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ABSTRACT

Delay lines are ubiquitous in computer music applications:
they are used to create audio effects or to simulate the sound
propagation of moving sources. When one wants to synthe-
size a delay which varies over time, two main strategies are
typically implemented: a) by using a “fractional” delay line,
which simulates a non-integer delay based on an interpolator
filter; or b) by applying a crossfade between the initial delay
and the new desired delay value. These two techniques may
induce pitch shift and/or spectral artifacts which are not
tolerable in certain applications such as spatial reproduction
by wavefield synthesis (WFS). In this article we propose
a new method for creating a continuously variable delay
line; the technique is an extension of the crossfade delay
technique which exploits a superposition of several “aux-
iliary” tap delays whose times and gains are determined
by a methodology similar to fractional delay interpolating
filters. We show that it is thus possible to reduce coloration
artifacts, at the expense of a higher computational cost.

1. INTRODUCTION

Delay lines (DL) are ubiquitous in signal processing and
computer music applications. They are notably used for the
production of audio effects such as vibrato, flanging, chorus,
phasing [1] [2, Chapter 2] [3, Chapter 2] [4, Chapter 7.8], for
physical modeling synthesis of musical instruments [5–7],
for sound spatialization [8, 9] and artificial reverbera-
tion [10, 11], and for the simulation of propagation of
moving sources, as observed in the Doppler effect or
Leslie cabinet [12–14] or in auralization systems [15, Sec-
tion 3.2] [16, Fig. 22] [17], etc. They also play a central role
for sample rate conversion [18, 19], beamforming [20], and
synchronization in wireless communication systems [21].

In many use cases, it is necessary to vary the delay
value over time. When delay lines are implemented in
the digital domain, the delay variation requires special
attention. A “basic” delay line is generally implemented
as a circular buffer, with two pointers which represent
the read and write positions respectively, and which are
incremented at each time step. In the digital domain, the
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read and write positions are necessarily integer values
(expressed in number of samples). It is known that, for
such a “basic” delay line, the transition from a delay τ1 to a
delay τ2 (where τ1 and τ2 are rounded to the nearest integer
values) induces a discontinuity in the output signal, which
manifests itself as audible artifacts such as clicks or “zipper
noise” [3, Chapter 2] [7].
To overcome this problem, it is necessary to implement
an interpolation process in order to smooth the variations
and minimize (or eliminate) the discontinuities. Two main
strategies are listed in the literature, and very widely used
in practice: a) implement a fractional delay line, using an
interpolator filter to simulate non-integer delay values; b)
perform a crossfade between two read pointers correspond-
ing to the delays τ1 and τ2. These approaches each have
limitations — which will be discussed in more detail in
the following sections: a) a fractional delay line induces a
pitch shift comparable to a Doppler effect; depending on
the use cases, this transposition can be artistically relevant
or undesirable; b) the crossfade technique generates a comb
filtering effect with detuning (undesired distorsion of the
magnitude and phase spectrum) which can be more or less
pronounced depending on the situation.

Spatial reproduction of sound sources by wavefield syn-
thesis (WFS) [9, 22] is a use case of interest, and the initial
motivation of this study. In WFS, each loudspeaker (called
“secondary source”) of the reproduction system contributes
to recreating the wave front emanating from a virtual source
(or “primary source”), and the driving functions of the
loudspeakers — derived from the Kirchhoff-Helmholtz and
Rayleigh I integral equations — involve delay lines (a priori
with fractional delay values). Each time the virtual source
moves, the relative delays of all the speakers should vary
continuously. Given that the number of secondary sources
is generally large (several dozens to hundreds) and that the
range of the delays can be considerable (up to several tens
of milliseconds depending on the configuration and source
movements), WFS reproduction is particularly sensitive
to the delay line artifacts discussed previously. The pitch
changes of a fractional delay and the spectral colorations of
a crossfade delay are both undesirable [19, 23–26].
In this article we propose a new method for creating a con-
tinuously variable delay line; the technique is an extension
of the crossfade delay that exploits “auxiliary” tap delays
whose times and gains are determined by a methodology
similar to fractional delay interpolating filters. We will
show that it is therefore possible to reduce coloration
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artifacts, at the expense of a higher computational cost.

The article is organized as follows: first, we present
elementary reminders on fractional delay lines (Section 2),
and crossfading delay lines (Section 3). In Section 4,
we present and evaluate the proposed method, before
concluding.

