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ABSTRACT

Automatic accompaniment systems synchronizing soft-
ware playback with human musicians require a natural,
easy-to-manipulate music synchronization model. How-
ever, existing methods cannot synchronize in a way aware
of the musical context. This paper presents an interpretable
model of the sensorimotor synchronization (SMS) model
based on the user’s music score. The model maps the mu-
sic score to an easy-to-interpret linear model of phase and
period correction using a deep neural network, allowing
timing synchronization to be aware of the music score. The
evaluation shows the proposed method achieves lower es-
timation error than a model that is unaware of the music
score or one that is linearly dependent on the score.

1. INTRODUCTION

Automatic accompaniment is a technique that enables a
machine to accompany a human musician’s performance
by synchronizing its playback to the human performer. It
helps accompany users who cannot play in time or wish
to express themselves through artistic timing fluctuations.
For the machine to provide comfortable accompaniment
for humans, the machine should follow the musician and
synchronize naturally, as a human accompanist would do.
This is challenging because playing in a musical ensemble
is an intricate art: multiple musicians interact with each
other in a way that is dependent on the musical context,
perception, and performance. In practice, it is also a chal-
lenge to provide an expressive model whose behavior is
easy to analyze and manipulate.

Existing accompaniment systems lacked a simple yet ex-
pressive accompaniment playback model that is aware of
musical contexts. Earlier methods required the composer
to specify how smoothly it should play an accompani-
ment snippet in response to the user’s performance [1].
Some methods have used heuristics of performance of mu-
sic score to adjust simple parameters for accompaniment
playback [2, 3], but such a heuristic approach can po-
tentially miss intricate factors in timing synchronization.
Many models use rehearsals to learn a synchronization
model [4, 5] but cannot generalize outside the rehearsed
pieces. A recent method has arrived at a simple and in-
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terpretable model inspired by sensorimotor synchroniza-
tion (SMS) [6], but it has fixed parameters or the response
throughout the piece, unaware of the musical contexts.

This paper proposes a method for timing synchronization
that takes into account musical contexts, can generalize
across different pieces, and is simple to interpret and ad-
just. Inspired by models of SMS [7] that are simple and
robust, we present an extension of such a model that is
conditioned on a music score. The proposed SMS model
is aware of the music score thanks to the conditioning on
the score, which allows generalization through training. It
is also interpretable and allows intuitive manual modifica-
tions thanks to the simple formulation of the SMS model.

2. RELATED WORK

2.1 Automatic accompaniment

In automatic accompaniment systems [1,3,4,6,8], the play-
back of the machines is synchronized to the human player.
A model of feasible playback time sequence is assumed,
and its parameters are learned through rehearsals. For ex-
ample, a dynamic Bayesian network describing the tim-
ing of a performance of a known piece of music [5] or a
linear dynamical system using score and performance fea-
tures [4] can be used to train how each performer plays a
given piece of music. Typically, these are confined to a
given piece of music.

To generalize synchronization to new pieces, designing a
general model of timing synchronization is necessary. A
line of work uses performance features such as IOI stabil-
ity to compute who leads an ensemble [2]. Another line
of work uses the music score features such as note den-
sities [3] for timing synchronization. These use features
that have been heuristically designed. To circumvent the
manual design of hand-crafted features, our previous work
trained a deep neural network to predict the tempo curve
given the current performance and the music score [9]. In
this paper we apply this approach for timing coordination.

2.2 Music performance rendering

A related task is music performance rendering, which gen-
erates expressive parameters such as the velocity and onset
timing deviations given a music score. Here, deep neural
networks have been successful and modeling the mapping
between the score and the performance [10–13]. We use
deep neural networks to learn the sensorimotor synchro-
nization parameters, which can be used to control machine
playback in a human music ensemble.
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Figure 1. An example of normalized linear phase correction parameter α over four takes and the corresponding piano-
roll (piano duet arrangement of Mendelssohn’s "Song without words"). The red line represents piano 1, and the blue line
represents piano 2. The roles of the two parts are interchanged in segments "A" and "B." Segments "B" and "C" are
modulations of each other.

2.3 Sensorimotor Synchronization

Sensorimotor synchronization (SMS) is the phenomenon
of human movement coordination in response to an exter-
nal rhythm, which depends on various factors [14]. For
computational modeling of SMS, many studies use linear
models [7, 15, 16]. These explain period and phase work
in terms of the asynchrony between humans and external
stimuli, typically via low-order models like ARMA(1,2)
under a restricted parameter space. Some studies imple-
ment such cognition-inspired models for SMS for auto-
matic accompaniment systems [2, 6, 17]. Whereas these
models assume that SMS model parameters are indepen-
dent of the musical context, given that SMS depends on the
rhythm [18], we hypothesize that the model parameters are
better expressed by conditioning on the music score.

