the two chords; and the fingers movement mf , defined
as the Manhattan distance between the positions of each
finger. The final value is inversely proportional to these
movements measures and is highest (1) when the chord
change is easy (m ≪ 1) and close to 0 when the transition
is very hard (m ≫ 1).

5.2 Results

For the experiments, we apply a 60-20-20 train, validation,
test split to both datasets and average the results over four
different splits (Table 1). For fair comparison with the
baseline, chord pairs which have identical ℓt and dt (but
different dt−1) are considered duplicates and skipped dur-
ing testing. The data augmentation strategy presented sub-
section 4.3 is used for the full model but not for the base-
line as it decreased its performance. This observation sug-
gests that the results of the baseline should be taken with
care, as prediction quality might decrease significantly on
data not represented in the training set. The first observa-
tion from Table 1 is that the proposed model surpasses the
baseline on standard, pitch and string/fret F1-scores. How-
ever, both implementations perform well on pitch met-
rics, showing that the proposed diagrams contain overall
the expected pitch content. There is also a significant im-
provement over the baseline on string/fret metrics, suggest-
ing that information from the previous diagram helps the
model choose the correct fretboard area.

F1 F1P F1SF

M
SB Baseline 0.40±.01 0.87±.01 0.46±.04

Full Model 0.72±.02 0.90±.01 0.67±.02

D
G

P Baseline 0.38±.01 0.88±.00 0.45±.02
Full Model 0.63±.01 0.88±.01 0.60±.02

Table 1: Results of the baseline and the full model on MSB
(top) and DadaGP (bottom). Precision and Recall mea-
sures were omitted for clarity.

Unplayability and transition ease of the ground-truth and
the models’ prediction are shown in Table 2. It can be ob-
served that the proposed model suggests unplayable dia-
grams 15% of the time, which is moderately more than the
baseline, with a clearer gap on DadaGP. As a reference,
3-4% of the ground-truth diagrams are deemed unplayable
– most of them because the metric does not recognize the
barré technique with other fingers than the index. How-
ever, the proposed diagrams permit slightly easier tran-
sitions than the baseline, which is probably again due to
the context information that keeps the suggested diagram
in the same fretboard area, thus limiting wrist and fingers
movements. Nonetheless, even our model with context in-
formation has a 10 percentage points difference with the
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Unplayable
diagrams

Ease of
Transition

M
SB

Baseline 0.12±.02 0.15±.02
Full Model 0.15±.03 0.21±.03
Test Set 0.03±.02 0.31±.02

D
ad

aG
P Baseline 0.09±.01 0.13±.01

Full Model 0.15±.01 0.19±.01
Test Set 0.04±.01 0.29±.01

Table 2: Playability-related metrics on MSB (top) and
DadaGP (bottom).

transition ease measured in the datasets, showing that the
transitions are still too complicated.

Overall, one can note that performance is similar on MSB
and DadaGP. We still decided to share results on both
datasets because we deemed relevant the fact that the pro-
posed approach improves diagram suggestion even when
training on noisier data. It also shows that a larger amount
of chord pairs with an unbalanced distribution does not sig-
nificantly increase the bias towards common diagrams.

5.3 Diagram Texture Consistency

We want to evaluate here if the texture change observed
when using a suggested diagram is similar to the one from
the reference. To measure this texture, we implement some
of the sound quality measures of [2] and variations of them.
More precisely, for each diagram, we extract: the ratio of
open strings; the ratio of muted strings; the string centroid;
and the ratio of unique notes i.e. counting only once notes
that are repeated on several octaves. We also compute the
difference of these metrics from one chord to the next to
assess how consistent they are through a transition. The
results are reported in Table 3.

All values go from 0 to 1. A first observation is that
the performances of the full models trained and tested on
DadaGP and MSB are similar. However, this experiment
does show slight differences in the datasets, on the amount
of muted notes and the string centroids in particular. The
biggest difference is the improvement of the baseline’s
performance on individual chord metrics for MSB, which
could be due to the fact that the dataset is smaller and less
varied. From the δ values for both datasets, it appears that
the metrics are rather consistent from one chord to the next.
We can also observe that the baseline trained on DadaGP
tends to play too many notes on each chord (lower ratio of
muted notes) probably by repeating them on different oc-
taves (lower ratio of unique notes). Finally, an encourag-
ing result is that the model using context suggests diagrams
with a texture similar to the ground-truth (lower δ values).
It should however be noted that it also tends to repeat more
notes than necessary, while still missing some.

