
MODELING THE PULTEC EQP-1A WITH WAVE DIGITAL FILTERS

Alberto BARRERA1, Xavier LIZARRAGA-SEIJAS1, and Frederic FONT1

1Universitat Pompeu Fabra, Barcelona, Spain

ABSTRACT

This paper details the development of a virtual analog
model of the passive equalizer stage of the classic Pultec
EQP-1A studio equalizer using Wave Digital Filters. The
modeling process involves analyzing the unit’s schemat-
ics, LTspice simulations, and implementing a Wave Dig-
ital Filter structure using the pywdf library in Python.
The proposed structure initially used R-Type adaptors, that
are removed in a second model, better optimized for real-
time. The Python prototype is compared to LTspice simu-
lations, showing that, at sufficiently high sampling rates,
the discrepancies between the two are marginal. The
Wave Digital Filter model was then ported to C++ using
the chowdsp_wdf library. Both implementations of the
model in C++ (the one that uses R-Type adaptors and the
real-time optimized one) are tested. Our optimized imple-
mentation proved to be much faster than the other open-
source, Faust-based emulation of the EQP1-A that we eval-
uated, and a more accurate emulation of the original unit’s
equalizer stage.

1. INTRODUCTION

1.1 Motivation

Analog audio gear has been used in music production for
almost a century and its distinct character continues to be
sought after by many producers and sound engineers. Ana-
log devices, including compressors, equalizers, and ampli-
fiers, are highly regarded for their ability to introduce rich
harmonic content, saturation and nonlinear characteristics
into the processed signal.

Analog gear, however, can be fragile, needs maintenance,
takes up physical space in the studio and is more expen-
sive to acquire than its digital counterparts. It is also less
convenient to use since it does not allow to recall configu-
rations or use presets (like software does). During the last
three decades, the processes involved in music recording,
editing and post-processing have shifted to the digital do-
main and an important part of the audio equipment indus-
try has disappeared, making these devices more and more
scarce. Addressing these problems, virtual analog model-
ing techniques have long been of great interest to replicate
the sound characteristics of analog gear in the digital envi-
ronment [1–3].

Copyright: © 2024. This is an open-access article distributed under the terms

of the Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Virtual analog modeling methods can be categorized as
black-box or white-box (or a mix of both, often referred
to as grey-box). Black-box techniques consider the system
as a whole while white-box approaches aim to model the
system by focusing on the characteristics of its individual
components and their interactions.

Black-box methods are usually better for capturing "un-
predicted" behavior that is not reflected in the circuit
schematic or where there is not a complete understanding
of the mechanisms involved in the processing. As a dis-
advantage, control parameters do not always map to the
model’s parameters in obvious ways and a complex map-
ping is often needed. Some of the most common black-
box techniques include swept-sine methods [4–6], Volterra
Series [7, 8] or in the last few years, the use of Machine
Learning and, specially, Deep Neural Networks [9–11].

White-box modeling, on the other hand, allow to accu-
rately represent the system’s behaviour from schematics
even without having access to a real unit and allow for di-
rect mapping of control parameters to specific components
or variables of the model [12]. The development of these
models require deep domain knowledge of physics, circuit
theory and digital signal processing. The most common
white-box modeling methods are Modified Nodal Analy-
sis [13, 14] and Wave Digital Filters (WDF) [15]. While
Modified Nodal Analysis remains extensively used for vir-
tual analog modeling, the WDF approach has gained con-
siderable recognition due to its simplicity, modularity and
ease to adapt to real-time applications. These advantages,
combined with the availability of software libraries for de-
velopment and rapid prototyping of WDFs, makes it a very
attractive method for modeling analog circuits [16, 17].

1.2 Wave Digital Filters

WDFs are a kind of digital filter based on physical mod-
eling principles [15, 18]. They can be used to represent
the physical state of an element, for example, the current
physical state of a capacitor or an inductor. WDFs are also
a kind of finite difference scheme with unusually good nu-
merical properties.

In the WDF domain, each circuit element can be defined
by a port with an incident and reflected wave and a free
variable, the port resistance [15, 19]. The incident and re-
flected waves, 𝑎 and 𝑏 respectively, at a certain port are
defined by equations (1) and (2). The port resistance, 𝑅𝑝

can be set to any real value.

