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ABSTRACT

Loops can be defined as short audio items intended to
be repeated seamlessly. They have become popular in
computer-based music production, particularly in genres
such as electronic music and hip hop. A common practice
in loop-based music production is to select several loops
from a library and play them concurrently. As the pro-
ducer’s loop library expands, a notable challenge emerges
in the loop retrieval process: choice overload becomes in-
creasingly prevalent, as navigating and listening to thou-
sands of audio items can be overwhelming, potentially im-
peding producers’ creativity. To facilitate the loop retrieval
process, we propose a novel generative framework for loop
recommendation that takes into account the composition
elements. The framework first generates a best-guess loop
conditioned on the current composition elements. The gen-
erated best-guess loop then serves both as a serendipitous
item for recommendation and an anchor for retrieving ex-
isting loops to recommend. We demonstrate this frame-
work with a use case in generating and recommending bass
loops based on a seed drum loop (Drum2Bass). We evalu-
ate the retrieval performance of Drum2Bass using compu-
tational metrics and provide audio examples of generated
and recommended bass loops for listening.

1. INTRODUCTION

In computer-assisted music production, loops generally re-
fer to bar-aligned and structured audio items of short dura-
tion [1]. They are widely used in many music genres and in
particular, electronic [2] and hip hop music [3]. There are
emerging databases to assist composition by providing a
wide range of production-ready loops such as Ampify Mu-
sic 1 , Splice 2 and Loopmasters 3 . With such richness of
content, musicians of all levels can now access vast amount
of composition materials. However, it may impede creativ-
ity as it can be daunting to navigate and listen to thousands
of audio pieces just to retrieve several loops matching a
producer’s current composition.

1 https://ampifymusic.com/
2 https://www.splice.com/
3 https://www.loopmasters.com/
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To this end, we propose a generative framework for
composition-aware loop recommendation that aims to fa-
cilitate the loop retrieval process during music production.
We introduce the concept of composition-aware recom-
mendation to describe algorithms that recommend audio
content by analysing the present elements within a musical
composition. The proposed framework leverages genera-
tive models for loop generation, with these generated loops
feeding into a novel paradigm for loop recommendation.
Given a seed loop in a producer’s current composition, the
framework firstly generates a loop in raw audio waveform
to complement the seed loop. This generated best-guess
loop, which does not exist in the producer’s current loop
library, is recommended to the producer as a serendipitous
item. Following this, a similarity-based search is carried
out across the loop library using the generated loop as an
anchor. Loops within the library that are most similar to the
generated best-guess loop are subsequently recommended
to the producer. The loop generation capability can con-
tribute to building an explainable recommendation frame-
work as it enables producers to listen to and interpret the
intermediate step behind the framework’s recommendation
process. To test this framework, we investigate the partic-
ular use case of generating and recommending bass loops
given a drum loop, referred to as Drum2Bass. We eval-
uate Drum2Bass using both retrieval-relevancy-based and
diversity-based metrics.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related works and Section 3 addresses the
problem context for composition-aware loop recommen-
dation. The proposed framework is described in Section
4. Section 5 reports on the Drum2Bass use case, includ-
ing the dataset, models, training process, and evaluation.
Conclusions and future works are presented in Section 6.

2. RELATED WORK

2.1 Composition-aware Content Retrieval for Music
Production

Composition-aware content retrieval for music produc-
tion is a relatively under-explored area where previous
works focused on three types of music content (one-shot
drum samples [4], stems [5], and loops [6, 7]) and mainly
adopted classification or joint embedding method. Classi-
fication methods may use a binary classifier to determine
if retrieved music content (like a percussion stem [5]) is a
good match for the given composition context (e.g. a seed
vocal stem [5]). The music content recommendations are
ordered according to the classification scores. Following a

https://ampifymusic.com/
https://www.splice.com/
https://www.loopmasters.com/
http://creativecommons.org/licenses/by/3.0/


joint embedding method, music content and corresponding
composition context are mapped into a learned latent space
where being closer according to some metrics indicates a
better match. The music content recommendations are or-
dered by ranking the distance computed between the latent
representations. SampleMatch [4] tackled one-shot drum
sample retrieval problem using a joint embedding method.
Neural Loop Combiner [6] worked on finding good combi-
nations of loops extracted from hip hop music. The authors
experimented with both methods and found that the classi-
fication method outperformed the joint embedding method
in a subjective listening test. Works by Huang et al. [5]
modelled stem retrieval for mashup creation via a classifi-
cation method.

