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Introduction

The purpose of this book is to give a wide account of state-of-the-art research
in the sound domain, with a proper combination of human sciences, computa-
tional sciences, and technological realizations. This was one of the objectives
of the European Coordination Action “Sound to Sense, Sense to Sound” (S2S?
) I altogether with the definition and the publication of a roadmap?, aiming
at providing a reference point for future research in Sound and Music Com-
puting. The overall goal of the Action was to contribute to the formation of a
solid and organic community focused on tying together the investigation on
the sonic aspects of the world with the study of the sense conveyed through
sound. As suggested by the title of the Action, the perspective is two-folded:
from sound to sense, and from sense to sound. What we expect from the fu-
ture is the emergence of methodologies for a higher-level sound analysis and
processing, or for more engaging sound synthesis and control in musical and
non-musical contexts. Eventually, only an integrated yet open sound-music
research field may fill the existing gap between sound and sense and try to
answer to the urgent requirements, coming from the world of pervasive and
mobile technologies. Nowadays, a wide variety of techniques is available to

'The S25* FET-open Coordination Action IST-2004-03773 was supported by the Euro-
pean Commission during a period of three years, from June 2004 until May 2007 (http:
//www . soundandmusiccomputing.org) involving partners from eleven research institu-
tions through Europe, with the goal of forming a new and strongly multidisciplinary commu-
nity around the main themes of sound and music computing research.

http://www.soundandmusiccomputing.org/roadmap
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generate and analyze sounds. However many are the fundamental yet unan-

swered questions emerging from the use of sound in these new scenarios:

e How to analyze sound to extract information that is genuinely meaning-
ful?

e How to investigate learning processes concerning sound listening and
perception in a pedagogical perspective and in order to enhance the use
of sound for communication purposes?

e How to model and communicate sound embedded in multimodal con-

tents and in multisensory experiences?

e How to synthesize sound by means of direct “manipulation” or other
forms of intuitive control?

e How to synthesize sounds that are perceptually adequate for some spe-
cific purposes?

e How to design sound for context-aware environments and interactive
applications?

A crucial and general issue emerging from the current state of affairs is
that sound and sense are two separate domains and there is lack of methods
to bridge them with two-way paths. So far, a number of fast-moving sciences
ranging from signal processing to experimental psychology, from acoustics to
cognitive musicology, have tapped the sound and music computing arena here
and there. What we are still missing is an integrated multidisciplinary and
multidirectional approach. Only by coordinating the actions of the most active
contributors in different subfields, as we tried to do while preparing this book,
we can hope to elicit fresh ideas and new, more general and robust paradigms.
The potential impact on society is terrific, as there is already a number of
mass application technologies that are stagnating because of the existing gap
between sound and sense. Just to name a few: sound/music information
retrieval and data mining, virtual and augmented environments, expressive

multimodal communication, intelligent navigation, and many others.
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The book covers a wide range of disciplines involved in sound and
music computing, from musicology to pedagogy, from psychology of percep-
tion and action to artificial intelligence, from signal processing to ecological
acoustics and interaction design. Most of the members of the S25% Action ac-
tively contributed to the book in their respective fields of expertise providing
the widest possible perspective on the state-of-the-art in Sound and Music
Computing research. We acknowledge their commitment during all phases of
selection of materials, preparation, writing and revising. The person who de-
serves the loudest “thank you!” is Nicola Bernardini, S25* Action coordinator
and tireless source of inspiration, help, and enthusiasm.

Organization of the book

Chapter [I] - “Sound, Sense and Music Mediation” — provides an histori-
cal/philosophical overview of the relationships between sound and sense.
Chapter 2] - “Learning Music” — deals with auditory cognition investigated
through learning processes. Chapter 3l “Content Processing of Music Audio
Signals” — illustrates the state of the art in automatic low level description of
musical-audio signals. Chapter @ - “From Sound to Sense via Feature Extrac-
tion and Machine Learning” — outlines the subject of high level descriptors for
characterizing music. Chapter 5 “Sense in Expressive Music Performance” —
provides an overview on computational approaches to performance analysis.
Chapter [d — “Controlling Sound with Senses” — presents recent research on
multimodal-gesture analysis for sound control in music performance. Chap-
ter [/] - “Real-Time Control of Music Performance” — depicts methodologies
for performance modeling. Chapter [§] - “Physics-Based Sound Synthesis” —
provides the state-of-the-art of sound synthesis by physical models. Chapter
— “Interactive Sound” — discusses the ecological approach to sound synthesis.
Finally, Chapter [10] - “Sound Design and Auditory Displays” — introduces
emerging disciplines, such as auditory display and sound design, in the per-
spective of sound as a carrier of information. An appendix concludes the book,
presenting some recent applications concerning sound control, performance
tools and interaction design: a virtual DJ scratching system, a virtual guitar, a
tabletop interface and an interactive book.






