
383

libremidi: a cross-platform library for real-time MIDI 1 and 2

Jean-Michaël Celerier1

1Société des Arts Technologiques, Montréal, QC, Canada

ABSTRACT

MIDI (Musical Instrument Digital Interface) has been a
fundamental backbone for communication between digital
music devices in modern music production. With the recent
release of the MIDI 2 standard, available on Linux and ma-
cOS and soon on Windows, there is a now need for a robust,
efficient, and easy-to-use cross-platform MIDI 2 library.
This paper introduces libremidi, a cross-platform C++ li-
brary stemming from RtMidi and ModernMidi, rewritten
from the ground up for real-time MIDI 2 communication. li-
bremidi provides a simple and consistent API for managing
MIDI ports, including hot-plug support, and handling MIDI
events. It supports multiple platforms, including Linux
(throughALSARawMidi, ALSASequencer, and PipeWire),
Windows, macOS, iOS, FreeBSD, and JACK on all plat-
forms, and abstracts the underlying platform-specific MIDI
APIs into a unified interface while enabling the end-user to
have precise control over the back-ends. Designed for ap-
plications that require real-time MIDI communication, such
as music production software, digital audio workstations,
and interactive installations, libremidi’s efficient and low-
level API allows developers to build responsive and high-
performance applications that can handle multiple MIDI
inputs and outputs simultaneously. Work has also been done
to approximate real-time guarantees by avoiding memory
allocations altogether during input and output. This paper
will provide an overview of libremidi’s architecture, API,
features and improvements over the current cross-platform
MIDI state of the art.

1. INTRODUCTION

Communication between Digital Music Instruments (DMIs)
and synthesizers, audio workstations, and more generally
any kind of music-oriented tool, has been a long-standing
field of work in the sound and music computing community:
our tools require protocols for communication and inter-
operation. Published in 1983, the initial MIDI specification
has been a game changer for the music and media indus-
try, with it quickly becoming the standard data exchange
protocol between DMIs[4]. While originally targeting syn-
thesizers, computers have quickly incorporated real-time
MIDI input-output features: in 1985, the Atari ST computer
provided built-in MIDI ports. It sold to 2.1 million units.

Copyright: © 2024. This is an open-access article distributed under the terms

of the Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Every non-trivial computing platform since then has incor-
porated MIDI: in particular, all the major desktop operating
systems and software platform have some form of MIDI im-
plementation. This has led to the creation of multiple cross-
platform abstractions for MIDI, to enable music software
authors to write software that would be able to input and out-
put MIDI no matter the operating system. Among those, the
C and C++ libraries JUCE [6], PortMidi [1] and RtMidi [7]
are widely used in the media arts field and serve as base
layer of many cross-platform applications and libraries in
higher-level languages such as Python, LISP, SuperCollider,
etc. or within frameworks such as OpenFrameworks.
As part of the ossia [2] project, a MIDI library was
necessary. Originally based on RtMidi, this library
has evolved over time in many ways: first by inte-
grating ModernMidi (github.com/ddiakopoulos/
modern-midi) a MIDI file reading and writing library
and sharing most of the common code between those, for
instance the in-memory representation of MIDI messages,
and then refactoring and improving the library for the needs
of ossia, along with updating it to contemporary practices in
the C++ community and leveraging modern C++ standards
where they allows tangible improvements. In particular,
many safety improvements were implemented to the API,
more back-ends, more configurability option, and more re-
cently, MIDI 2 support.
This paper gives an overview of the current state of li-
bremidi, including the ways it improves upon the current
open-source cross-platform C++ libraries for MIDI com-
munication and solves common requirements in MIDI-
compatible software, usually bereft of features such as
hot-plugging support. The library documentation is avail-
able at the following link: celtera.github.io/
libremidi/foreword.html. The aim is to enable
software authors to trivially capture the benefits of the mod-
ern MIDI standards, and improve the stability and reliability
of their MIDI-based software.