𝑎 = 𝑣(𝑡) +𝑅𝑝 · 𝑖(𝑡) (1)

𝑏 = 𝑣(𝑡)−𝑅𝑝 · 𝑖(𝑡) (2)

http://creativecommons.org/licenses/by/3.0/

Where 𝑣(𝑡) and 𝑖(𝑡) are Kirchhoff’s domain variables, the
instantaneous voltage and current across and through the
terminals of an element. Equations (3) and (4) are used to
get 𝑣(𝑡) and 𝑖(𝑡) back from the WDF domain variables.

𝑣(𝑡) =
𝑎+ 𝑏

2
(3)

𝑖(𝑡) =
𝑎− 𝑏

2𝑅𝑝
(4)

In order to make the WDF structure, first it is necessary
to discretize each of the components of the circuit. The
usual method for this digitization is the bi-linear transform
but other methods can be used. Table 1 details the resulting
expressions for both the port impedance and reflected wave
of common circuit elements

Table 1: Expression for the WDF’s domain variables of the
different circuit elements.

𝑅𝑝 𝑏

Resistor 𝑅 0

Capacitor 1/(2𝑓𝑠𝐶) 𝑧−1𝑎

Inductor 2𝑓𝑠𝐿 −𝑧−1𝑎

Voltage Source Matches the rest of the circuit 2𝑣𝑠 − 𝑎

Where 𝑧−1 is a one sample delay and 𝑓𝑠 is the sampling
frequency.

To prevent instability due to delay-free loops when de-
riving the WDF elements, the reflected wave, 𝑏[𝑛], cannot
be directly proportional to the instantaneous value of the
incident wave, 𝑎[𝑛]. However, it can be proportional to a
delayed version of the incident wave, 𝑎[𝑛 − 𝜏]. Usually,
choosing an appropriate value for 𝑅𝑝 eliminates the possi-
bility of such loops, as shown in [15].

Once all the components of the circuit have been indi-
vidually discretized they can be connected using adaptors.
Adaptors are two-port elements characterized by a reflec-
tion coefficient that determines what amount of each of the
incident waves gets reflected into the connected compo-
nents.

In traditional WDF theory it is only possible to connect
elements using series or parallel adaptors; this limits the
topologies that can be modeled to circuits in which all of
the components are connected either in series or in parallel.
The reflected waves to each of the elements connected to a
WDF adaptor, 𝑏1 and 𝑏2, follow the expressions of table 2.

Table 2: Definition of the reflected waves for the WDF
adaptors.

𝑏1 𝑏2

Series −𝑎2 + 𝛾 · (𝑎1 + 𝑎2) −𝑎1 + 𝛾 · (𝑎1 + 𝑎2)

Parallel 𝑎2 + 𝛾 · (𝑎1 − 𝑎2) 𝑎1 + 𝛾 · (𝑎1 − 𝑎2)

Where 𝛾 is the reflection coefficient and 𝑎1 and 𝑎2 are
the incident waves arriving from each element connected
to the adaptor.

With all the circuit elements and adaptors defined, they
are connected together in a SPQR tree structure [20],
where all of the Series, Parallel, Q and R nodes are de-
fined. At each computational cycle of a WDF algorithm it
is necessary to first, recalculate and propagate the reflected
waves towards the root of the tree. Then, the resulting inci-
dent wave is used to calculate the reflected wave at the root
of the tree, which is then propagated downwards. Finally,
the voltage values are calculated at the output of the circuit
and values in reactive components are stored to be used in
the next computational cycle.

Apart from the series and parallel topology limitation
mentioned before, only one nonlinear element can be in-
troduced into the circuit. To do so, the nonlinear element
is placed at the root of the SPQR tree and all the branches
are connected to it. To model circuits with complex topolo-
gies or circuits containing multiple nonlinear elements it is
necessary to introduce special adaptors such as N-port or
R-type adaptors [21], characterized by a scattering matrix
that acts as a multidimensional reflection coefficient be-
tween all of the elements connected to the adaptor.