Chapter 1

Sound, Sense and Music Mediation:

a Historical-Philosophical
Perspective

Marc Leman', Frederik Styns' and Nicola Bernardini?

'IPEM, Department of Musicology, University of Ghent
*Conservatory of Padua

About this chapter

In this chapter it is shown that the modern scientific approach to sound and
music computing has historical roots in research traditions that aimed at un-
derstanding the relationship between sound and sense, physics and mean-
ing. This chapter gives a historical-philosophical overview of the different
approaches that led to the current computational and empirical approaches to
music cognition. It is shown that music cognition research has evolved from
Cartesian dualism with a rather strict separation between sound and sense,
to an approach in which sense is seen as embodied and strongly connected
to sound. Along this development, music research has always been a driver
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for new developments that aim at bridging the gap between sound and sense.
This culminates in recent studies on gesture and artistic applications of music
mediation technologies.

1.1 Introduction

In all human musical activities, musical sound and sense are tightly related
with each other. Sound appeals to the physical environment and its moving
objects, whereas sense is about private feelings and the meanings it generates.
Sound can be described in an objective way, using instruments and machines.
In contrast, sense is a subjective experience which may require a personal
interpretation in order to explicit this experience. How are the two related
with each other? And what is the aim of understanding their relationship?
Ideas for this chapter heavily draw upon “Embodied music cognition and
mediation technology” (Leman), 2007).

1.2 From music philosophy to music science

Ancient Greek philosophers such as Pythagoras, Aristoxenos, Plato and Aris-
totle had quite different opinions about the relationship between sound and
sense. Pythagoras mainly addressed the physical aspects by considering a
mathematical order underlying harmonic pitch relationships. In contrast, Aris-
toxenos addressed perception and musical experience (Barker, [1984). Plato
comes into the picture mainly because he attributed strong powers to music,
thus, a strong effect from sound to sense. However, for him, it was a reason to
abandon certain types of music because of the weakening effect music could
have on the virtue of young people. Aristotle understood the relationship be-
tween sound and sense in terms of a mimesis theory (e.g. Politics, Part V). In
this theory, he stated that rhythms and melodies contain similarities with the
true nature of qualities in human character, such as anger, gentleness, courage,
temperance and the contrary qualities. By imitating the qualities that these



1.2. From music philosophy to music science 17

characters exhibit in music, our souls? are moved in a similar way, so that
we become in tune with the affects we experience when confronted with the
original. For example, when we hear imitations of men in action in music,
then our feelings tend to move in sympathy with the original. When listening
to music, our soul thus undergoes changes in tune with the affective character
being imitated.

Understood in modern terms, Aristotle thus observed a close connection
between sound and sense in that the soul would tend to move along or res-
onate with sound features in music that mimic dynamic processes (gestures,
expressions) in humans. Anyhow, with these views on acoustics (Pythago-
ras’ approach to music as ratios of numbers), musical experience (Aristoxenos’
approach to music as perceived structure), and musical expressiveness (Aristo-
tle’s approach to music as imitation of reality), there was sufficient material for
a few centuries of philosophical discussion about sound to sense relationships.

