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ABSTRACT

Automatic accompaniment systems synchronizing soft-

ware playback with human musicians require a natural,

easy-to-manipulate music synchronization model. How-

ever, existing methods cannot synchronize in a way aware

of the musical context. This paper presents an interpretable

model of the sensorimotor synchronization (SMS) model

based on the user’s music score. The model maps the mu-

sic score to an easy-to-interpret linear model of phase and

period correction using a deep neural network, allowing

timing synchronization to be aware of the music score. The

evaluation shows the proposed method achieves lower es-

timation error than a model that is unaware of the music

score or one that is linearly dependent on the score.

1. INTRODUCTION

Automatic accompaniment is a technique that enables a

machine to accompany a human musician’s performance

by synchronizing its playback to the human performer. It

helps accompany users who cannot play in time or wish

to express themselves through artistic timing fluctuations.

For the machine to provide comfortable accompaniment

for humans, the machine should follow the musician and

synchronize naturally, as a human accompanist would do.

This is challenging because playing in a musical ensemble

is an intricate art: multiple musicians interact with each

other in a way that is dependent on the musical context,

perception, and performance. In practice, it is also a chal-

lenge to provide an expressive model whose behavior is

easy to analyze and manipulate.

Existing accompaniment systems lacked a simple yet ex-

pressive accompaniment playback model that is aware of

musical contexts. Earlier methods required the composer

to specify how smoothly it should play an accompani-

ment snippet in response to the user’s performance [1].

Some methods have used heuristics of performance of mu-

sic score to adjust simple parameters for accompaniment

playback [2, 3], but such a heuristic approach can po-

tentially miss intricate factors in timing synchronization.

Many models use rehearsals to learn a synchronization

model [4, 5] but cannot generalize outside the rehearsed

pieces. A recent method has arrived at a simple and in-
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terpretable model inspired by sensorimotor synchroniza-

tion (SMS) [6], but it has fixed parameters or the response

throughout the piece, unaware of the musical contexts.

This paper proposes a method for timing synchronization

that takes into account musical contexts, can generalize

across different pieces, and is simple to interpret and ad-

just. Inspired by models of SMS [7] that are simple and

robust, we present an extension of such a model that is

conditioned on a music score. The proposed SMS model

is aware of the music score thanks to the conditioning on

the score, which allows generalization through training. It

is also interpretable and allows intuitive manual modifica-

tions thanks to the simple formulation of the SMS model.

2. RELATED WORK

2.1 Automatic accompaniment

In automatic accompaniment systems [1,3,4,6,8], the play-

back of the machines is synchronized to the human player.

A model of feasible playback time sequence is assumed,

and its parameters are learned through rehearsals. For ex-

ample, a dynamic Bayesian network describing the tim-

ing of a performance of a known piece of music [5] or a

linear dynamical system using score and performance fea-

tures [4] can be used to train how each performer plays a

given piece of music. Typically, these are confined to a

given piece of music.

To generalize synchronization to new pieces, designing a

general model of timing synchronization is necessary. A

line of work uses performance features such as IOI stabil-

ity to compute who leads an ensemble [2]. Another line

of work uses the music score features such as note den-

sities [3] for timing synchronization. These use features

that have been heuristically designed. To circumvent the

manual design of hand-crafted features, our previous work

trained a deep neural network to predict the tempo curve

given the current performance and the music score [9]. In

this paper we apply this approach for timing coordination.

2.2 Music performance rendering

A related task is music performance rendering, which gen-

erates expressive parameters such as the velocity and onset

timing deviations given a music score. Here, deep neural

networks have been successful and modeling the mapping

between the score and the performance [10–13]. We use

deep neural networks to learn the sensorimotor synchro-

nization parameters, which can be used to control machine

playback in a human music ensemble.



Score position

Figure 1. An example of normalized linear phase correction parameter α over four takes and the corresponding piano-

roll (piano duet arrangement of Mendelssohn’s "Song without words"). The red line represents piano 1, and the blue line

represents piano 2. The roles of the two parts are interchanged in segments "A" and "B." Segments "B" and "C" are

modulations of each other.

2.3 Sensorimotor Synchronization

Sensorimotor synchronization (SMS) is the phenomenon

of human movement coordination in response to an exter-

nal rhythm, which depends on various factors [14]. For

computational modeling of SMS, many studies use linear

models [7, 15, 16]. These explain period and phase work

in terms of the asynchrony between humans and external

stimuli, typically via low-order models like ARMA(1,2)

under a restricted parameter space. Some studies imple-

ment such cognition-inspired models for SMS for auto-

matic accompaniment systems [2, 6, 17]. Whereas these

models assume that SMS model parameters are indepen-

dent of the musical context, given that SMS depends on the

rhythm [18], we hypothesize that the model parameters are

better expressed by conditioning on the music score.