2. CORE IMPROVEMENTS

2.1 MIDI 2 support

The library has been overhauled to support the new MIDI 2
standard by directly communicating with the relevant op-
erating system APIs and giving to the end-user access to
UMP (Universal MIDI Packets) for sending and receiving
messages. Note that operating system support is barely ma-
turing: MIDI 2 is supported by macOS since macOS 11
(November 2020), Linux since kernel 6.5 (September 2023),
and still not officially supported by Windows but an experi-
mental driver is available (github.com/microsoft/

384

MIDI) and will be distributed with Windows 11 when fin-
ished. The MIDI 2 support provided by libremidi only
currently covers real-time I/O and not Standard MIDI Files
2 reading and writing.

2.2 New back-ends

A major improvement to the library is the variety of system
back-ends supported. Table 1 shows the supported back-
ends per-platform. As far as we know, libremidi is the only
cross-platform MIDI library to support back-ends such as
PipeWire andWindowsMIDI Services. The only remaining
major back-end to support is Android MIDI. In particular,
the PipeWire back-end enables direct support for BLEMIDI
on Linux.

Platform Available backends

Linux, BSD

ALSA RawMidi
ALSA RawMidi UMP
ALSA Sequencer
ALSA Sequencer UMP
JACK
PipeWire

macOS
CoreMIDI
CoreMIDI UMP
JACK

iOS
CoreMIDI
CoreMIDI UMP

Windows

WinMM
WinUWP
Windows MIDI Services
JACK

Web WebMIDI through Emscripten

Table 1. Backends available in libremidi. The MIDI 2
backends are indicated by bold text, the other backends are
MIDI 1. All backends support input, output and hot-plug.

2.3 Hot-plug support

A major improvement compared to PortMidi and RtMidi
is support for hot-plug detection: an observer API allows
the user to plug-in callback functions that will be called
whenever a MIDI device is connected or disconnected from
the computer. It allows to filter hardware and / or software
devices, for APIs that provide access to cross-process com-
munication such as JACK and PipeWire. For back-ends
which do not have any hot-plugging mechanism built-in,
detection is simulated with a background thread updating
the list of connected MIDI devices regularly.

3. API IMPROVEMENTS

3.1 Improved reliability

Focus has been done on improving the reliability of the
original RtMidi implementation, which ended up overtime

into almost an entire rewrite due to fundamental reliability
issues with the API, due to reliability issues with some back-
ends, in particular the Windows Multimedia one.
Among other improvements:

• The entire library goes through testing with the thread,
address and undefined behaviour sanitizers [8, 9].

• Callback functions are passed to the constructor to
make sure that they are set before theMIDI port can be
opened and streaming can start, which was an unsafe
possibility and cause of data races in the original
library. This also means that the callbacks will by
design never miss any message as they will be set
before it is possible for a MIDI port to be opened.

• Replace the handling of ports through a numerical in-
dex, by a handle object that contains all the necessary
information to recover the actual port. This is in par-
ticular important in case of unplugging / re-plugging
a MIDI device: in the previous design the index of
the port could change after the user listed the ports
and selected one. Now, the back-ends will leverage
more information to try to recover which device to
connect to, such as its name, or any extended unique
identifier provided by the host API. The reliability of
the library in case of for instance semi-faulty USB
cable or socket is thus greatly improved.

3.2 Leveraging modern C++ for fun and profit

Some standard C++ types are used to harmonize the library
with current C++ ecosystem norms:

• Callbacks are passed through std::function instead
of separate (data pointer, function pointer) pairs. This
allows for instance to simply use C++ lambda func-
tions or function objects for MIDI callbacks.

• Instead of std::vector being used as data type for
sending messages, std::span is used. This required
setting the minimum C++ standard version to C++20,
which is available on every contemporary system in
2024: continuous integration continually tests on De-
bian Bullseye, Bookworm, Trixie, macOS, Windows
with the three mainstream C++ compilers: clang,
GCC and MSVC. This allows the library to be agnos-
tic to the data type used by its user for sendingMIDI 1
messages: std::vector, std::array, raw C arrays,
boost::container::small_vector, etc. – the only
requirement is for the type to model a contiguous se-
quence of bytes. This removes the need for memory
allocations if the end-user was using a different type
than std::vector for internal MIDI byte storage.