2.2 Variational Autoencoder in Music Content
Generation

Variational Autoencoder (VAE) [8] and its variations,
which typically comprise an encoder and a decoder, have
been adopted in recent works related to music content gen-
eration [9]. The VAE family has exhibited strong repre-
sentation learning capability and the latent representations
produced by the encoder are utilised across a range of cre-
ative applications. RAVE [9] adopted VAE for modelling
raw audio waveforms and obtained compact latent repre-
sentations by post-training analysis. It demonstrated real-
time audio synthesis and timbre transfer capabilities due
to the compactness of the latent representation. Sound-
Stream [10] extended VAE with residual vector quanti-
zation for producing discrete latent representations from
raw audio waveforms. It was adopted in MusicLM [11],
a recent text-conditioned music generation model, where
the learned discrete latent representations of audio content
were used as modelling targets (referred to as acoustic to-
kens). MusicVAE [12] proposed the use of a hierarchical
decoder in the VAE architecture for modelling long-term
sequence of music notes. MusicVAE was used to generate
interpolations between loop notes in the symbolic domain.

3. COMPOSITION-AWARE LOOP
RECOMMENDATION

3.1 Problem Definition

In the context of composition-aware loop recommenda-
tion, we introduce the following definitions:

• Loop: A loop is an audio item that can be seam-
lessly repeated. Loops can feature one or multiple
instruments (e.g. bass loop, beat, etc.). While instru-
mentation varies across loop providers, an example
of popular set for electronic music is : drum, bass,
melodic, harmonic, vocal. In order to focus the prob-
lem, we constrain each loop to have one and only
one instrument 𝐼𝑛𝑠𝑡𝑗 .

• Loop pack: Loops are often grouped in packs, which
are also referred to as sample packs. Loops within
one pack typically have the same key, tempo and
genre. Loop packs often share a similar aesthetic

within a pack, designed by the provider to sound
good when played together right out of the box.

• Loop library 𝐿: A loop library 𝐿 is represented as a
set of 𝑁 different loops {𝑙1, 𝑙2, ..., 𝑙𝑁}. These loops
may or may not be grouped in loop packs.

• Loop-based music composition: We propose to nar-
row down our scope to the process of selecting
and retrieving loops from a producer’s loop library,
where retrieved loops get played concurrently to
other loops in a music section.

• Composition-aware loop recommendation: Given a
loop 𝑙𝑚 of instrumentation 𝐼𝑛𝑠𝑡𝑗 in the current com-
position, a composition-aware loop recommender
aims to produce a ranked list of loops from a dif-
ferent instrument 𝐼𝑛𝑠𝑡𝑘 ̸=𝑗 specified by the producer.
Loops in the recommendation list are ranked based
on their predicted degree of music compatibility
with the seed loop. This is different than predict-
ing musical similarity to a seed item, as often used
in music recommendation for listening.

3.2 Challenges

We identify three main challenges for composition-aware
loop recommendation. Firstly, there is a lack of user-item
(producer-loop) interaction data in music production soft-
ware; this data would be crucial to support collaborative
filtering prevalent in traditional recommendation systems.
To the best of our knowledge, there are no public datasets
providing metadata on loop combinations for a varied set
of producers, compositions, and genres. Consequently,
we propose to adopt a content-based recommendation ap-
proach, which circumvent the requirement for user-item in-
teraction data. Audio content-based recommendation usu-
ally relies on extracted or learned audio items represen-
tations; these are used to infer similarities between items
and rank them [13]. Unlike traditional methods that search
for similar items, we seek compatible items that comple-
ment the seed item. This poses a second research chal-
lenge as compatibility-based audio content retrieval is an
understudied problem. Both the classification and joint
embedding methods require negative data, in our case in-
compatible loop pairs (loops that do not sound good when
being played together). With a lack of datasets providing
both compatible and incompatible loops, rule-based strate-
gies (e.g. juxtaposing incompatible keys, tempos and beat
phrases in the work by Huang et al. [5] or random asso-
ciations) are often required for assembling incompatible
data from datasets with compatible data. It is shown in the
work by Chen et al. [6] that incompatible data mining strat-
egy itself is a system design variable. In their study, the
classification method and the joint embedding method ex-
hibited different performances across various data mining
strategies, and no optimal strategy was identified. A ques-
tion remains whether it is possible to develop a loop rec-
ommendation framework that can differentiate loops based
on compatibility without relying on pre-defined incompat-
ible loop pairs. Lastly, a loop recommendation framework