3. OUR METHOD

In our previous research [9], we have employed deep learn-

ing to extract features for estimating the tempo curve gov-

erned by a linear model. It offered the flexibility of a deep

neural network while also providing an interpretable sys-

tem. In this paper, we extend this idea to learning synchro-

nization as well.

3.1 Model of synchronization

We introduce the synchronization model used in this paper

and briefly explore the validity of assuming its parameters

depend on the score.

3.1.1 Linear phase/period correction

We first consider the period correction model [16], which

extends the linear phase correction model to handle tempo

changes. It considers a case where a user is given beat

stimuli to tap with an interval of Sk seconds for the kth

stimulus, and the user would tap along with an error of Ak

seconds. The model considers asynchrony to arise from (1)

the motor noise Mk ∼ N (0, σ2
M ), (2) the discrepancy be-

tween Sk and the expected beat period Tk, a probabilistic

value with an underlying beat period tk, Tk ∼ N (tk, σ
2
T ),

and (3) a corrective process based on recent asynchronies,

that corrects beat phase and period according to parameters

α and β, respectively:

Ak+1 = (1− α)Ak +Mk+1 −Mk + Tk − Sk (1)

tk = tk−1 − βAk. (2)

For this study, we modify the original formulation to al-

low the inter-stimulus interval Sk and the corresponding

Tk to scale by the notated note values. We thus describe

the asynchrony also in terms of the notated note values dk,

as follows:

Ak+1 = (1− α)Ak +Mk+1 −Mk + dk(Tk − Sk). (3)

The inter-stimulus interval is clear in tapping literature,

but it is not so clear for automatic accompaniment, where

one part may be silent. As an approximation, we take the

scheduled playback times of the sequencer when using an

automatic accompaniment system or the smoothed play-

back position of a recording when analyzing a human duet

for training.

3.1.2 Does synchronization depend on musical context?

To demonstrate the effect the music score has on the linear

synchronization parameters, we plot the period correction

parameter α against four takes of an identical piano duet in

Figure 1, played by one pair of advanced pianists. The fig-

ure shows that the region with α taking on more significant

values is consistent with the musical role as implied by the

music score (by comparing (A) and (B)) and is consistent

with musically similar parts (by comparing (B) and (C)).

It thus suggests that the music score is useful for inferring

how performers synchronize with each other.

3.2 Parameter prediction model

We consider two models for predicting the parameters

α, β, σM , σT . In both cases, the model takes as

the input a two-channel binary piano-roll, X(c, t, p) ∈



{−0.5, 0.5}C×T×P , where c is the channel index, t is the

frame index, p is the pitch index. Given a music score, the

human part is assigned to c = 0 and the machine part to

c = 1. The frame index t is computed by the number of

32nd notes elapsed since the beginning, and the pitch in-

dex p is computed by taking the pitch of each note event

and taking the floor after dividing it by 8, chosen for math-

ematical convenience, with P = 16. The feature thus rep-

resents a rough indication of the timing and the register of

the current note events.

First, we consider a linear regression model, which esti-

mates the parameters by multiple regression that takes the

piano roll centered about the current position, with a ra-

dius of two beats. For the kth onset time tk, we compute

Xk as a slice of X(c, t, p) centered about tk with a window

of two beats, i.e., from t = tk − 16 to tk + 16. In other

words, for the input feature Xk for kth note onset time, we

estimate the parameters as follows:

[αk, βk, σM,k, σT,k]
T = Wvec(Xk) + b. (4)

where W ∈ R
4×length(vec(Xk)) and b ∈ R

4.

Second, we consider a deep neural network (DNN) for

parameter estimation. It also accepts the piano roll X cen-

tered about the current position with a radius of two beats.

For the kth onset in the score, we split Xk into X
pre
k and

X
post
k , which are the Xk computed before and after the

onset frame tk. The two features X
pre
k and X

post
k , respec-

tively, then undergo four layers of a series of convolutional

networks with a kernel size of 2 with a dilation factor of 2l,
where l is the zero-indexed layer index, followed by batch

normalization, exponential linear unit (ELU) activation

and dropout with dropout probability of 0.05. The num-

ber of output channels of each layer is [128, 256, 256, 256].
The output is average pooled over the frame and pitch axes

to yield a pair of 256-dimensional vectors c
pre
k and c

post
k .