• Back-ends use std::semaphore for cross-platform
semaphore support. That is especially important for
the JACK backend, now supported on macOS and
Windows in addition to Linux with a single imple-
mentation.

385

4. CONTROL TO THE USER

A driving force in the libremidi design is to give as much
control to the user as possible while still maintaining a cross-
platform API for input and output management. This has
been done at multiple levels in our proposed evolution of
the library.

4.1 Custom configuration mechanism

A configuration mechanism for construction of MIDI input,
output and observer objects was introduced. The configura-
tion contains both a generic part common to all back-ends
and an API-specific part.
Listing 1 showcases an example: how the end-user can
create a CoreMIDI client with specific settings. This solves
long-standing issues with multiple MIDIClient opening and
closing in the same process 1 .

Listing 1. Creating a MIDI device with a CoreMIDI-
specific configuration, allowing to plug-in a global
CoreMIDI MIDIClientRef object:

using namespace libremidi;

// Generic configuration
input_configuration in_config;
in_config.on_message = [] (auto msg) {
// Process the message

};

// Specific configuration
coremidi_input_configuration in_api_config;
in_api_config.client_name = "My client";
in_api_config.context = getMyAppMIDIClientRef();

midi_in in{in_config, in_api_config};
in.open_virtual_port();

4.2 Removal of the implicit queue

The original RtMidi implementation allowed retrieving
MIDI input messages from within the main thread, by im-
plementing a queue (whose implementation is currently not
thread-safe due to concurrent access to non-atomic vari-
ables). This feature was removed in libremidi for two rea-
sons: first, the research field of thread-safe lock-free ring-
buffers and queues is in constant evolution, with new solu-
tions appearing in the recent years pushing the boundaries of
efficiency [3, 5]. Second, we argue most professional audio
and MIDI applications already carry preexisting implemen-
tations of a lock-free queue or ring-buffer, which can be
trivially fed in the callback provided by the user. Removing
this simplified the code logic in all back-ends. Sample code
files showcasing the integration with both a custommessage
queue and a C++20 coroutine-based system are provided
with the library.

4.3 Logging

Logging in PortMidi is done through printf calls, and in Rt-
Midi through std::cout and std::cerr calls. This makes
precise control of the logging in host applications impossi-
ble as one would not be able to redirect such calls done in the

1 https://github.com/thestk/rtmidi/issues/155

Figure 1. A patchbay with virtual MIDI input ports opened
by RtMidi (left) and PortMidi (right)

threaded loop of the library with full reliability. libremidi
allows the end-user to provide explicit logging callbacks
passed to the object constructors so that error messages can
be redirected wherever fit.

4.4 Context sharing

To give context on the existing state of the art, RtMidi did
not allow any sharing: eachMIDI object would create a new
client with a single port. Conversely, PortMidi would create
all the ports in a single client. This can be seen in Fig. 1,
which shows the state of the MIDI graph on a Linux system
when creating five virtual ports in both these libraries. For
improved flexibility, libremidi’s design allows the user to
pass an existing API-specific client object to enable creating
ports in a preexisting, possibly shared, context: a single or
multiple ALSA, JACK client, PipeWire filter, etc. Thus,
the end-user gets maximum control over the context of their
MIDI ports.