1.3 The Pultec EQP-1A Program Equalizer

The Pultec EQP-1A is a classic analog equalizer originally
released in 1951 (as the EQP-1), becoming the first pro-
gram equalizer to be introduced to the market. It was
mainly used in radio stations to equalize the broadcast pro-
gram. The unit has ever since become a favorite among
audio professionals and has been used on innumerable
recordings for mixing and mastering. It has also been
cloned by different manufacturers and emulated as a digital
processor by multiple audio plug-in companies.

Figure 1: Frequency response curves from the EQP-1A
user manual.

The EQP-1A consists of a passive equalizer stage and a
vacuum tube gain stage to restore the insertion loss caused
by the equalizer stage. The equalizer stage is composed by
four different filters:

• Low frequency boost: shelving filter with selectable
cutoff frequency and up to 16 dB of gain.

• Low frequency cut: shelving filter with up to 20 dB
of attenuation.

• High frequency boost: resonant RLC filter with con-
figurable center frequency and bandwith.

• High frequency cut: shelving filter with configurable
cutoff frequency and up to 20 dB of attenuation.

The frequency response of each of the filters in different
gain and frequency configurations from the original user
manual are included in figure 1.

Although the EQP-1A’s manual advises against boost-
ing and attenuating simultaneously on the low frequencies,
when both are applied at the same time, the boost and cut
curves affect slightly different frequency bands. This al-
lows to boost the low end, adding body to the sound while
attenuating the low-mid frequency range to avoid “muddi-
ness”.

Figure 2: Frequency response of the EQP-1A when boost-
ing and cutting the low frequency band.

Figure 2 illustrates the magnitude response of the equal-
izer when both boosting and attenuation are simultane-
ously applied at 60 Hz, with the boost and cut potentiome-
ters set to the same position. This effect is commonly
known as the “Pultec low end trick” and it is used exten-
sively to enhance the sound of vocals, drums, guitars, or
bass.

Because the equalizer stage is passive, it introduces sig-
nal loss effect. To make up for the 16 dB insertion loss,
the signal level is restored using an output gain stage based
on a 12AX7 and a 12AU7 vacuum tubes. Additionally, the
original circuit incorporates input and output transformers.
Nonetheless, this paper is focused on simulating the pas-
sive equalizer stage, with the acknowledgment that model-
ing the gain stage and input and output transformers of the
unit is beyond its scope.

2. METHODOLOGY

2.1 References for the circuit

Since the original schematics for the circuit of the EQP-1A
are not publicly available and we did not have access to the
hardware unit, we took as reference a few documents that
can be found online:

• The circuit diagram for the EQP-1R [22], another
variant of the EQP-1A also built by Pulse Tech-
niques.

• The open-source circuit diagram for the EQP-1A
clone by Gyraf Audio [23].

• The frequency response curves from the EQP-1A
user manual [24], already shown in figure 1.

• The frequency response curves from the EQP-1A
2019 reissue made by the original manufacturer
taken from an article published in the Sound on
Sound magazine [25] and measured using laboratory
equipment.

Considering all of them we can gain a good understand-
ing about the topology and components of the original de-
vice as well as its frequency response.

2.2 Circuit Simulations

Based on the references for the circuit, a first version of
the circuit was simulated in LTspice. This first simulation
showed some discrepancies with the measurements taken
from the 2019 reissue of the unit so the value of some com-
ponents was adjusted to closely match them.

Since the model does not need to adapt the input and out-
put impedance of the circuit, the input and output resistors
are removed, adjusting the necessary components to main-
tain the circuit’s behavior. This would allow us to model
the circuit in the WDF domain without the need of R-Type
adaptors, making the processing faster for the same cir-
cuit’s response. The version of the circuit used for the final
model is included in figure 3.

Figure 3: Modified version of the circuit used for the final
model.

The results of the simulations carried out on this modi-
fied version of the circuit are included for: the maximum
low frequency boost and cut configurations for all of the se-
lectable frequencies (figure 4a), different bandwidth values
for the resonant high frequency filter at maximum boost at
5 kHz (figure 4b) and maximum cut for all of the selectable
frequencies of the high shelving filter (figure 4c).