2. FRACTIONAL DELAY LINE (FDL)

2.1 Ideal response

Fractional delay lines (FDL) allow to simulate any de-
lay τ ∈ R+. The delay value is decomposed into an integer
part and a fractional part: τ = τi + β where τi = ⌊τ⌋ is
the integer part and β ∈ [0, 1) = τ − τi is the fractional
part. For an input sequence x[n] originating from the dis-
cretization of a band-limited analog signal x(t), the output
of a fractional delay line is written y[n] = x[n− (τi + β)].
This value a priori lies “between two samples”, which is not
possible. Instead, one must determine the discrete values
(on the sampling grid) by interpolation.
Many methods have been proposed and extensively dis-
cussed (see in particular [1, 5, 27–29] [4, Chapter 5.5]).
These techniques generally rely on the approximation of
an “ideal delay operator” by a finite impulse response fil-
ter (FIR) or infinite impulse response filter (IIR). Con-
sidering the relation Y (z) = z−τX(z), the ideal transfer
function is written in the frequency domain:

Hideal

(
eiω

)
= e−iωτ , (1)

where z = eiω, and ω = 2π f/fs denotes the angular
frequency. As a result, the impulse response of the system
writes ∀n

hideal[n] =
1

2π

∫ π

−π
Hideal

(
eiω

)
eiωn dω = sinc (n− τ)

(2)

where sinc (x) = sin(πx)
πx is the cardinal sine function.

When the desired delay τ is integer, the response reduces
to a single pulse at the discrete time n = τ , as in “basic”
DL. When τ is real and non-integer, the impulse response
hideal[n] has an infinite length, and is non-causal. It is
therefore not suitable for real-time applications. The FDL
must be implemented with an approximate solution.

2.2 Approximations of the ideal solution

A large number of approximation techniques have been
proposed in the literature. The simplest and most intuitive
approach relies on approaching the ideal delay operator
by linear interpolation between adjacent samples x[n− 1]
and x[n]. This technique has a low computational cost,
and it provides qualitatively satisfactory results when the
spectrum of the signal x is mainly concentrated in low
frequencies. To process large-band signals, it is preferable
to apply oversampling, however this considerably increases
the computational cost.

Another simple way to approximate the ideal opera-
tor hideal is to truncate the reponse, and shift it temporally
to ensure causality. This results in an FIR filter of order M .
It is known that the impulse response of this filter is subject
to the Gibbs phenomenon, and consequently its magnitude
spectrum exhibits ripples (see for example [4, Figure 5.46]),
which is generally undesirable.

Another widely used approach consists of implementing
the FDL using a 1st order all-pass IIR filter [27] [4, Chap-
ter 5.5.3], known as 1st order Thiran filter [30] [29, Sec-
tion 20.4.2.2.], which guarantees a maximally flat group
delay for ω → 0. The approach has several advantages: the
solution is obtained analytically, the computation cost is
very low, and the frequency response is flat for all frequen-
cies. However, the phase delay approximation is only valid
in a domain restricted to low frequencies, and degrades
rapidly at higher frequencies. Furthermore, the impulse re-
sponse is relatively long, which is problematic for transient
sounds, when the input signal or the all-pass coefficient
varies quickly (causing audible clicks) [5, 31]. Alterna-
tive implementations have been proposed to mitigate this
problem [25,32,33], but at the expense of higher complexity.

Finally, another commonly used strategy approximates
the desired function by an interpolator polynomial of
order N [27] [4, Chapter 5.5.4]. The simplest analytical
solution is provided by the Lagrange polynomial. The
coefficients of the FIR Lagrange interpolator can be found
e.g. in [27] [29, Section 20.3.4.]. For N = 1, it is equivalent
to linear interpolation; for N → ∞, it converges to the ideal
sinc operator [7]. The filter exhibits a low-pass behavior,
more pronounced for even orders N . As a consequence,
order N = 3 is frequently used, as it offers a tradeoff
between moderate computational cost, and acceptable
magnitude/phase response — the frequency response is
almost flat up to fs/4, see Figure 2(a). Figure 1 displays
an example impulse response of the Lagrange interpolator
filter of order N = 3.

Figure 1. Impulse response of a FDL for τ1 = 27, τ2 = 32,
and for different values of the interpolation factor α between
0% and 100%. The x-axis and y-axis represent time (in
samples) and amplitude respectively. The purple dashed
lines symbolize τ1 and τ2. The FDL is implemented with
4-point Lagrange interpolation (N = 3).
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Figure 2. (a) Frequency response and (b) phase delay of a
FDL with Lagrange interpolation. The simulated parameters
are similar to Figure 1. The frequency response is most
attenuated when α = 50%, with

∥∥H
(
eiω

) ∣∣
ω=π

∥∥ = 0.