All this started again from scratch in the 17th century with the intro-
duction of the so-called Cartesian dualism, which states that sound and sense
are two entirely different things. In his Musicae Compendium (1618), the young
Descartes gave a good summary of the state-of-the-art concerning the musi-
cal sound to sense relationship. Basically, he divided music into three basic
components, namely, (i) the mathematical-physical aspect (Pythagoras), (ii)
the sensory perception (Aristoxenos), and (iii) the ultimate effect of music per-
ception on the individual listener’s soul (or mind) (Aristotle). To Descartes, it
is sound, and to some degree also sensory perception, that can be the subject
of a scientific study. The reason is that sound, as well as the human ear, deal
with physical objects. In his Méditations Métaphysiques (1641), he explains that
since objects have extension and can be put into motion, we can apply our
mathematical methods to them. In contrast, the effect of perception and the
meaning that ensues from it resides in the soul. There it can be a subject of
introspection. In that respect, sense is less suitable to scientific study because
sense has no extension. Like thinking, it is a property of each person’s soul or
ego. Yet there is a subtle difference between sense and thinking. Because it is

'The concept of soul is an old philosophical concept while modern philosophers tend to
relate to the more modern concepts of “self”, “ego”, or even “mind” (Metzinger| [2003).
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based on our senses, sense is prone to errors and therefore not very suitable for
building up reliable knowledge. Pure thinking (devoid from external input)
is less vulnerable to errors because it leads to clear and distinct ideas. One
of the most clear and distinct ideas, according to Descartes, is that “I” (or my
ego) exist. Indeed, when “I” put everything into doubt, even the existence of
the world (e.g. it could be a dream), the only thing that remains is the “I” that
doubts or dreams, which proves the existence of the ego or soul. Therefore,
in Descartes’ opinion, the soul and the human body are two entirely different
things. The soul can think and does not need extension, whereas the body can-
not think and needs extension. Knowledge of the soul requires introspection,
whereas knowledge of the body requires scientific methods and descriptions
that focus on moving objects. According to Descartes, the link between “I”
and the world is due to an organ in the brain that connects the parallel worlds
of the subjective mind and the objective body.

In the Méditations Métaphysiques, this link is called the sensus communis, or
the Gemeinsinn, that is, the part of the psyche responsible for binding the inputs
of the individual sense organs into a coherent and intelligible representation.
In more recent times, this concept will reappear as “body image” and “body
schema”. So far, Descartes” approach thus clearly distinguished sound and
sense. His focus on moving objects opened the way for scientific investigations
in acoustics and psychoacoustics, and it pushed matters related to sense and
meaning a bit further away towards a disembodied mental phenomenon.

Like Descartes, many scientists working on music (Cohen), 1984) often
stressed the mathematical and physical aspects, whereas the link with musical
meaning was more a practical consequence. For example, the calculation of
pitch tunings for clavichord instruments was often (and sometimes still is)
considered to be a purely mathematical problem, yet it had consequences for
the development of the harmonic and tonal system and the way it touches our
sense of tone relationships and, ultimately, our mood and emotional involve-
ment with music. Structural aspects of music perception, such as pitch scales
and consonance, were clearly at the borderline of mathematical and physical
studies. Pitch scales could be related to logic and reasoning (which, according
to Descartes, belongs to the capacity of the soul), while consonance could be
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based on resonance and movement of objects, which belongs to physics. In
that respect, emotions and expressive gestures were not considered to be a
genuine topic of scientific study. Emotions and expressive gestures were too
much influenced by sound, and therefore, since they were not based on pure
thinking, they were prone to error and not reliable as a basis for scientific study
and knowledge. Thus, while Plato and Aristotle saw a connection between
sound and sense through mimesis, Descartes claimed that sound and sense
had a different ontology.

Parallel with this approach, the traditions of Aristoxenos and Aristotle
also culminated in rule-based accounts of musical practices such as Zarlino’s,
and later Rameau’s and Mattheson’s. In Der Volkommene Kapelmeister (1739),
for example, Mattheson offers a manual of how to compose music in a convinc-
ing way that is expressive of certain affects. This work of Mattheson focuses on
the way people deal with music and on the way they experience the musical
sounds as something that tangles their most intimate feelings. These com-
positional formulae can be seen as handbooks for creating music that makes
sense. Obviously, these approaches were based on musical intuition, har-
monious combinations of notes, and musical intentions, in short on aspects
that colour musical experience and meaning formation. However, they also
contained pointers to acoustics. Somehow, there was the feeling that aspects
of perception which closely adhere to the perception of syntax and structure
had a foundation in acoustics. Yet not all aspects could be explained by it.
The real experience of its existence, the associated feeling, mood and pleasure
were believed to belong to the subject’s private life, which was inaccessible to

scientific investigation.