supports a creative process where properties such as user
control over recommendation, serendipity and diversity are
sometimes more desirable than metrical accuracy and pre-
cision [14]. This poses challenges for the design of the rec-
ommendation framework as well as the evaluation meth-
ods.

4. PROPOSED FRAMEWORK

We decompose composition-aware loop recommendation
into two subproblems: generative modelling and loop pair
compatibility modelling. To this end, we propose a gen-
erative framework that comprises two training phases with
each phase addressing one subproblem.

4.1 Two Training Phases

4.1.1 Phase 1: generative modelling

The first phase is a generative modelling phase where
latent-variable generative models are trained to reconstruct
loops in raw audio waveforms. There is one generative
model trained for each instrument loop category (e.g. one
model for drum loops and another model for bass loops), as
shown in Fig 1. The artificial neural network architecture
we use is the Variational Autoencoder (VAE). The goal of
the first phase is to learn compact representations, referred
to as embeddings, for each instrument loop and to ensure
that such embeddings are capable of generation, i.e. having
enough information for the instrument-specific decoder to
generate raw audio waveforms. It is worth noting that the
data requirement for the first phase is just a loop dataset
that has instrument labels for each loop.

4.1.2 Phase 2: mapping compatible loop pair
embeddings

Once the first phase of training is done, both instrument
loop VAE models are frozen. The second phase is where
we try to directly model the mapping relation between
compatible loop pair’s embeddings, as shown in Fig 1.
To this end, we train an extra module to map the differ-
ent instrument loop embeddings to a shared latent space
where proximity indicates compatibility. Compatibility-
based recommendation is then reduced to searching for
loops that are close to each other in the shared latent space.
One example of such module is to train a Multilayer Per-
ceptron (MLP) to, for instance, predict the compatible bass
loop embedding given a drum loop embedding. Because
the training objective is to directly predict the target com-
patible loop embedding which is neither a classification
score nor contrastive loss, it bypasses the need for incom-
patible loop pairs mining. Hence, the data requirement
for the second phase is a loop dataset that has compati-
ble loop pairs (loops that sound good when played con-
currently). Due to the lack of publicly available com-
patible loop pair datasets, we propose two strategies for
creating such datasets. One way is to extract pairs from
loop library that has loop-pack structure. Loops of differ-
ent instruments can potentially be considered compatible
if they belong to the same loop pack and share the same

Figure 1. The proposed framework’s two training phases.
Phase 1: two VAEs are separately trained for each instru-
ment. Phase 2: a mapping module is trained to predict
compatible loop’s embedding.

Figure 2. The framework deployment with an example of
recommending compatible bass loops from a drum loop
through the Drum2Bass mapping module.

key, tempo and genre. This strategy is used in our experi-
ment. Another way is to extract pairs from multitrack mu-
sic datasets. We can obtain loops by running songs through
a loop extraction algorithm [15]. Pairs of loops that orig-
inate from the same song section are assumed to be com-
patible. Neural Loop Combiner [6] adopted this data ex-
traction strategy.