4.5 Poll and thread-loop management

Every API handles input and output differently. They can
be split in three major categories for input: poll-driven,
message-callback-driven and synchronous-callback-driven.
Poll-driven (ALSA) means that the API provides a file de-
scriptor to be polled with the UNIX poll API. Readiness
of the file descriptor will indicate that new messages can be
read. Message-callback-driven (Windows APIs, CoreMIDI)
means that an operating-system-managed thread will call
a user-provided callback on every new incoming MIDI
message. Synchronous-callback-driven (JACK, PipeWire)
means that the API calls a user-provided callback at regular
interval, generally driven by the audio rate / audio buffer
size.
For message-callback-driven APIs, there is no meaning-
ful control possible: the OS handles the threading associ-
ated with the library internally. For other APIs, it may be
beneficial to share the threading and polling loop across
instances, or even with other operations that MIDI I/O. For

386

instance, a simple visualization app that does not want to
bother with the risks of multi-threading may want to run the
ALSA sequencer polling in an existing poll-driven applica-
tion main-loop to have everything happen in a single thread.
Another important capability missing from PortMidi and
RtMidi is the ability to combine audio and MIDI processing
in a single callback operation for instance for DAWs using
APIs that support both audio and MIDI ports from the same
client, such as JACK and PipeWire, and for which we want
to make sure that the flow of operation on each audio sched-
uler tick is: Read MIDI input → Process audio→ Write

MIDI output.
libremidi’s design allows for the relevant back-end to plug
callback functions that when present will make the imple-
mentation refrain from creating its own thread or start its
own processing through JACK / PipeWire: instead, the user
will be provided with functions that they can themselves
add in their audio callback processing loop, to guarantee or-
derly, frame-accurate synchronous operation. Examples are
provided for each back-end where this feature is relevant.

4.6 Error handling

Error handling in RtMidi was done through exceptions.
While in line with the C++ RAII-based object model,
this can prove challenging in the audio field where it is
common to require software to be compiled without ex-
ception support. Error handling across the library was
thus redeveloped by leveraging the latest C++ develop-
ments on error-code-based error handling: std::error

as proposed by Herb Sutter in [10]. We use for this an
open-source prototype implementation (github.com/
charles-salvia/std_error) that should be close
to the final version expected for C++26. In particular,
this implementation enables the user to react both to a
given platform-specific error, for instance by retrieving
an OSStatus on macOS or MMERR on Windows, viewing
it as a more generic cross-platform std::errc POSIX error
code through an equivalence class system, and getting a text
string, all the while not requiring any memory allocation
and being fully supported in header-only libraries and across
DLLs, unlike the C++11 solution (std::error_code).

4.7 Advanced time-stamping

The library provides an extensive array of time-stamping
options: the user can choose at run-time between:

• No time-stamping.

• Relative timestamps between successive messages.
The original RtMidi behaviour.

• Absolute timestamp as provided by the OS API. A
utility function has been added to enable the end-user
to query the API for its current time – very often, this
is the system’s monotonic clock.

• Absolute timestamp as provided by the OS-provided
monotonic clock. This allows to very easily have
coherent time-stamping across all the parts of a me-
dia application but may lose precision compared to

the API timestamp which may be able to leverage
hardware MIDI time-stamping.

• Audio frame timestamp. This will for the JACK and
PipeWire cases use the offset in samples as timestamp,
to enable sample-accurate operationwithout requiring
calculations from the end user.

• Finally, the user can provide a custom time-stamping
callback, to leverage for instance an external clock
source.

In addition, the timestamp format has been changed from
double-precision to 64-bit integer with nanosecond preci-
sion to avoid subtle precision issues (except in the audio
frame case where the unit of time is then the audio frame
index).

4.8 Compilation options

The library has been changed so that it could optionally be
used header-only: that is, one can compile a MIDI example
with a simple invocation:
$ g++ \
examples/midi2_echo.cpp \
-Iinclude \
-DLIBREMIDI_HEADER_ONLY=1 \
-DLIBREMIDI_ALSA=1 \
-std=c++20

The library also enables using different types than a heap-
based dynamic vector, std::vector, for storing of MIDI
1 messages: for instance, it is possible to leverage boost
::small_vector or even boost::static_vector to reduce
heap allocations further, by toggling CMake flags. These
data types implement respectively small-vector optimiza-
tion (up to 20 bytes can be stored in the object without
requiring memory allocation) or use of fixed storage to pre-
vent dynamic memory allocations altogether. Note that for
MIDI 2 support, no dynamic allocation is used in any case.