Descartes’ dualism had a tremendous impact on scientific thinking and
in particular also on music research. The science of sound and the practice of
musical experience and sense were no longer connected by a common concept.
Sound was the subject of a scientific theory, while sense was still considered
to be the by-product of something subjective that is done with sound. Apart
from sensory perception (e.g. roughness in view of tuning systems), there was
no real scientific theory of sense, and so, the gap between mind and matter,
sense and sound, remained large.
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1.3 The cognitive approach

By jumping from Descartes to the late 19th century, we are neglecting important
contributions from Spinoza, Kant, Leibniz, Hume, Locke and many others
on matters that concern the relationship between sound and sense. This is
justified by our focus on the moment where empirical studies of subjective
involvement with music started to take place. This can indeed be situated
in the 19th century, when Wundt started the first psychological laboratory in
Leipzig in 1874. Through the disciplines of psychophysics and psychology,
the idea was launched that between sound and sense there is the human brain,
whose principles could also be understood in terms of psychic principles and
later on, as principles of information processing. With this development, the
processes that underlay musical sense come into the picture.

1.3.1 Psychoacoustics

With the introduction of psychoacoustics by ivon Helmholtz (1863), the foun-
dations were laid for an information processing approach to the sound/sense
relationship. Helmholtz assumed that musical sensing, and ultimately, its ex-
perience and sense, was based on physiological mechanisms in the human ear.
This idea became very influential in music research because it provided an ex-
planation of why some very fundamental structural aspects of musical sense,
such as consonance and dissonance, harmony and tonality, had an impact on
our sense. This impact was no longer purely a matter of acoustics, but also of
the working of our sensing system. Through scientific experiments, the causal-
ity of the mechanisms (still seen as a moving object) could be understood and
mathematical functions could capture the main input/output relationships.
This approach provided the foundation for experimental psychology (Wundt)
and later for Gestalt psychology in the first half of the 20th century, and the
cognitive sciences approach of the second half of the 20th century.
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1.3.2 Gestalt psychology

The Gestalt movement, which dates back to the late 19th century (Stumpf,
Brentano), gained prominence by about 1920 thanks to the work of scholars
such as Wertheimer, Kohler and Koffka. It had a major focus on sense as the
perception and representation of musical structure, including the perception of
tone distances and intervals, melodies, timbre, as well as rhythmic structures.
Sense was less a matter of the ego’s experience and pure thinking, but more a
matter of the ego’s representational system for which laws could be formulated
and a psychoneural parallelism, that is a parallelism between brain and psyche,
could be assumed.

After 1945, the Gestalt theory lost much of its attractiveness and interna-
tionally acclaimed innovative position (Leman and Schneider, 1997). Instead,
it met severe criticisms especially from behavioristic and operationalistic quar-
ters. There had been too many Gestalt laws, and perhaps not enough hardcore
explanations to account for these, notwithstanding the great amount of exper-
imental work that had been done over decades. However, after 1950, Gestalt
thinking gradually gained a new impetus, and was found to be of particu-
lar importance in combination with then up-to-date trends in cybernetics and
information science. The Gestalt approach influenced music research in that
it promoted a thorough structural and cognitive account of music perception
based on the idea that sense emerges as a global pattern from the information
processing of patterns contained in musical sound.

1.3.3 Information theory

It also gradually became clear that technology would become an important
methodological pillar of music research, next to experimentation. Soon after
1945, with the introduction of electronics and the collaboration between en-
gineers and composers, electronic equipment was used for music production
activities, and there was a need for tools that would connect musical thinking
with sound energies. This was a major step in the development of technolo-
gies which extend the human mind to the electronic domain in which music is
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stored and processed. Notions such as entropy and channel capacity provided
objective measures of the amount of information contained in music and the
amount of information that could possibly be captured by the devices that
process music (Moles, 1952, 1958; Winckel, 1960). The link from information to
sense was easily made. Music, after all, was traditionally conceived of in terms
of structural parameters such as pitch and duration. Information theory thus
provided a measurement, and thus a higher-level description, for the formal
aspects of musical sense. Owing to the fact that media technology allowed the
realisation of these parameters into sonic forms, information theory could be
seen as an approach to an objective and relevant description of musical sense.