4.2 Model Deployment

During deployment, all loop embeddings, which are en-
coded by the corresponding instrument-specific encoders,
can be pre-calculated and stored. Given a seed loop in
the composition and a target instrument, the framework re-
trieves the loop’s stored embedding which is then passed
into the corresponding latent mapping module that outputs
the predicted compatible loop’s embedding. The predicted
compatible loop embedding can be fed into the decoder for
generating a best-guess loop. It can also be used as a rec-
ommendation query for retrieving similar loops from the
loop library. An example pipeline is shown in Fig 2. It
is worth noting that the proposed framework affords sev-
eral other applications that are specific to music creation.
The trained instrument-specific VAE models in phase 1 en-



able timbre transfer and latent interpolation of loops. Tim-
bre transfer can be done by encoding and decoding a loop
from instrument 𝐼𝑛𝑠𝑡𝑘 using the VAE model trained with
loops of 𝐼𝑛𝑠𝑡𝑗 ̸=𝑘, which is similar to the RAVE applica-
tion demonstration. Latent interpolation can be done by
interpolating and decoding the embeddings of two loops
of the same instrument. This method creatively combines
the essence of two loops to generate new ones, similar to
how MusicVAE works.

5. EXPERIMENTS: DRUM2BASS USE CASE

In this work, we address the specific case of recommend-
ing a bass loop based on a seed drum loop, referred to as
Drum2Bass.

5.1 Dataset

We use a proprietary techno and house music loop library
of 44.1 kHz sample rate from Ampify Music. It has 117
loop packs comprised of 846 drum loops and 613 bass
loops. Each pack has at least one drum loop and one bass
loop, and some packs contain more drum loops than bass
loops. We extract 846 compatible loop pairs by matching
each drum loop with one bass loop from the same pack.
We then split the dataset into training/validation/test sets
using the ratios 0.85/0.05/0.1. The split is done at the loop
pack level so that loops from the same pack are not found
in different sets.

5.2 Models

For the first phase, we choose RAVE [9] as our VAE model
implementation. We separately train one RAVE model on
drum loops (DrumRAVE) and another one on bass loops
(BassRAVE). The training objective for each model com-
prises a reconstruction loss term and a prior regularisation
loss term:

𝐿𝑅𝐴𝑉 𝐸 = 𝐸�̂�∼𝑝(𝑥|𝑧)[𝑆(𝑥, �̂�)] + 𝛽 *𝐷𝐾𝐿[𝑞𝜑(𝑧|𝑥)||𝑝(𝑧)],
(1)

where 𝑥 is a loop from the dataset in the audio waveform, 𝑧
is the latent variable with a prior distribution 𝑝(𝑧). 𝑞𝜑(𝑧|𝑥)
is the posterior distribution parameterised by the RAVE
encoder and 𝑝(𝑥|𝑧) is the conditional likelihood distribu-
tion parameterised by the decoder. 𝑆(𝑥, �̂�) denotes the
multi-scale spectral distance between the original and re-
constructed waveform. 𝐷𝐾𝐿 denotes the Kullback-Leibler
divergence. After training, both models’ encoders and de-
coders are frozen before proceeding to the second phase.

For the latent mapping module in the second phase, we
start with an MLP of four fully connected layers that
maps drum embeddings to compatible bass embeddings.
The training objective for the MLP is the L2 distance in
the latent space, calculated between the predicted and the
groundtruth compatible bass loop embeddings:

𝐿𝑙𝑎𝑡𝑒𝑛𝑡 = ||𝑦 −𝐵𝑎𝑠𝑠𝑅𝐴𝑉 𝐸𝑒𝑛𝑐(𝑦)||2, (2)

with
𝑦 = 𝑀𝐿𝑃 (𝐷𝑟𝑢𝑚𝑅𝐴𝑉 𝐸𝑒𝑛𝑐(𝑥)), (3)

where 𝑦 is the groundtruth compatible bass loop (in the
audio domain) for seed drum loop 𝑥, and 𝑦 is the pre-
dicted compatible bass loop embedding. 𝐵𝑎𝑠𝑠𝑅𝐴𝑉 𝐸𝑒𝑛𝑐

and 𝐷𝑟𝑢𝑚𝑅𝐴𝑉 𝐸𝑒𝑛𝑐 denote the RAVE encoders respec-
tively. We also experiment with the L2 distance computed
in the decoded space, which is calculated after running em-
beddings through the frozen BassRAVE decoder:

𝐿𝑑𝑒𝑐 = ||𝐵𝑎𝑠𝑠𝑅𝐴𝑉 𝐸𝑑𝑒𝑐(𝑦)− 𝑦
𝑑𝑒𝑐

||2, (4)

where

𝑦
𝑑𝑒𝑐

= 𝐵𝑎𝑠𝑠𝑅𝐴𝑉 𝐸𝑑𝑒𝑐(𝐵𝑎𝑠𝑠𝑅𝐴𝑉 𝐸𝑒𝑛𝑐(𝑦)). (5)