These are concatenated with the piano roll evaluated ex-

actly at the kth onset frame, X(:, tk, :), to arrive at a con-

text vector ck. It then undergoes three layers of linear lay-

ers with output channels of 1000, 200, and 4 with dropout

and ELU nonlinearity, except the last layer, to arrive at

[α, β, σM , σT ].

4. EVALUATION

4.1 Dataset

We have acquired a dataset of piano duets played by an

advanced-level piano duet group. Four-hands arrange-

ments were obtained for the fourteen pieces listed in Ta-

ble 1, published by Print Gakufu 1 . For each piece, the pi-

anists had time to study the score beforehand and rehearse

before recording. Each piece was taken at least twice, once

asking the player to play normally and another with a dif-

ferent expression. Some pieces were asked to be played to

exaggerate expressions or cues for synchronization. An an-

notator with musical training aligned the takes to the score

so that the click track associated with the score sounds ap-

propriate for the performance. The data was recorded in

two recording sessions, approximately one year apart.

1 Print Gakufu: https://www.print-gakufu.com/

Composer Title Genre Takes

Hakase Jonetsu Tairiku Popular 4
Menken Beauty and the Beast Popular 4
Bizet Carmen Classical 2
Borodin Polovetsian Dances Classical 5
Brahms Hungarian Dance 5 Classical 3
Debussy Bateau Classical 2
Elgar Salut d’Amor Classical 2
Faure Berceuse Classical 2
Mascagni Cavalleria Rusticana Classical 3
Mendelssohn Song Without Words Classical 4
Pachelbel Canon Classical 3
Saint-Saens Le Cygne Classical 2
Tchaikovsky Barcarolle Classical 5
Tchaikovsky Troika Classical 6

Table 1. List of the recorded pieces and the number of

takes.

To extract the synchronization parameters, we assumed

that one player serves as the human while another serves

as the timekeeper. For each distinct note onset event writ-

ten in the score, a corresponding human onset was obtained

by manually aligning to the score and finding the mean on-

set time of the notes played within a window of the 32nd

note of the aligned onset time, repeatedly increasing this

radius by 1.1x if no onset exists in the window, and ignor-

ing the note if the window exceeds 0.3 seconds. When

the two players do not play simultaneously, we assume

that, for the player with no onset, the onset timing is lin-

early interpolated between the adjacent note onset times of

that player. The parameters are estimated using the bGLS

method for phase correction models [7], considering the

introduction of note values in our formulation. The esti-

mation requires multiple asynchronies, so we compute the

parameter by aggregating the current asynchrony and ten

neighboring asynchronies. We further smooth the parame-

ters by a moving average window with 4 note onset events

to smooth outlier estimates.

4.2 Experiment 1: Parameter estimation accuracy for

piece-level cross-validation

We evaluate both the proposed linear (denoted as method

linear) and DNN models (DNN) and two baseline meth-

ods that do assume a relationship between the score and

SMS parameters. The first baseline estimates a single set

of parameters α, β, σM , σT using the entire training data

(uniform-train), and the second baseline estimates a sin-

gle set from the entire validation data (uniform-valid),

which can be considered as the theoretical maximal per-

forming method, assuming the independence of SMS pa-

rameters on the score.

The models were trained with leave-one-out cross-

validation (14-fold cross-validation) at a piece level so that

the piece used for training would not be used for evalua-

tion. The models were trained to minimize the mean abso-

lute error (MAE) using Adam. The MAEs of the estimated

parameters were then computed for each of the validation

folds, and their averages were taken as the metric.

Table 2 shows the result. The proposed method consis-

tently outperforms the baselines. Namely, for α, the MAE



Condition α β σT σM

Uniform-train 7.48E-2 2.63E-3 1.89E-2 2.74E-2
Uniform-valid 7.27E-2 2.30E-3 1.81E-2 2.45E-2

Linear 6.90E-2 2.18E-3 1.52E-2 2.46E-2
DNN 6.68E-2 1.70E-3 1.38E-2 2.33E-2

Table 2. MAE of the synchronization parameter estimates

(piece-level cross-validation).

of the DNN method is reduced by 11% compared to uni-

form, β by 35%, σT by 27%, and σM by 15%. Incorporat-

ing the score is advantageous, as can be seen by compar-

ing linear, a simple linear model, and uniform-valid, the

minimum attainable MAE when ignoring the score. More

elaborate models like DNN can attain even lower perfor-

mance. The results are significant for almost all pieces

and parameters, using a two-sided t-test with a significance

level of 0.01. For condition linear, one piece did not show

significance for α, one piece for β, one piece for σM , and

three pieces for σT . For condition DNN, two pieces did

not show significance for σM and three pieces for σT .