1.3.4 Phenomenology

Schaeffer| (1966)) was the first to notice that an objective description of music
does not always correspond with our subjective perception. For example,
three frequencies in combination with each other do not always produce the
sense of three frequencies. If they are multiples, then they produce the sense
of only one single tone. In line with phenomenology and Gestalt theory, he felt
that the description of musical structure, based on information theory, does
not always tell us how music is actually perceived by subjects. Measurements
of structures are certainly useful and necessary, but these measurements don’t
always reveal relationships with subjective understanding. Schaeffer therefore
related perception of sounds to the manipulation of the analogue electronic
sound-generating equipment of that time. He conceived musical sense in
accordance with the new media technology of his time. Schaeffer therefore
drew attention to the role of new media as mediators between sound and

sense.

From that moment on, music research had an enormous impact on tech-
nology development. Music became a driver for the development of new
and innovative technologies which prolonged the human mind into the elec-
tronic domain, thus offering a complete and unlimited control of sound. This
unlimited control was a big challenge because it asked for a more thorough
investigation of the relationship between sound and sense. Indeed, from now
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on, it was easy to produce sound, but when are sounds musically meaning-
ful? In other words, when do sounds make any sense? And is sense, as
such, something that we can model, consider as something autonomous, and
perhaps automate?

1.3.5 Symbol-based modelling of cognition

The advent of computers marked a new area in music research. Computers
could replace analogue equipment, but, apart from that, it also became pos-
sible to model the mind according to the Cartesian distinction between mind
and matter. Based on information processing psychology and formal linguis-
tics (Lindsay and Norman, 1977) it was believed that the res cogitans (related to
that aspect of the mind which also Descartes had separated from matter) could
be captured in terms of symbolic reasoning. Computers now made it pos-
sible to mimic human “intelligence” and develop an “artificial intelligence”.
Cognitive science, as the new trend was called, conceived the human mind in
terms of a machine that manipulates representations of content on a formal
basis (Fodor, 1981). The application of the symbol-based paradigm to mu-
sic (Longuet Higgins) [1987; [Laske, 1975 Baroni and Callegari, 1984} Balaban
et al.,[1992) was very appealing. However, the major feature of this approach
is that it works with a conceptualisation of the world which is cast in sym-
bols, while in general it is difficult to pre-define the algorithms that should
extract the conceptualised features from the environment. The predefinition
of knowledge atoms and the subsequent manipulation of those knowledge
atoms in order to generate further knowledge is a main characteristic of a
Cartesian or rationalist conception of the world. Symbol systems, when used
in the context of rationalist modelling, should therefore be used with caution.

1.3.6 Subsymbol-based modelling of cognition

In the 1980s, based on the results of the so-called connectionist computation
(Rumelhart et al.,[1987; Kohonen), [1995) a shift of paradigm from symbol-based
modelling to subsymbol-based modelling was initiated. Connectionism (re-
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)introduced statistics as the main modelling technique for making connections
between sound and sense. Given the limitations of the Cartesian approach that
aimed at modelling the disembodied mind, this approach was rather appealing
for music research because it could take into account the natural constraints
of sound properties better than the symbol-based approach could (Todd et al.,
1999). By including representations of sound properties (rather than focusing
on symbolic descriptions which are devoid of these sound properties), the
subsymbol-based approach was more in line with the naturalistic epistemology
of traditional musicological thinking. It held the promise of an ecological
theory of music in which sound and sense could be considered as a unity.
The method promised an integrated approach to psychoacoustics, auditory
physiology, Gestalt perception, self-organisation and cognition, but its major
limitation, however, was that it still focused exclusively on perception. By
doing this, it was vulnerable to the critique that it still adopted a disembodied
approach to the notion of sense, in other words, that sense would be possible
without body, that it could work by just picking up the structures that are
already available in the environment.

1.4 Beyond cognition

The cognitive tradition was criticised for several reasons. One reason was
the fact that it neglected the subjective component in the subject’s involvement
with the environment. Another reason was thatit neglected action components
in perception and therefore remained too much focused on structure and form.
Criticism came from many different corners, first of all from inside cognitive
science, in particular from scholars who stressed the phenomenological and
embodied aspects of cognition (Maturana and Varela, 1987} Varela et al.,[1992)
and later also from the so-called postmodern musicology.