We denote the MLP variant with loss computed in the la-
tent space (i.e. without being decoded) by MLP-Latent and
the MLP variant with loss computed in the decoded space
by MLP-Dec. Our hypothesis is that MLP-Latent will yield
better compatible loop retrieval performance as the embed-
ding similarity ranking deploys distance measured in the
latent space instead of the decoded space. MLP-Dec may
produce better loop generation quality as it optimizes to-
wards raw audio waveform distance.

5.3 Training

For training the RAVE models in phase 1, audio segments
of a fixed length of 65536 sample points are randomly se-
lected from each loop with zero-padding. We train Drum-
RAVE and BassRAVE each for 3, 000, 000 training steps
with batch size 8 and start with a learning rate 0.0001 us-
ing ADAM optimizer. For training the MLP in phase 2,
we extract a 4-second window from each loop pair to com-
pute embeddings with tiling where applicable. We choose
to keep loops at their original tempo so no time-stretching
is applied. As the slowest tempo from the loop library is
60 BPM, 4-second window ensures there is at least 4 beats
of content taken into account. The input and output size of
the MLP, which is the RAVE embedding size, is (128, 87)
for each 4-second loop where 128 is the feature resolution
and 87 is the temporal resolution. We train MLP-Latent
and MLP-Dec each for 50, 000 training steps with batch
size 32 and start with a learning rate 0.0001 using ADAM
optimizer.

5.4 Results and Discussion

The evaluation of the Drum2Bass framework is divided
into two parts: one focuses on loop generation perfor-
mance, and the other assesses loop recommendation per-
formance with computational evaluation detailed in Sec-
tion 5.4.1. For loop generation performance, we invite
readers to listen to the audio examples here 4 . Overall,
the generated bass loops adhere to the seed drum loop’s
tempo without being explicitly conditioned on tempo in-
formation. The generated loops exhibit diversity across
different seed drum loops, and there are interesting rhyth-
mic patterns generated such as syncopation. The genera-
tion quality still needs improvement, though we have not
performed extensive hyper-parameter tuning in this exper-
iment.

4 https://bit.ly/generative-loop-recommender-
audio-examples

https://bit.ly/generative-loop-recommender-audio-examples
https://bit.ly/generative-loop-recommender-audio-examples


Variant 𝑅𝑚𝑛 𝑅𝑚𝑑 ILD@5 ILD@10
MLP-Latent 0.394 0.306 0.623 0.640
MLP-Dec 0.524 0.473 0.626 0.638

Table 1. Computational Evaluation Results

5.4.1 Computational Evaluation

Here we report the evaluation results regarding the loop
recommendation performance, with computational metrics
shown in Table 1. Given a seed drum loop 𝑖, we create a
recommendation list of bass loops by ranking them accord-
ing to the cosine similarities between their embeddings and
the generated best-guess bass embedding. We then assess
the quality of the recommendation list using both rank-
based metrics and a diversity-based metric. Specifically,
we propose to use Mean Normalized Rank 𝑅𝑚𝑛 and Me-
dian Normalized Rank 𝑅𝑚𝑑 as rank-based metrics:

𝑅𝑚𝑛 =
1

𝑁𝑑𝑟𝑢𝑚

𝑁𝑑𝑟𝑢𝑚∑︁
𝑖=0

𝑟𝑎𝑛𝑘𝑖
𝑁𝑏𝑎𝑠𝑠

, (6)