All of the simulations were carried out with the same con-
figuration as the measurements taken from the hardware

unit in the Sound and Sound article [25] so they could
be directly compared against them. Although they could
not be compared numerically in a meaningful way, the
achieved response curves are identical.

(a) Low frequency boost and cut

(b) High frequency boost at 5kHz

(c) High frequency cut

Figure 4: LTspice simulations frequency responses

2.3 Wave Digital Filter Implementation

Once the frequency response of the simulations closely
matches the references, the circuit is constructed in the
WDF domain using Python and the pywdf library 1 [16].
pywdf includes WDF models for resistors, capacitors and
inductors, as well as series, parallel and R-Type adaptors.

A first implementation of the circuit, that used R-Type
adaptors, was developed following the circuit of the ref-
erences. To derive the R-Type adaptor, the circuit’s nodes
and ports are labeled to create a net-list that describes the
circuit. With this net-list the scattering matrix can be com-
puted using R-Solver and SageMath. The process of ob-

1 https://github.com/gusanthon/pywdf

taining the scattering matrix from the circuit is explained
in an article published online by Jatin Chowdhury [26].

This first model, that uses R-Type adaptors, had the same
response as the final version but worse performance. The
performance of both models is compared in section 3.2.

The final WDF implementation of the circuit followed the
circuit on figure 3, which resulted in the WDF structure
represented in figure 6. The voltage source is connected at
the root of the circuit and all of the components are con-
nected through series and parallel adaptors to it.

Using the pywdfmodel and the functions included in the
library we can easily obtain the frequency response of the
circuit. The frequency responses of the model for the same
configurations as in the simulations carried out in LTspice
and the ones measured from the hardware unit were com-
puted at a sampling rate of 192 kHz and are included in
figures 5a, 5b and 5c.

(a) Low frequency boost and cut

(b) High frequency boost at 5kHz

(c) High frequency cut

Figure 5: WDF model frequency responses

The frequency responses obtained are very accurate at

https://github.com/gusanthon/pywdf

Figure 6: WDF diagram of the passive equalizer stage.

high sampling rates, but the Python models are slow
and only able to process audio offline. While Python
and pywdf provides a valuable prototyping environ-
ment, its limitations become apparent in real-time applica-
tions where faster programming languages, like C++, are
needed.

2.4 Real-time C++ Model

After achieving accurate results from the WDF model in
Python, it is necessary to translate the WDF model to C++
to enable real-time operation. To achieve this we used the
chowdsp_wdf library 2 [17] for the WDF modeling and
the JUCE framework 3 to compile the model into an audio
plug-in.

One big advantage of using pywdf library for prototyp-
ing in Python alongside the chowdsp_wdf library for the
real-time implementation is that they share the same foun-
dation: all the processes are equivalent and numerically
they shed the same results. This ensures that a model pro-
totyped in Python can be seamlessly ported to C++without
any alterations, preserving identically the model’s topol-
ogy and behavior.

At lower sampling rates, and due to the use of the bi-
linear transform during the discretization of the circuit ele-
ments, considerable cramping occurs on the higher end of
the spectrum. For this reason, getting good accuracy out
of the WDF model (as quantified in section 3.1) requires
the use of high sampling rates above the conventional 48
kHz used in audio production. However, running an entire
project at high sampling rates is not always efficient.

2 https://github.com/Chowdhury-DSP/chowdsp_wdf
3 https://juce.com

To address this, our plug-in performs a series of opera-
tions: it internally up-samples the input signal, processes
the over-sampled signal using the WDF model, and then
down-samples the processed signal back to the original
host’s sampling frequency. The plug-in provides options
for x2, x4, or no oversampling.

The result of this process is a fully operational au-
dio plug-in that effectively incorporates the WDF model
within a real-time environment. The plug-in can be used in
any Digital Audio Workstation and it is available to down-
load on GitHub 4 . A snapshot of its GUI is included on
figure 7.

Figure 7: Graphical user interface of the plugin.

3. RESULTS

3.1 Frequency Response

To asses the accuracy of our WDF implementation, the fre-
quency response curves computed from the Python model
are compared against the ones obtained through LTspice
simulations and the error between both is calculated.