Figure 2 shows an example of the outputs. The ground-

truth data contain large variabilities throughout the piece,

which cannot be expressed with a constant estimate. Both

linear and DNN models capture some of the variabilities,

but the linear model tends to revert to the uniform baseline,

whereas the DNN model can have lower values.

4.3 Experiment 2: Parameter estimation accuracy for

player-level cross-validation

We have repeated the previous experiment, except the

cross-validation was performed at the player level. In other

words, the piano roll and the SMS parameters obtained

from one pianist in the duo were used to train each model

to evaluate the MAE of the data from the other pianist and

vice versa.

Table 3 shows the result. A similar tendency as the pre-

vious experiment can be seen, where the score-dependent

parameter estimates have lower MAEs. The differences in

the MAE were significant for all pairs of conditions, using

a t-test with a significance level of 0.01.

The drop in MAE for linear and DNN is more pro-

nounced here, suggesting the importance of learning the

score over the individual player to estimate the SMS pa-

rameters. To elaborate, it is common in a piano duet for

the two players to switch musical roles, resulting in the

two parts having similar scores dispersed throughout the

piece. Thus during training, the model in this experiment

was allowed to see a score similar to that in the valida-

tion data but not the player in the validation set, whereas

the model in the previous experiment was allowed to see

the performer in the validation data but not the validation

piece. Thus, the fact that MAE is lower for this experiment

suggests that it is the learning of the music score (by an ar-

bitrary pianist) that is more important than the learning of

the individual player (by an arbitrary piece).

Condition α β σT σM

Uniform-train 7.43E-2 2.85E-3 2.05E-2 2.76E-2
Uniform-valid 7.43E-2 2.84E-3 1.71E-2 2.74E-2

Linear 6.56E-2 1.77E-3 1.39E-2 2.42E-2
DNN 5.65E-2 1.80E-3 1.19E-2 1.82E-2

Table 3. MAE of the synchronization parameter estimates

(player-level cross-validation).

Figure 2. An example of estimated outputs versus

the ground truth. Here, "Uniform" refers to condition

uniform-train, which is almost identical to uniform-valid

for this piece.

5. DISCUSSION

We have presented a model of SMS that is conditioned on

the music score, allowing computers to be mindful of the

music score when synchronizing with a human player. A

deep neural network model has shown potential in this di-

rection. Due to the simplicity of the parameters, it is possi-

ble to assess the model’s behavior and combine the insights

from the music cognition literature. For example, it has

been reported that the behavior of human performers re-

mains consistent at a range of α between 0 and 1 [19], so it

is sensible to clip the generated values to ensure an accom-

paniment system behaves stably for human performers.

The model presented in this method has been utilized as a

stochastic state space model for automatic accompaniment

systems in a few professional piano duet performances and

music installations for the general public. The system, in

general, performed stably as long as the score follower

functioned properly and the user played more or less within

the rehearsed tempo. Strong asynchrony occurs when the

user (1) plays with lots of abrupt timing pauses, such as

when sight-reading or has motor disabilities, or (2) shows



prominent tempo expression, such as in a ralletando. For

the first issue, a better model of non-expert piano perfor-

mance will become necessary. For the second issue, com-

bining a long-term model of tempo prediction with a local

SMS model might be a possible direction.

Our study has a few limitations. First, it cannot express

variability in the SMS parameters within a given perfor-

mance instance. While it is reasonable to assume that the

general approach to synchronization between human play-

ers remains consistent for a particular music score seg-

ment, no two performances are temporally identical, and

therefore, no two performances have identical time coordi-

nation. This suggests that SMS is also a function of the in-

stantaneous interaction or some auto-regressive stochastic

process, which our model currently ignores. Second, since

we only had access to one pair of pianists, the across-player

cross-validation represents the behavior of players in a sin-

gle ensemble; it may be possible that different pairs of pi-

anists, or the pianist used in this study paired with another

pianist may behave differently. For example, beginners

with little exposure to music will mostly likely have differ-

ent motor noise σM , or have different α due to the incapa-

bility to attend and listen to others. Our result nonetheless

showed that, given a piano duo, it is possible to generalize

timing synchronization to unseen pieces by learning from

their performances.

6. CONCLUSION

This paper presented an SMS model conditioned on the

music score. We demonstrated the effectiveness of incor-

porating the music score to improve the quality of SMS

parameter estimation. Future work includes incorporating

music performance features and improving synchroniza-

tion robustness by piano players of wide skill levels.
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