6. DISCUSSION

6.1 Application to Rhythm Guitar Continuation

As introduced in [28], a chord diagram suggestion tool
could be used in a larger framework for rhythm guitar con-
tinuation. Provided with a chord sequence and a tablature

Figure 7: Example of rhythm guitar continuation using the
proposed system. The first diagram is chosen randomly,
and the next ones are suggested from their label and the
previous diagram. Chords with a star are unplayable ac-
cording to our implemented metric, and chords with an
apostrophe do not contain all the notes they should (G5
instead of G).

prompt, a guitar player might be interested in generating
the continuation of the prompt. The model introduced in
this paper could be used as a first step to choose chord dia-
grams that are consistent with the prompt, before generat-
ing a tablature showing how to strum the new chords. An
example of this usage on three different chord sequences is
given Figure 7.

Chord label sequences are generated with the tool from
[21] and the first diagram is sampled from the probabil-
ity distribution of all diagrams for the corresponding la-
bel. Subsequent diagrams are generated successively using
our trained model. To illustrate potential tablature applica-
tions, strumming patterns were proposed by the authors for
the first bar, and then uniformly generalized to following
bars. As discussed in subsection 5.2, the system some-
times suggests unplayable diagrams and does not always
include all the notes expected in a chord. However, we
think that the sequences are consistent in terms of texture
and usually contain diagrams less common than standard
open chords and barré chords. For instance, in the first se-
quence, the B7 diagram contains an open string that would
help maintain the sound quality of the first chord, unlike
the more common barré shapes that are x.2.4.2.4.2
or 7.9.7.8.7.7. In the second sequence, though the
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DadaGP MSB
BL Full Data BL Full Data

Muted notes 0.15 ± .01 0.27 ± .01 0.28 ± .01 0.32 ± .02 0.32 ± .01 0.33 ± .01

δ(.) 0.20 ± .01 0.08 ± .00 0.10 ± .01 0.18 ± .02 0.08 ± .01 0.08 ± .01

Open Strings 0.25 ± .01 0.19 ± .02 0.20 ± .01 0.20 ± .01 0.17 ± .02 0.20 ± .02

δ(.) 0.22 ± .01 0.15 ± .01 0.17 ± .00 0.19 ± .01 0.15 ± .01 0.15 ± .01

String Centroid 0.53 ± .00 0.54 ± .01 0.55 ± .00 0.60 ± .01 0.59 ± .01 0.59 ± .01

δ(.) 0.10 ± .00 0.05 ± .00 0.06 ± .00 0.11 ± .01 0.05 ± .01 0.06 ± .01

Unique Notes 0.61 ± .00 0.71 ± .00 0.80 ± .01 0.68 ± .01 0.72 ± .01 0.80 ± .01

δ(.) 0.21 ± .01 0.13 ± .00 0.12 ± .00 0.20 ± .02 0.13 ± .01 0.11 ± .01

Table 3: Texture metrics for chord suggestions of the proposed model (Full), the baseline (BL) and the corresponding test
set (data). δ(.) denotes the absolute difference of the previous metric between the two chords of a transition.

second diagram is not playable (at least with common
guitar techniques), the model suggested keeping a simi-
lar barré shape and shifting it on the fretboard. However,
it changes shape on the last F chord which allows staying
around the same frets as the previous Am chord. Finally,
the last sequence exhibits a similar behavior, all diagrams
starting at the 5th fret, even though the second diagram re-
peats the A on the 10th fret, making the overall diagram
very hard to play.

6.2 Conclusions and Future Work

In this paper, we have shown that chords used in the West-
ern popular guitar repertoire are varied but also highly un-
balanced, with some common chords and diagrams be-
ing used much more frequently than more complex ones.
From this observation, we proposed a new approach to
suggest guitar chord diagrams for Western popular music.
We showed with several metrics that adding context infor-
mation through the previous diagram improves the qual-
ity of the suggestions while also maintaining a better con-
sistency of texture between chords. All experiments were
conducted on two datasets, one proprietary and one public,
to further guarantee the validity of the conclusions. Finally,
we also gave an example application of the proposed tool
in rhythm guitar continuation, where it could help begin-
ners play more interesting and varied chords, or ease the
process of writing accompaniment tracks.

Studying this application in more details is a possibility
for future work, as well as improving the current sugges-
tion tool, for instance by conditioning the suggestions on
musical style. It would also be relevant to increase the
number of previous diagrams provided as context. This
could allow seeing how far back the system needs to look
to maximize the quality of the suggestions, and show when
and how continuity in texture is broken. Besides, it is likely
that the suggestion system could be improved by musically
relevant features on the context like harmony or instrumen-
tation, as other instruments affect greatly the diagrams cho-
sen by guitar players. Finally, while we studied texture
consistency through several metrics, it would also be in-
teresting to check how the diagrams suggested affect the
voices from one chord to the other and whether the transi-
tions respect some voice-leading principles.
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