𝑅𝑚𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑟𝑎𝑛𝑘𝑖
𝑁𝑏𝑎𝑠𝑠

|𝑖 = 1, 2, ..., 𝑁𝑑𝑟𝑢𝑚}, (7)

where 𝑁𝑑𝑟𝑢𝑚 and 𝑁𝑏𝑎𝑠𝑠 denote the number of drum loops
and bass loops, respectively. We use 𝑟𝑎𝑛𝑘𝑖 to denote
the rank of the groundtruth compatible bass loop in the
ranked recommendation list for the seed drum loop 𝑖. Di-
viding 𝑟𝑎𝑛𝑘𝑖 by 𝑁𝑏𝑎𝑠𝑠 normalizes it into (0, 1]. 𝑅𝑚𝑛

represents the mean of all normalized ranks, while 𝑅𝑚𝑑

represents the median, effectively ignoring potential out-
liers. The closer the normalized rank is to 0, the better the
framework performs in ranking the most compatible bass
loop higher in the recommendation list among other bass
loops, thereby alleviating choice overload for music pro-
ducers. These rank-based metrics were also adopted in re-
lated works, including SampleMatch [4] and Neural Loop
Combiner [6], for the same reason. In response to the chal-
lenge mentioned in Section 3.2 regarding the assessment
of loop recommendation frameworks within the context of
creative applications, we introduce a diversity-based eval-
uation. We use an inter-list diversity metric (𝐼𝐿𝐷) which
considers the uniqueness of different drum loops’ bass loop
recommendation lists:

𝐼𝐿𝐷@𝐿 =
1(︀

𝑁𝑑𝑟𝑢𝑚

2

)︀ 𝑁𝑑𝑟𝑢𝑚∑︁
𝑖 ̸=𝑗

1− 𝑞𝑖𝑗(𝐿)

𝐿
, (8)

where 𝑞𝑖𝑗(𝐿) is the number of common bass loops in the
top 𝐿 places of any two drum loops’ recommendation lists.(︀
𝑁𝑑𝑟𝑢𝑚

2

)︀
is the normalization term denoting the total num-

ber of combinations when choosing two drum loops from
𝑁𝑑𝑟𝑢𝑚 loops. A higher value of 𝐼𝐿𝐷@𝐿 generally indi-
cates greater diversity among the top 𝐿 bass loop recom-
mendations for any two drum loops.

As can be seen in Table 1, the best rank-based evalua-
tion result is achieved by the variant MLP-Latent. It out-
performs the random sampling baseline (which has a nor-
malized rank of 0.5) and MLP-Dec in both 𝑅𝑚𝑛 and 𝑅𝑚𝑑

which is in line with our initial hypothesis. We conjec-
ture that this is because the loss measured in the decoded
space may not directly agree with the loss measured in the
latent space. The final recommendation item ranking is
solely based on the distance measured in the latent space
which favors MLP-Latent. The results on 𝐼𝐿𝐷@5 and
𝐼𝐿𝐷@10 indicate that MLP-Latent and MLP-Dec exhibit
similar diversity-based recommendation performance. On
average, more than half of the bass loops in one seed drum
loop’s recommendation list differ from those in any an-
other seed loop’s recommendation list. Notably, 𝐼𝐿𝐷@5
values of 0.623 (MLP-Latent) and 0.626 (MLP-Dec) im-
ply that, on average, more than three out of the top five
recommended loops are different between any two recom-
mendation lists.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed the challenges of composition-
aware loop recommendation and proposed a novel two-
phase generative framework to address these challenges.
We demonstrated the framework through the Drum2Bass
use case, which generates and recommends bass loops
based on a seed drum loop. Our experiments with
Drum2Bass highlighted the framework’s capabilities in
loop generation, loop compatibility modeling without rely-
ing on negative (incompatible) data mining, and loop rec-
ommendation with inter-list diversity. We investigated two
phase-2 loss variants in Drum2Bass, and the computational
evaluation results showed that the loss computed in the la-
tent space achieved better retrieval performance than the
loss computed in the decoded space. Both variants had
high inter-list recommendation diversity. However, these
two computational metrics might be partial in evaluating
a recommendation framework for music production. We
will extend the evaluation with a user study in the future to
better reflect the system’s efficacy during actual music pro-
duction. As there is still some headroom for improvement
in loop generation quality and retrieval performance, we
will refine Drum2Bass by experimenting with other state-
of-the-art techniques including adding latent code quan-
tization for phase 1 training and adopting models with
greater expressiveness (e.g. a decoder-only transformer
architecture) for phase 2 training. Additionally, we want
to extend our experiment in the future to incorporate pub-
lic dataset such as the Freesound Loop Dataset [16] and
establish benchmarks for the composition-aware loop rec-
ommendation challenge.
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