For each graph, both the frequency response obtained
from LTspice and the one computed from pywdf are dis-
played. The background color indicates the squared error
between the two, (|𝐻LTspice(𝑓)|− |𝐻pywdf(𝑓)|)2, and the
𝑅𝑀𝑆𝐸, that follows the definition of equation (5), is in-
cluded at the bottom left corner.

𝑅𝑀𝑆𝐸 =

√︃
1

𝑁

∑︁
𝑘

(|𝐻spice(𝑘Δ𝑓)| − |𝐻wdf(𝑘Δ𝑓)|)2 (5)

The error graphs for an example EQP-1A configuration
are included in figures 8, 9 and 10 for sampling frequen-
cies of 48 kHz, 96 kHz and 192 kHz respectively. The
numerical values for the error of the individual filters at
the the most adverse configurations are gathered in table 3.

Table 3: Magnitude response error on each filter at the
most adverse configuration.

LF Boost LF Cut HF Boost HF Cut

fs (kHz) RMSE RMSE RMSE RMSE

48 3.65e-2 2.07e-3 1.40 3.60e-2

96 1.86e-2 5.43e-4 6.44e-1 1.28e-2

192 9.37e-3 1.39e-4 2.20e-1 3.96e-3

4 https://github.com/ABSounds/EQP-WDF-1A

https://github.com/Chowdhury-DSP/chowdsp_wdf
https://juce.com
https://github.com/ABSounds/EQP-WDF-1A

Figure 8: Example configuration frequency response error
at 48 kHz.

Figure 9: Example configuration frequency response error
at 96 kHz.

Figure 10: Example configuration frequency response er-
ror at 192 kHz.

The comparisons show that at higher sampling rates the
model is very accurate and the error between the simula-
tions and the WDF model are minimal.

Although we focused on the model’s magnitude response
in this work, we also examined its phase response and
found no significant discrepancies from the expected be-
havior of the unit. The phase response does exhibit distor-
tion when approaching the Nyquist frequency; however, as
with the magnitude response error, this distortion can be
reduced in the audio range by processing at higher sample
rates.

3.2 Performance

To assess the performance of the different models, a ran-
dom audio spanning 20 seconds is generated and processed
using each model. The time taken to process all samples is
measured using Python’s time.monotonic() function
from the standard library time.

The Python implementations are executed directly on a
Jupyter Notebook, while the VST3 plug-ins are loaded
into Python using Spotify’s Pedalboard library 5 . All the

5 https://github.com/spotify/pedalboard

processing is executed locally on a computer with an i7-
8550U processor running at 1.8 GHz and 16 GB of RAM
operating on Windows 11.

The evaluation includes the processing time for the 20
seconds of audio, as well as a real-time ratio. This ratio in-
dicates how many times faster than real-time the model can
operate. For instance, a ratio of 2 implies that the model is
able to process 2 seconds of audio in 1 second. Any ratio
below 1 means that the model is not suitable for real-time
use.

Table 4 includes the comparison between the perfor-
mance of our two Python models developed using the
pywdf library. The first one uses traditional WDF with
the modified version of the circuit, while the other one uses
R-Type adaptors.

Table 4: Time taken to process 20 s of audio with each of
the Python models.

pywdf pywdf w/ R-Type

fs (kHz) Time (s) Ratio Time (s) Ratio

48 26.969 0.74 120.775 0.17

96 53.931 0.37 229.953 0.09

192 108.984 0.18 451.212 0.04

The results show that the implementation that used R-
Type adaptors was 75% slower than the final one. Working
at typical audio rates (48, 96 and 192 kHz), none of them
was able to run in real-time. This was expected and caused
by the nature of the Python programming language.

Table 5 includes the performance assessment of our C++
model compiled into a VST3 plug-in (EQP-WDF-1A) and
compares it to another implementation of the EQP-1A de-
scribed on this paper [27] developed in the Faust program-
ming language that uses R-Type adaptors and was also
compiled to VST3.

Table 5: Time taken to process 20 s of audio with each of
the VST3 plug-ins.