4.9 Dynamic loading of dependencies

Unlike most libraries, libremidi loads all its dependencies
on Linux through dlopen / dlsym. This allows to provide
a build of the library that supports all back-ends (JACK,
PipeWire, ALSA) but will still work if the user’s system
does not provide the required library, unlike traditional dy-
namic linking which would fail on startup if the end-user’s
machine does not have all the necessary libraries. This is
especially necessary for JACK and PipeWire which not ev-
eryone may be running: we want the library to be usable in
the context of AppImages which can run on a wide variety
of Linux distributions.

5. FROMMIDI 1 TO MIDI 2

Themajor advance in the library is support for the newMIDI
2 standard. We base ourselves on the June 2023 MIDI 2
standard documents 2 . This section gives an overview of
the MIDI 2 standard, and details how it is implemented in
libremidi.

2 https://midi.org/details-about-midi-2-0-midi-
ci-profiles-and-property-exchange-updated-june-
2023

387

5.1 A MIDI 2 primer

MIDI 2 is a major advance in the MIDI protocol. It is cur-
rently still evolving, with the latest changes to the standard
documents being dated from June 2023.
Multiple specifications define what MIDI 2 exactly is:

MIDI 2.0 builds on the core principles, architec-
ture, and semantics of MIDI 1.0. Primary fea-
tures are auto-configuration, enabled by bidi-
rectional connections enabling devices to dis-
cover details about other connected devices,
and an expanded data format for higher reso-
lution with extensibility to define many new
messages in the future.

The core elements of MIDI 2 are: MIDI Capability Inquiry
(MIDI-CI) discovery and the UMP message format. To be
a compliant MIDI 2 device, one has to implement at least
one of these two. In particular, MIDI-CI works over a MIDI
1 transport through SysEx messages and does not require
UMP support.

5.2 Core differences with MIDI 1

For artists, the most immediate benefits will be, in short,
“more data”: pitch bend, control change and polyphonic
aftertouch now carry 32 bits of information instead of MIDI
1’s 7 bits ; note messages 16 bits of velocity and 6 bits
of custom attribute data ; instead of only 16 channels, a
MIDI 2 link can carry 16 groups of 16 channels each ; new
controllers are introduced ; SysEx messages can now use
8-bit bytes instead of 7-bit in MIDI 1. For implementers,
the low-level protocol is much more complex with multiple
round-trips to define the capabilities of MIDI 2 devices,
which are supposed to be retro-compatible with MIDI 1.
For library users such as the target audience of this paper,
many design choices in MIDI 2 also greatly simplify usage
of MIDI 2: we recommend that over time every desktop
computer user migrates to MIDI 2 as an end-user API. In
particular, the three major desktop operating systems, Linux,
macOS, and Windows, provide automatic translation of
MIDI 1 devices to the MIDI 2 API.
In particular, MIDI 2 messages are now in a new, fixed-
size format, unlike MIDI 1 messages which could be of
arbitrary-length due to the SysEx format. The Universal
Midi Packet (UMP) can be 32, 64, 96 or 128 bits, generally
organized as four unsigned 32-bit values. This obviates
the need for dynamic memory allocation which was often
necessary with SysEx support in MIDI 1 APIs, and is a
better fit to the current CPUs, with generally 64-bit registers
and 64-byte L1 cache lines.
Another feature, necessary in the MIDI 1 times and made
irrelevant with current hardware performance, is the running
status which is not part of MIDI 2 anymore: every message
now carries the entire information needed to interpret it.
Finally, this UMP message format carries more space for
future extensions to the protocol: many are already in the
works by the MIDI association.
Besides the improved resolution, MIDI 2 also provides a
complete protocol for bidirectional information exchange

between devices, MIDI-CI. This allows two MIDI-CI-
compatible devices to interoperate more closely: a syn-
thesizer can now for instance report its controls to a MIDI
controller. MIDI-CI communication follows rules estab-
lished in the MIDI standard documents.