2.3 Artifacts when varying the delay value

The accuracy of the sinc ideal response approximation
is generally improved by using higher order interpolation
schemes, however the computational cost then becomes pro-
hibitive for real-time applications. Furthermore, whatever
the method used to implement the FDL, audible artifacts
are generated when the delay value varies continuously over
time such that y(t) = x

(
t− τ(t)

)
. For the sake of simplic-

ity, we assume for example that τ(t) varies linearly between
two integer delays τ1 and τ2. Without loss of generality, we
will also assume that τ2 > τ1. We note α the “interpolation”
factor such that, at each time t, the (fractional) delay τ is
worth

τ(t) = α τ1 + (1− α) τ2 , (3)

with α ∈ R and 0 ≤ α ≤ 1. Let ∆ = τ2 − τ1 be the delay
variation, and δ be the interpolation duration to go from τ1
to τ2, i.e. α

∣∣
t=0

= 1 and α
∣∣
t=δ

= 0.

By varying τ , a momentary transposition is generated; this
is analogous to the Doppler effect and results in a clearly
audible pitch change [1, 7] [34, Chapter 7.7] [35]. This
Doppler effect is physically correct: the transition from
τ1 to τ2 amounts to changing the physical distance which
separates a listener from a sound source (the delay line
realistically “modeling” the acoustic propagation channel).
When ∆ > 0, the transposition is downward; and vice versa

when ∆ < 0 [34, 36]. As noted by Puckette [34, Chap-
ters 7.7 and 7.8], this effect is quite pronounced even when
the interpolation duration (δ) is significantly greater than
the delay variation (∆); the effect of pitch shift is for ex-
ample clearly audible even with long duration δ > 100 |∆|
(By comparison, when we consider amplitude variations,
with gain ramps, satisfactory results can generally be
obtained even with relatively short interpolation times, e.g.
δ ≈ 20 ms for |∆| ≈ 100 dB).

In some applications, the induced Doppler effect may
be acceptable or even desirable. In fact, this justifies the
ubiquitous use of delay lines in audio effects implementing
pitch variations or modulations (vibrato effect, for exam-
ple) [34, Chapter 7.9] [29, Section 20.7.4.] [1, 37].
On the other hand, in spatialization or auralization contexts,
the Doppler shift – even though it simulates a realistic
auditory effect – is sometimes undesirable, considered
disruptive and harmful to timbral content [19, 23, 38]. As
mentioned in the introduction, this is all the more critical
for WFS rendering, if the virtual sources move “rapidly”
(generating variations ∆ ≫ 1, of the order of a few tens of
milliseconds or more), and if the number of loudspeakers is
high.
Similarly, in auralization systems, delay lines are used to
simulate the acoustic channel (i.e. the reflection paths)
between a sound source and a listener; when one or the
other moves, the delays must be continually adjusted.
Depending on the simulated geometric configuration, the
number of simulated delays (acoustic reflection paths) can
be significant; the constraints are therefore similar to the
WFS rendering presented above.

3. CROSSFADE BETWEEN 2 TAP DELAYS (XDL)

3.1 Principle

When the Doppler pitch shift is undesirable, or when ∆ ≫
1, the alternative method of crossfading delay line (XDL)
may be used. This approach consists of using a delay line
with two tap delays (i.e. two read pointers), corresponding
to τ1 and τ2 respectively. To simulate a variation of τ(t)
over time, a crossfade is applied i.e. the amplitude of the
two tap delays is interpolated for a duration δ. For the sake
of simplicity, a linear crossfade is commonly used, but other
types of transition curves can also be implemented.
The XDL technique is rarely discussed in the literature,
probably because it is conceptually very simple, and not re-
lying on any physical foundation. Nevertheless, it is briefly
mentioned in several publications and patents, for instance
concerning the creation of legato effect in the waveguide
synthesis of string instruments [39–42]. It is also mentioned
in [7, Paragraph “Large Delay Changes”] [43].
Despite its low representation in the academic literature,
the XDL approach is very commonly used in computer
music tools. For example, it is implemented under the
name “Double Delay with Interpolation (DDI)” or “sdelay”
(smooth delay) in the Faust libraries [44]. The crossfade
of tap delays is also used (under the name “xdelay”) in
the WFS implementation of Spat [45] and in the mixing
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workstation Panoramix [46]. In the Max environment,
several implementations can be found such as vdb∼ (by
Benjamin Thigpen), ej.vdb∼ (by Emmanuel Jourdan),
or M4L.vdelay∼ (included in Max for Live).