EQP-WDF-1A Faust EQP-1A
(R-Type)

fs (kHz) Time (s) Ratio Time (s) Ratio

48 0.092 217 0.175 114

96 0.182 110 0.326 61

192 0.360 56 0.638 31

Overall, our plug-in performed between 40% to 47%
faster than the Faust implementation on every configura-
tion.

https://github.com/spotify/pedalboard

4. CONCLUSIONS

Based on our measurements we can conclude that our
WDF model accurately replicates the frequency response
of the Pultec EQP-1A, specially at higher sampling rates,
as confirmed by the comparisons between the LTspice sim-
ulations, the Python WDF model frequency response and
measurements taken from the 2019 reissue of the unit.

The C++ implementation of the WDF model is also ef-
ficient and capable of real-time operation. It performs
faster than existing implementations of the circuit and
yields better results. Thanks to the use of the pywdf and
chowdsp_wdf libraries, transitioning from the Python
prototype to a real-time C++ implementation is a smooth
process that preserves the model behaviour intact with
some minor adaptations to the Python code.

This development was a first step in the direction to a
complete open-source model of the Pultec EQP-1A. Al-
though the frequency response achieved is faithful to the
original unit, other sections of the circuit (specially the
gain stage and input/output transformers) would need to
be modeled to recreate its harmonic properties.

4.1 Future work

Various methods can be used to model the distortion pro-
duced by the 12AX7 and 12AU7 vacuum tubes in the EQP-
1A’s gain stage.

One option would be to use a filtering block and a static
waveshaper as proposed in [28, 29]. This is a simple to
implement but won’t fully model the non-symmetrical dis-
tortion present in circuits with pairs of triodes like this one.

A more accurate option would involve integrating vac-
uum tube models into a WDF implementation, as dis-
cussed in [30, 31]. This would offer a high accuracy but
might prove challenging due to the complex interaction be-
tween the gain and equalizer stages.

Instead of the WDF models of the vacuum tubes, neural
networks can be introduced into the WDF domain model
as proposed in [32]. This has shown great results in mod-
eling guitar amplifiers and would likely work as well for
the gain stage of the EQP-1A but it would not reduce the
complexity of the WDF model.

Acknowledgments

This research was carried out under the project "IA y
Música: Cátedra en Inteligencia Artificial y Música" (TSI-
100929-2023-1), financed by Secretaría de Estado de Dig-
italización e Inteligencia Artificial, and Unión Europea-
Next Generation EU, under the program Cátedras ENIA
2022. This paper is also based on the research conducted
during a Master’s Thesis on Sound and Music Computing
at the Universitat Pompeu Fabra in Barcelona. Our grat-
itude goes to Audio Merge’s 6 team for leading this pro-
posal and to Xavier Lizarraga and Frederic Font, members
of the Music Technology Group at UPF, for guiding. Their
support and expertise were key to the success of this re-
search.

6 https://audio-merge.com

5. REFERENCES

[1] S. D’Angelo, “Lightweight virtual analog modeling,”
in Proceedings of the 22nd Colloquium on Music Infor-
matics, Udine, Italy. Independent Researcher, 2018,
pp. 20–23.

[2] A. Bernardini, A. Sarti et al., “Towards inverse virtual
analog modeling,” in Proc. 22nd International Confer-
ence on Digital Audio Effects (DAFx 2019), 2019, pp.
1–8.

[3] V. Valimaki, J. D. Parker, L. Savioja, J. O. Smith,
and J. S. Abel, “Fifty years of artificial reverberation,”
IEEE Transactions on Audio, Speech, and Language
Processing, vol. 20, no. 5, pp. 1421–1448, 2012.

[4] A. J. Berkhout, D. de Vries, and M. M. Boone, “A
new method to acquire impulse responses in concert
halls,” The Journal of the Acoustical Society of Amer-
ica, vol. 68, no. 1, pp. 179–183, 1980.

[5] A. Farina, A. Bellini, E. Armelloni et al., “Non-linear
convolution: A new approach for the auralization of
distorting systems,” Preprints-Audio Engineering So-
ciety, 2001.