6. RESULTS AND DISCUSSION

The library has already seen usage in themedia ecosystem: it
has been validated by years of use in the ossia score software
sequencer and has also been integrated in multiple open-
source projects, for instance OBS Studio’s MIDI plugin.

6.1 Porting to libremidi

Multiple examples are provided by the library, showing
different degrees of integration. As a starting point, List-
ing 2 shows how one may implement a basic MIDI 2 echo
between the first two detected devices.

Listing 2. Minimal MIDI 2 echo example
#include <libremidi/libremidi.hpp>
#include <iostream>

int main() try {
using namespace libremidi;
namespace lm2 = libremidi::midi2;

/// The observer object enumerates available
/// inputs and outputs:
observer obs{{}
, lm2::observer_default_configuration()};

auto pi = obs.get_input_ports();
auto po = obs.get_output_ports();
if (pi.empty() || po.empty())
throw std::runtime_error("No MIDI in / out

available");

/// Create a MIDI 2 out object:
midi_out midiout{{}
, lm2::out_default_configuration()};

// Open the midi output object with a given
// handle obtained from the observer
if (auto err = midiout.open_port(po[0]);

err != stdx::error{}) {
// error-handling decisions are deferred
// to the user of the library.
// Here for simplicity we throw.
err.throw_exception();

}

/// Create a MIDI 2 input object:
// An UMP-friendly callback
auto on_ump =
[&](const libremidi::ump& message) {
// Note: one may want to lock the
// midiout object with a mutex if
// it was to be used at the same time
if (midiout.is_port_connected())
midiout.send_ump(message);

};
midi_in midiin{{.on_message = on_ump}
, lm2::in_default_configuration()};

// pi[0] and po[0] are distinct types:
// one cannot mistakenly open an input
// with an output handle
if (auto err = midiin.open_port(pi[0]);

err != stdx::error{})
err.throw_exception();

// Wait until we exit
char input; std::cin.get(input);

}
catch (const std::exception& error) {

std::cerr << error.what() << std::endl;
return EXIT_FAILURE;

}

388

6.2 Performance results

Summary performance benchmarking of a MIDI echo im-
plementation between libremidi and RtMidi has been done.
A core point though is that RtMidi does not allow accurate
benchmarking: the RtMIDI output does not inform the user
of an error if a message could not be written (for instance
if the operating system’s internal MIDI buffer is full, its
sendMessage function can fail silently, e.g. in the JACK
back-end). In contrast, libremidi allows to take action and
count the number of actually successfully transmitted mes-
sages. With this taken into account, our sample benchmark
run (sending 1 000 000 messages as fast as possible in a
round-trip fashion on Linux with the ALSA Sequencer back-
end on a Core i7-10750H CPU, five runs, -Ofast -flto)
gives an average of 720ms (best: 700.3) with libremidi,
and 816 (best: 787.9) with RtMidi. That said, most of the
MIDI performance comes from the underlying back-end
implementation and both libraries have very little overhead:
88.5 percent of the execution time of our send_message
implementation is spent inside the ALSA API.

6.3 MIDI-CI support ?

In short, from our prolonged study of the MIDI 2 standard
and implementation experience since the first MIDI 2 docu-
ment release in 2020, our conclusion is that a library such as
libremidi does not operate at the abstraction level at which
MIDI-CI is useful, which is specific to each application.
On the other hand, providing UMP support is the right fit:
libraries defining a specific MIDI 2 state machine can then
just use libremidi for the cross-platform input-output aspect
and feed MIDI-CI messages to an appropriate MIDI 2 data
processing library. Multiple libraries implement C and C++
API support for high-level MIDI 2 messages, such as cre-
ating UMP packets matching a specific step of a MIDI-CI
communication from simple function calls. For the sake
of ease-of-use, libremidi has been made compatible with
the two major implementations: ni-midi2 3 developed by
Native Instruments and cmidi2 4 developed by Atsushi
Eno. In particular, one can directly send ni-midi2 data
types to libremidi outputs, and the libremidi message type
can be converted to the ni-midi2 UMP data type automat-
ically. Examples in the codebase show how to initiate a
basic MIDI-CI communication by combining libremidi and
ni-midi2, only tested so far with the MIDI 2 Workbench
software provided by the MIDI association due to the lack
of MIDI 2 hardware available.