3. OUR METHOD

In our previous research [9], we have employed deep learn-
ing to extract features for estimating the tempo curve gov-
erned by a linear model. It offered the flexibility of a deep
neural network while also providing an interpretable sys-
tem. In this paper, we extend this idea to learning synchro-
nization as well.

3.1 Model of synchronization

We introduce the synchronization model used in this paper
and briefly explore the validity of assuming its parameters
depend on the score.

3.1.1 Linear phase/period correction

We first consider the period correction model [16], which
extends the linear phase correction model to handle tempo
changes. It considers a case where a user is given beat
stimuli to tap with an interval of Sk seconds for the kth
stimulus, and the user would tap along with an error of Ak

seconds. The model considers asynchrony to arise from (1)
the motor noise Mk ∼ N (0,σ2

M ), (2) the discrepancy be-
tween Sk and the expected beat period Tk, a probabilistic

value with an underlying beat period tk, Tk ∼ N (tk,σ2
T ),

and (3) a corrective process based on recent asynchronies,
that corrects beat phase and period according to parameters
α and β, respectively:

Ak+1 = (1− α)Ak +Mk+1 −Mk + Tk − Sk (1)

tk = tk−1 − βAk. (2)

For this study, we modify the original formulation to al-
low the inter-stimulus interval Sk and the corresponding
Tk to scale by the notated note values. We thus describe
the asynchrony also in terms of the notated note values dk,
as follows:

Ak+1 = (1− α)Ak +Mk+1 −Mk + dk(Tk − Sk). (3)

The inter-stimulus interval is clear in tapping literature,
but it is not so clear for automatic accompaniment, where
one part may be silent. As an approximation, we take the
scheduled playback times of the sequencer when using an
automatic accompaniment system or the smoothed play-
back position of a recording when analyzing a human duet
for training.

3.1.2 Does synchronization depend on musical context?

To demonstrate the effect the music score has on the linear
synchronization parameters, we plot the period correction
parameter α against four takes of an identical piano duet in
Figure 1, played by one pair of advanced pianists. The fig-
ure shows that the region with α taking on more significant
values is consistent with the musical role as implied by the
music score (by comparing (A) and (B)) and is consistent
with musically similar parts (by comparing (B) and (C)).
It thus suggests that the music score is useful for inferring
how performers synchronize with each other.

3.2 Parameter prediction model

We consider two models for predicting the parameters
α, β, σM , σT . In both cases, the model takes as
the input a two-channel binary piano-roll, X(c, t, p) ∈
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{−0.5, 0.5}C×T×P , where c is the channel index, t is the
frame index, p is the pitch index. Given a music score, the
human part is assigned to c = 0 and the machine part to
c = 1. The frame index t is computed by the number of
32nd notes elapsed since the beginning, and the pitch in-
dex p is computed by taking the pitch of each note event
and taking the floor after dividing it by 8, chosen for math-
ematical convenience, with P = 16. The feature thus rep-
resents a rough indication of the timing and the register of
the current note events.

First, we consider a linear regression model, which esti-
mates the parameters by multiple regression that takes the
piano roll centered about the current position, with a ra-
dius of two beats. For the kth onset time tk, we compute
Xk as a slice of X(c, t, p) centered about tk with a window
of two beats, i.e., from t = tk − 16 to tk + 16. In other
words, for the input feature Xk for kth note onset time, we
estimate the parameters as follows:

[αk,βk,σM,k,σT,k]
T = Wvec(Xk) + b. (4)

where W ∈ R4×length(vec(Xk)) and b ∈ R4.
Second, we consider a deep neural network (DNN) for

parameter estimation. It also accepts the piano roll X cen-
tered about the current position with a radius of two beats.
For the kth onset in the score, we split Xk into Xpre

k and

Xpost
k , which are the Xk computed before and after the

onset frame tk. The two features Xpre
k and Xpost

k , respec-
tively, then undergo four layers of a series of convolutional
networks with a kernel size of 2 with a dilation factor of 2l,
where l is the zero-indexed layer index, followed by batch
normalization, exponential linear unit (ELU) activation
and dropout with dropout probability of 0.05. The num-
ber of output channels of each layer is [128, 256, 256, 256].
The output is average pooled over the frame and pitch axes
to yield a pair of 256-dimensional vectors cprek and cpostk .
These are concatenated with the piano roll evaluated ex-
actly at the kth onset frame, X(:, tk, :), to arrive at a con-
text vector ck. It then undergoes three layers of linear lay-
ers with output channels of 1000, 200, and 4 with dropout
and ELU nonlinearity, except the last layer, to arrive at
[α,β,σM ,σT ].