3.2 Implementation

The software implementation of the XDL method is straight-
forward, and does not raise any particular challenges. How-
ever, several remarks can be made — see also [7]. a) A
single delay line is sufficient, with one write pointer and
two read pointers; thus the memory space requirement is
comparable to an FDL. b) During the crossfade period,
the computation cost is doubled. c) The duration δ of the
crossfade should be long enough to achieve smooth results.
However, there is no general rule for choosing δ as a func-
tion of ∆, the quality of the rendering may depend on the
nature of the input signal. d) The XDL approach is compat-
ible with non-integer τ1 and τ2 delays; in this case, the read
pointers will use one of the fractional interpolation tech-
niques presented in Section 2. To guarantee an artifact-free
result, it may then be wise to take into account the length of
the transient response of the interpolator filter: for example,
when using an order N filter, one can “pre-warm” the filter
for N + 1 samples before starting the crossfade operation.
However, if the duration of the fade δ is large compared
to the duration of the transient response of the interpolator
filter, the “pre-warming” step is not essential (the transient
response of the filter is not audible).

3.3 Limitations

Figure 3 shows the impulse response of an XDL, for dif-
ferent values of the interpolation factor α between 0% and
100%. While the system performs a kind of morphing be-
tween the two pure delays τ1 and τ2, it does not achieved
any interpolation, i.e. it does not synthesize any actual
intermediate delay values.

Figure 3. Impulse response of an XDL, for τ1 = 27, τ2 =
32, and for various values of the interpolation factor α
between 0% and 100%. The x-axis and y-axis represent
time (in samples) and amplitude respectively. The vertical
purple dashed lines symbolize τ1 and τ2.

The transfer function of the system is

H (z) = α z−τ1 + (1− α) z−τ2

= α z−τ1
(
z∆ + 1−α

α

z∆

)
.

(4)

In the righthand term we recognize the typical response of
a feedforward comb filter [4, Chapter 5.2]. The frequency
response is shown in Figure 4(a); it exhibits notches for
the pulsations ω = π

∆ , 3π
∆ , 5π

∆ , ... The (linear) amplitude
of these notches is zero when α = 50%. The phase delay
(Figure 4(b)) also exhibits some distortions.
In fact, XDL crossfading is subject to the typical comb
filtering coloration. The perception of this spectral col-
oration may be affected by several factors (input signal, ∆,
δ). Depending on the target applications, the artifacts can be
tolerated (or sometimes inaudible), or they may be deemed
unacceptable.

Figure 4. (a) Frequency response and (b) phase delay of
an XDL for τ1 = 27, τ2 = 32, and for different values
of the interpolation factor α between 0% and 100%. The
frequency response shows periodic notches for angular fre-
quencies ω

π = 1
∆ = 0.2, ωπ = 3

∆ = 0.6, and ω
π = 5

∆ = 1.

4. PROPOSED METHOD: CROSSFADE BETWEEN
(2K + 2) TAP DELAYS

4.1 Principle

In order to overcome the limitations of the two previous
approaches, we propose a new method which is somehow
a compromise between FDL and XDL. We take the XDL
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as a starting point; instead of reading and fading between
two tap delays τ1 and τ2, we propose to add other auxil-
iary tap delays in order to “temper” the excessively strong
comb filtering effect. It is then a matter of choosing the
discrete times τk and the amplitudes of these auxiliary de-
lays over time. For simplicity, we assume that the start and
end delays τ1 and τ2 are integers. It seems obvious that
the auxiliary delays must be symmetric with respect to τ1
and τ2, as there is no reason to favor one or the other. To
limit the computational cost, it is desirable that the auxiliary
delays tk be integer values (but this is not a necessary con-
dition). Finally, for the sake of simplicity, it is preferable
that the delays tk are regularly sampled (it is not proven that
this criterion is necessary). Therefore, we suggest using a
“sampling step” ∆, so that the delay values be {τ1 − k∆}
and {τ2 + k∆}, with k = 0, 1, ...,K. In other words, the
delays tk write
{
tk = τ1 − (K − k)∆ , if 0 ≤ k ≤ K

tk = τ2 + (k −K − 1)∆ , if (K + 1) ≤ k < (2K + 2) .
(5)

This results in (2K + 2) tap delays in total. Note that the
XDL presented in Section 3 is a particular case correspond-
ing to K = 0.
We then need to determine the crossfading law, that is to
say, for each time t, the amplitude associated with each
delay tk. By analogy with the reasoning of Section 2.1,
we ideally seek a solution in the form of a sinc function,
reaching its maximum at t = τ , however with a “width” ∆:

hideal(t) = sinc

(
t− τ

∆

)
. (6)

In the discrete-time domain, we can therefore approximate
the ideal response by truncation:

0 ≤ k < (2K + 2), h[k] = sinc

(
tk − τ

∆

)
. (7)

This principle is illustrated in Figure 5, for K = 4.