[6] A. Farina, “Simultaneous measurement of impulse re-
sponse and distortion with a swept-sine technique,” in
Audio engineering society convention 108. Audio En-
gineering Society, 2000.

[7] T. Hélie, “Volterra series and state transformation for
real-time simulations of audio circuits including satu-
rations: Application to the moog ladder filter,” IEEE
Transactions on Audio, Speech Language Processing,
vol. 18, pp. 747–759, 2010.

[8] A. Farina, E. Armelloni et al., “Emulation of not-linear,
time-variant devices by the convolution technique,” in
Congresso AES Italia, Como, 2005.

[9] J. Chowdhury, “A Comparison of Virtual Analog
Modelling Techniques for Desktop and Embedded
Implementations,” Sep. 2020, arXiv:2009.02833 [cs,
eess]. [Online]. Available: http://arxiv.org/abs/2009.0
2833

[10] A. Wright, E.-P. Damskägg, and V. Välimäki, “Real-
Time Black-Box Modelling with Recurrent Neural
Networks,” in Proceedings of the International Con-
ference on Digital Audio Effects. United Kingdom:
University of Birmingham, Sep. 2019.

[11] C. J. Steinmetz, J. Pons, S. Pascual, and J. Serrà, “Au-
tomatic multitrack mixing with a differentiable mixing
console of neural audio effects,” in ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2021, pp.
71–75.

[12] M. Verasani, A. Bernardini, and A. Sarti, “Modeling
sallen-key audio filters in the wave digital domain,”
in 2017 IEEE international conference on acoustics,

https://audio-merge.com
http://arxiv.org/abs/2009.02833
http://arxiv.org/abs/2009.02833

speech and signal processing (ICASSP). IEEE, 2017,
pp. 431–435.

[13] C.-W. Ho, A. Ruehli, and P. Brennan, “The modified
nodal approach to network analysis,” IEEE Transac-
tions on Circuits and Systems, vol. 22, no. 6, pp. 504–
509, Jun. 1975.

[14] K. Dempwolf, M. Holters, and U. Zölzer, “Discretiza-
tion of parametric analog circuits for real-time simula-
tions,” in Proceedings of the 13th international confer-
ence on digital audio effects (DAFx’10), 2010.

[15] A. Fettweis, “Wave digital filters: Theory and prac-
tice,” Proceedings of the IEEE, vol. 74, no. 2, pp. 270–
327, Feb. 1986.

[16] G. Anthon, X. Lizarraga-Seijas, and F. Font, “Pywdf:
an open source library for prototyping and simulating
wave filter circuits in python,” in Proceedings of the
26th International Conference on Digital Audio Effects
(DAFx-23), Denmark, 2023, pp. 335–341.

[17] J.Chowdhury, “chowdsp_wdf: An Advanced C++
Library for Wave Digital Circuit Modelling,” Oct.
2022, arXiv:2210.12554 [eess]. [Online]. Available:
http://arxiv.org/abs/2210.12554

[18] J. O. Smith, Physical Audio Signal Processing, ch.
Wave Digital Filters, online book, 2010 edition.
[Online]. Available: https://ccrma.stanford.edu/~jos/p
asp/Wave_Digital_Filters_I.html

[19] multivac61, “multivac61/wave_digital_notebook,”
May 2023, original-date: 2016-10-23. [Online].
Available: https://github.com/multivac61/wave_digit
al_notebook

[20] K. J. Werner, “Virtual Analog Modeling of Audio Cir-
cuitry Using Wave Digital Filters,” Ph.D. dissertation,
Stanford University, Stanford, 2016, pages: 261 Vol-
ume: Ph.D. in Computer-Based Music Theory and
Acoustics.

[21] K. J. Werner, V. Nangia, J. O. Smith III, and J. S. Abel,
“Resolving wave digital filters with multiple/multiport
nonlinearities,” in Proc. 18th Conf. Digital Audio Ef-
fects, 2015, pp. 387–394.