4. EVALUATION

4.1 Dataset

We have acquired a dataset of piano duets played by an
advanced-level piano duet group. Four-hands arrange-
ments were obtained for the fourteen pieces listed in Ta-
ble 1, published by Print Gakufu 1 . For each piece, the pi-
anists had time to study the score beforehand and rehearse
before recording. Each piece was taken at least twice, once
asking the player to play normally and another with a dif-
ferent expression. Some pieces were asked to be played to
exaggerate expressions or cues for synchronization. An an-
notator with musical training aligned the takes to the score
so that the click track associated with the score sounds ap-
propriate for the performance. The data was recorded in
two recording sessions, approximately one year apart.

1 Print Gakufu: https://www.print-gakufu.com/

Composer Title Genre Takes
Hakase Jonetsu Tairiku Popular 4
Menken Beauty and the Beast Popular 4
Bizet Carmen Classical 2
Borodin Polovetsian Dances Classical 5
Brahms Hungarian Dance 5 Classical 3
Debussy Bateau Classical 2
Elgar Salut d’Amor Classical 2
Faure Berceuse Classical 2
Mascagni Cavalleria Rusticana Classical 3
Mendelssohn Song Without Words Classical 4
Pachelbel Canon Classical 3
Saint-Saens Le Cygne Classical 2
Tchaikovsky Barcarolle Classical 5
Tchaikovsky Troika Classical 6

Table 1. List of the recorded pieces and the number of
takes.

To extract the synchronization parameters, we assumed
that one player serves as the human while another serves
as the timekeeper. For each distinct note onset event writ-
ten in the score, a corresponding human onset was obtained
by manually aligning to the score and finding the mean on-
set time of the notes played within a window of the 32nd
note of the aligned onset time, repeatedly increasing this
radius by 1.1x if no onset exists in the window, and ignor-
ing the note if the window exceeds 0.3 seconds. When
the two players do not play simultaneously, we assume
that, for the player with no onset, the onset timing is lin-
early interpolated between the adjacent note onset times of
that player. The parameters are estimated using the bGLS
method for phase correction models [7], considering the
introduction of note values in our formulation. The esti-
mation requires multiple asynchronies, so we compute the
parameter by aggregating the current asynchrony and ten
neighboring asynchronies. We further smooth the parame-
ters by a moving average window with 4 note onset events
to smooth outlier estimates.

4.2 Experiment 1: Parameter estimation accuracy for

piece-level cross-validation

We evaluate both the proposed linear (denoted as method
linear) and DNN models (DNN) and two baseline meth-
ods that do assume a relationship between the score and
SMS parameters. The first baseline estimates a single set
of parameters α, β, σM , σT using the entire training data
(uniform-train), and the second baseline estimates a sin-
gle set from the entire validation data (uniform-valid),
which can be considered as the theoretical maximal per-
forming method, assuming the independence of SMS pa-
rameters on the score.

The models were trained with leave-one-out cross-
validation (14-fold cross-validation) at a piece level so that
the piece used for training would not be used for evalua-
tion. The models were trained to minimize the mean abso-
lute error (MAE) using Adam. The MAEs of the estimated
parameters were then computed for each of the validation
folds, and their averages were taken as the metric.

Table 2 shows the result. The proposed method consis-
tently outperforms the baselines. Namely, for α, the MAE
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Condition α β σT σM

Uniform-train 7.48E-2 2.63E-3 1.89E-2 2.74E-2
Uniform-valid 7.27E-2 2.30E-3 1.81E-2 2.45E-2

Linear 6.90E-2 2.18E-3 1.52E-2 2.46E-2
DNN 6.68E-2 1.70E-3 1.38E-2 2.33E-2

Table 2. MAE of the synchronization parameter estimates
(piece-level cross-validation).

of the DNN method is reduced by 11% compared to uni-
form, β by 35%, σT by 27%, and σM by 15%. Incorporat-
ing the score is advantageous, as can be seen by compar-
ing linear, a simple linear model, and uniform-valid, the
minimum attainable MAE when ignoring the score. More
elaborate models like DNN can attain even lower perfor-
mance. The results are significant for almost all pieces
and parameters, using a two-sided t-test with a significance
level of 0.01. For condition linear, one piece did not show
significance for α, one piece for β, one piece for σM , and
three pieces for σT . For condition DNN, two pieces did
not show significance for σM and three pieces for σT .