6.4 UMP, a friendly format

Every desktop platform provide automatic MIDI 1 support
with their UMP APIs: that is, one can just use the MIDI
2 UMP APIs, forget about MIDI 1 entirely and get access
to the entirety of the MIDI 1 and MIDI 2 devices, at the
cost of restricting the applications to recent operating sys-
tem versions (macOS 11+, Linux 6.5+, and yet unreleased
Windows versions). Due to the major advantages of the
UMP format, we heartily recommend a complete migration

3 github.com/midi2-dev/ni-midi2
4 github.com/atsushieno/cmidi2

of MIDI support in media applications to the UMP format.
The only drawback is that some back-ends do not provide
MIDI 2 support yet: JACK, PipeWire, WebMIDI. Both
cmidi2 and ni-midi2 provide efficient implementations of
the conversion from MIDI 1 messages to MIDI 2 UMPs.
libremidi leverages this for the MIDI output: all the back-
ends supported by the library can receive UMPs including
the MIDI 1 ones. Conversion of MIDI 1 input to UMP is a
work-in-progress.

7. CONCLUSIONS

We introduce libremidi, a modern C++ take on the peren-
nial problem of cross-platform MIDI I/O library. Based on
preexisting code, it evolved to enable support of the more
recent MIDI 2 standard, and provides improved safety and
reliability over existing C & C++ MIDI libraries. Future
directions will mainly be about providing more back-ends,
for instance for Android and BSDs, and ensuring stability
of the library now that the necessary features are there.

8. REFERENCES

[1] R Bencina, P Burk, and R Dannenberg. portmidi-
Platform Independent Library for MIDI. 2007. URL:
https : / / github . com / PortMidi /
portmidi.

[2] Jean-Michaël Celerier et al. “OSSIA: Towards a
Unified Interface for Scoring Time and Interaction”.
In: Proceedings of the International Conference on
Technologies for Music Notation and Representation

(TENOR). Paris, France, 2015.
[3] Reginald Austin Frank. “Designing a High Through-

put Bounded Multi-Producer, Multi-Consumer
Queue”. PhD thesis. 2021.

[4] Gareth Loy. “Musicians make a standard: The MIDI
phenomenon”. In: Computer Music Journal 9.4
(1985), pp. 8–26.

[5] Gal Milman-Sela et al. “BQ: a lock-free queue with
batching”. In: ACM Transactions on Parallel Com-
puting 9.1 (2022), pp. 1–49.

[6] Martin Robinson. Getting started with JUCE.
Packt Publishing Ltd, 2013. DOI: 10 . 4324 /
9780429455971-4.

[7] Gary P. Scavone and Perry R. Cook. “RtMidi, RtAu-
dio, and a synthesis toolkit (STK) update”. In: Syn-
thesis (2004).

[8] Konstantin Serebryany and Timur Iskhodzhanov.
“ThreadSanitizer: data race detection in practice”. In:
Proceedings of the workshop on binary instrumenta-

tion and applications. 2009, pp. 62–71.
[9] Konstantin Serebryany et al. “AddressSanitizer: A

fast address sanity checker”. In: 2012 USENIX an-
nual technical conference (USENIX ATC 12). 2012,
pp. 309–318.

[10] Herb Sutter. “Zero-overhead deterministic excep-
tions: Throwing values”. In: C++ open-std proposal
P0709 2 (2019), p. 10.