[22] “Dave Library.” [Online]. Available: http://www.dave
groupjapan.com/ekoukoku9.html

[23] Gyraf Audio, “The G-Pultec.” [Online]. Available:
https://www.gyraf.dk/gy_pd/pultec/pultec.htm

[24] Pulse Techniques, “Pultec EQP-1A User Manual.”
[Online]. Available: https://www.thehistoryofrecordin
g.com/Manuals/Pultec/Pultec_EQP-1A_Manual.pdf

[25] H. Robjohns, “Pulse Techniques EQP-1A,” Sound on
Sound, Feb. 2019. [Online]. Available: https://www.so
undonsound.com/reviews/pulse-techniques-eqp-1a

[26] J. Chowdhury, “Wave Digital Circuit Models with R-
Type Adaptors,” Oct. 2022. [Online]. Available: https:
//jatinchowdhury18.medium.com/wave-digital-filter-c
ircuit-models-with-r-type-adaptors-39ad0ad658ce

[27] D. Roosenburg, E. Stine, R. Michon, and J. Chowd-
hury, “A wave digital filter modeling library for the
faust programming language,” in Proc. 18th Sound Mu-
sic Comput. Conf., Virtual, 2021, pp. 24–30.

[28] R. Kuehnel, “Digital Modeling of Guitar Amplifier
Preamp Distortion.” [Online]. Available: https:
//www.ampbooks.com/mobile/dsp/preamp/

[29] I. Cohen, “Fifty shades of distortion,” in ADC’17,
London, UK, Nov. 2017. [Online]. Available: https:
//www.youtube.com/watch?v=oIChUOV_0w4

[30] M. Karjalainen and J. Pakarinen, “Wave digital simula-
tion of a vacuum-tube amplifier,” in 2006 IEEE Inter-
national Conference on Acoustics Speech and Signal
Processing Proceedings, vol. 5. IEEE, 2006.

[31] J. Pakarinen and M. Karjalainen, “Enhanced wave dig-
ital triode model for real-time tube amplifier emula-
tion,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 18, no. 4, pp. 738–746, 2009.

[32] C. C. Darabundit, D. Roosenburg, and J. O. Smith III,
“Neural net tube models for wave digital filters,”
in Proc. 25th Int. Conf. Digital Audio Effects
(DAFx20in22). Vienna University of Music and Per-
forming Arts, 2022, pp. 153–160.

http://arxiv.org/abs/2210.12554
https://ccrma.stanford.edu/~jos/pasp/Wave_Digital_Filters_I.html
https://ccrma.stanford.edu/~jos/pasp/Wave_Digital_Filters_I.html
https://github.com/multivac61/wave_digital_notebook
https://github.com/multivac61/wave_digital_notebook
http://www.davegroupjapan.com/ekoukoku9.html
http://www.davegroupjapan.com/ekoukoku9.html
https://www.gyraf.dk/gy_pd/pultec/pultec.htm
https://www.thehistoryofrecording.com/Manuals/Pultec/Pultec_EQP-1A_Manual.pdf
https://www.thehistoryofrecording.com/Manuals/Pultec/Pultec_EQP-1A_Manual.pdf
https://www.soundonsound.com/reviews/pulse-techniques-eqp-1a
https://www.soundonsound.com/reviews/pulse-techniques-eqp-1a
https://jatinchowdhury18.medium.com/wave-digital-filter-circuit-models-with-r-type-adaptors-39ad0ad658ce
https://jatinchowdhury18.medium.com/wave-digital-filter-circuit-models-with-r-type-adaptors-39ad0ad658ce
https://jatinchowdhury18.medium.com/wave-digital-filter-circuit-models-with-r-type-adaptors-39ad0ad658ce
https://www.ampbooks.com/mobile/dsp/preamp/
https://www.ampbooks.com/mobile/dsp/preamp/
https://www.youtube.com/watch?v=oIChUOV_0w4
https://www.youtube.com/watch?v=oIChUOV_0w4

	 1. Introduction
	1.1 Motivation
	1.2 Wave Digital Filters
	1.3 The Pultec EQP-1A Program Equalizer

	 2. Methodology
	2.1 References for the circuit
	2.2 Circuit Simulations
	2.3 Wave Digital Filter Implementation
	2.4 Real-time C++ Model

	 3. Results
	3.1 Frequency Response
	3.2 Performance

	 4. Conclusions
	4.1 Future work

	 5. References