Figure 2 shows an example of the outputs. The ground-
truth data contain large variabilities throughout the piece,
which cannot be expressed with a constant estimate. Both
linear and DNN models capture some of the variabilities,
but the linear model tends to revert to the uniform baseline,
whereas the DNN model can have lower values.

4.3 Experiment 2: Parameter estimation accuracy for

player-level cross-validation

We have repeated the previous experiment, except the
cross-validation was performed at the player level. In other
words, the piano roll and the SMS parameters obtained
from one pianist in the duo were used to train each model
to evaluate the MAE of the data from the other pianist and
vice versa.

Table 3 shows the result. A similar tendency as the pre-
vious experiment can be seen, where the score-dependent
parameter estimates have lower MAEs. The differences in
the MAE were significant for all pairs of conditions, using
a t-test with a significance level of 0.01.

The drop in MAE for linear and DNN is more pro-
nounced here, suggesting the importance of learning the
score over the individual player to estimate the SMS pa-
rameters. To elaborate, it is common in a piano duet for
the two players to switch musical roles, resulting in the
two parts having similar scores dispersed throughout the
piece. Thus during training, the model in this experiment
was allowed to see a score similar to that in the valida-
tion data but not the player in the validation set, whereas
the model in the previous experiment was allowed to see
the performer in the validation data but not the validation
piece. Thus, the fact that MAE is lower for this experiment
suggests that it is the learning of the music score (by an ar-
bitrary pianist) that is more important than the learning of
the individual player (by an arbitrary piece).

Condition α β σT σM

Uniform-train 7.43E-2 2.85E-3 2.05E-2 2.76E-2
Uniform-valid 7.43E-2 2.84E-3 1.71E-2 2.74E-2

Linear 6.56E-2 1.77E-3 1.39E-2 2.42E-2
DNN 5.65E-2 1.80E-3 1.19E-2 1.82E-2

Table 3. MAE of the synchronization parameter estimates
(player-level cross-validation).

Figure 2. An example of estimated outputs versus
the ground truth. Here, "Uniform" refers to condition
uniform-train, which is almost identical to uniform-valid

for this piece.

5. DISCUSSION

We have presented a model of SMS that is conditioned on
the music score, allowing computers to be mindful of the
music score when synchronizing with a human player. A
deep neural network model has shown potential in this di-
rection. Due to the simplicity of the parameters, it is possi-
ble to assess the model’s behavior and combine the insights
from the music cognition literature. For example, it has
been reported that the behavior of human performers re-
mains consistent at a range of α between 0 and 1 [19], so it
is sensible to clip the generated values to ensure an accom-
paniment system behaves stably for human performers.

The model presented in this method has been utilized as a
stochastic state space model for automatic accompaniment
systems in a few professional piano duet performances and
music installations for the general public. The system, in
general, performed stably as long as the score follower
functioned properly and the user played more or less within
the rehearsed tempo. Strong asynchrony occurs when the
user (1) plays with lots of abrupt timing pauses, such as
when sight-reading or has motor disabilities, or (2) shows
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prominent tempo expression, such as in a ralletando. For
the first issue, a better model of non-expert piano perfor-
mance will become necessary. For the second issue, com-
bining a long-term model of tempo prediction with a local
SMS model might be a possible direction.

Our study has a few limitations. First, it cannot express
variability in the SMS parameters within a given perfor-
mance instance. While it is reasonable to assume that the
general approach to synchronization between human play-
ers remains consistent for a particular music score seg-
ment, no two performances are temporally identical, and
therefore, no two performances have identical time coordi-
nation. This suggests that SMS is also a function of the in-
stantaneous interaction or some auto-regressive stochastic
process, which our model currently ignores. Second, since
we only had access to one pair of pianists, the across-player
cross-validation represents the behavior of players in a sin-
gle ensemble; it may be possible that different pairs of pi-
anists, or the pianist used in this study paired with another
pianist may behave differently. For example, beginners
with little exposure to music will mostly likely have differ-
ent motor noise σM , or have different α due to the incapa-
bility to attend and listen to others. Our result nonetheless
showed that, given a piano duo, it is possible to generalize
timing synchronization to unseen pieces by learning from
their performances.

6. CONCLUSION

This paper presented an SMS model conditioned on the
music score. We demonstrated the effectiveness of incor-
porating the music score to improve the quality of SMS
parameter estimation. Future work includes incorporating
music performance features and improving synchroniza-
tion robustness by piano players of wide skill levels.
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