Figure 5. Principle of the proposed method: approximation
of the ideal impulse response by truncation. Example with
10 tap delays (i.e. K = 4). The vertical purple dashed lines
symbolize τ1 and τ2. The cyan line symbolizes τ (t), here
for α = 25%. The solid black line depicts sinc

(
t−τ
∆

)
. The

black markers represent h[k] for 0 ≤ k < (2K + 2).

For causality reasons, it is required that τ1−k∆ ≥ 0, which
puts a constraint on K such that K ≤

⌊
τ1
∆

⌋
.

Furthermore, if we note L the allocated length of the delay
line, the constraint τ2 + k∆ ≤ L must be verified, hence
imposing: K ≤

⌊
(L−τ2)

∆

⌋
. This leads to:

K ≤ min

(⌊τ1
∆

⌋
,

⌊
(L− τ2)

∆

⌋)
. (8)

4.2 Results

The impulse response of the proposed system is displayed
in Figure 6 for different values of the interpolation factor
α ranging from 0% to 100%. The behavior is analogous
to Figure 3, however with auxiliary “pulses”, some of which
exhibit a negative amplitude. Note that the amplitude of the
two main delays (for t = τ1 and t = τ2) is different from
the Figure 3.

Figure 6. Impulse response of the proposed method (here
with K = 2), for τ1 = 27, τ2 = 32, and for different values
of the interpolation factor α between 0% and 100%. The
x-axis and y-axis represent time (in samples) and amplitude
respectively. The purple dashed lines symbolize τ1 and τ2.

Figure 7 illustrates the frequency response of the system,
for different values of the interpolation factor α between 0%
and 100%. The phase delay generally behaves like the XDL
(Figure 4(b)). The magnitude spectrum exhibits notches
for the same angular frequencies ω = π

∆ , 3π
∆ , 5π

∆ , ..., but
these notches are significantly narrower than for XDL (Fig-
ure 4(a)). In other words, the undesirable comb filtering
effect is reduced. Apart from these notches, we also observe
slight ripples around 0 dB, which are undesired; however
the range of these ripples remains moderate (less than 2 dB
in this example).

4.3 Influence of the number of tap delays

It is obvious that the number K plays a preponderant role.
By increasing K (within the authorized range Eq. 8), the
spectral effect of comb filtering is reduced. To visualize this
effect, we superimpose in Figure 9 the frequency curves
for different values of K, and in the worst-case scenario
α = 50%. We observe that an increase of K significantly
reduces the width of the notches.
Figure 8 presents similar results, now in the case α = 25%;
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Figure 7. (a) Frequency response and (b) phase delay for
the proposed method for K = 2, τ1 = 27, τ2 = 32, and for
different values of the interpolation factor α between 0%
and 100%.

Figure 8. The curves are for τ1 = 27, τ2 = 32, and
α = 25% (i.e. τ = 28.25 samples). Left column: im-
pulse response for the proposed method. In solid black line,
the function sinc

(
t−τ
∆

)
. The cyan vertical line symbolizes

τ = 28.25. Right column: frequency response. First line:
K = 0; Second line: K = 1; Third line: K = 2; etc.

it also shows the impulse response for K = 0, 1, ..., 5.

Figure 9. Frequency response of the proposed method, for
τ1 = 27, τ2 = 32, α = 50%, and K = 0, 1, 2, ..., 5.

The computational cost of the proposed method is obviously
proportional to the total number of delays (2K + 2). The
choice of K is necessarily a compromise. For WFS appli-
cations, where the number of delay lines may be high (de-
pending on the number of primary and secondary sources),
it is preferable to restrict to K = 1, which already offers an
audible improvement compared to XDL (based on informal
listening).

5. CONCLUSION

In this article we proposed a new method for creating a con-
tinuously variable delay line. When the delay varies over
time, we operate a crossfade between several “auxiliary”
read pointers. The times and gains of these auxiliary tap
delays are chosen so as to minimize the typical comb filter-
ing coloration issue of XDL. The introduction of auxiliary
tap delays, however, has a significant impact on the com-
putational cost. In future work, a more precise evaluation
of the method’s performance remains to be carried out, in
particular in comparison with alternative approaches such
as “samplerate conversion” [18, 19, 24, 47, 48], or Lagrange
interpolator filter implemented in the form of a Farrow struc-
ture [21, 49].
Likewise, it would be necessary to conduct a perceptual
study of residual artifacts.
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