1.4.1 Subjectivism and postmodern musicology

Huron! (1999) defines the so-called “New Musicology” as a methodological
movement in music scholarship of the past two decades that is “loosely guided
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by a recognition of the limits of human understanding, an awareness of the
social milieu in which scholarship is pursued, and a realisation of the political
arena in which the fruits of scholarship are used and abused”. [DeNoral (2003)
argues that, in response to developments in other disciplines such as literary
theory, philosophy, history, anthropology and sociology, new musicologists
have called into question the separation of historical issues and musical form
and that they have focused on the role of music as a social medium. New
musicology, like postmodern thinking, assumes that there is no absolute truth
to be known. More precisely, truth ought to be understood as a social construc-
tion that relates to a local or partial perspective on the world. So the focus of
new musicology is on the socio-cultural contexts in which music is produced,
perceived and studied and how such contexts guide the way people approach,
experience and study music. Aspects of this school of thinking are certainly
relevant to the sound/sense relationship (Hatten),1994;|Lidov, 2005} Cumming,
2000), although the methodology (called hermeneutic) is less involved with
the development of an empirical and evidence-based approach to subjective
matters related to musical sense. In addition, there is less attention to the
problem of music mediation technologies. However, a main contribution is
the awareness that music is functioning in a social and cultural context and
that this context is also determinative for technology development.

1.4.2 Embodied music cognition

The action-based viewpoint put forward by Maturana, Varela and others
(Varela et al., 1992} Maturana and Varela, [1987) has generated a lot of interest
and a new perspective on how to approach the sound/sense relationship. In
this approach, the link between sound and sense is based on the role of action
as mediator between physical energy and meaning. In the cognitive approach
the sound/sense relationship was mainly conceived from the point of view
of mental processing. The approach was effective in acoustics and structural
understanding of music, but it was less concerned with action, gestures and
emotional involvement. In that respect, one could say that the Aristotelian
component, with its focus on mimesis as binding component between sound

and sense, was not part of the cognitive programme, nor was multi-modal
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information processing, or the issue of action-relevant perception (as reflected
in the ecological psychology of Gibson).

Yet the idea that musical involvement is based on the embodied imi-
tation of moving sonic forms has a long tradition. In fact, this tradition has
been gradually rediscovered in the last decade. In systematic musicology, a
school of researchers in the late 19th and early 20th Centuries had already a
conception of musical involvement based on corporeal articulations (Lipps)
1903; Meirsmann), 1922/23; [Heinitz, 1931} Becking), [1928; [Truslit, 1938).

This approach differs from the Gestalt approach in that it puts more
emphasis on action. Like Gestalt theory, this approach may be traced back to
open problems in Kant’s aesthetic theory, in particular the idea that beauty is
in the formal structure. Unlike Gestalt theory, the emphasis was less on brain
processes and the construction of good forms, but more on the phenomenology
of the empathic relationship with these forms through movement and action.
In this approach, Descartes” concept of ego and self is again fully connected
with the body. The ego is no longer an entity that just thinks about its body
(like a skipper who perceives the boat which he sails), but there is a strong
component of feeling, or gemeingefiihl (coenaesthesis), that is, sensing and
awareness of body.

For example, Lipps| (1903) argues that the understanding of an expres-
sive movement (Ausdrucksbewegung) in music is based on empathy (inneren
Mitmachen, Einfiilung). While being involved with moving sonic forms, we
imitate the movements as expressions. By doing this, we practice the motor
muscles which are involved when genuine emotions are felt. As such, we have
access to the intended emotional meaning of the music. According to Lipps,
the act of (free or unbounded) imitation gives pleasure because it is an expres-
sion of the self (Lipps, 1903, p. 111). Similar ideas are found in the theory of
optimal experience of Csikszentmihalyi (1990). Any expression of the self, or
anything that contributes to its ordering, gives pleasure. As such, sad music
may be a source of pleasure (Lust) because the moving sonic forms allow the
subject to express an imitative movement (sadness). This imitation allows the
subject to participate in the expressive movement without being emotionally
involved, that is, without experiencing an emotional state of sadness.
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Truslit (Iruslit, 1938; Reppl 1993) also sees corporeal articulations as
manifestations of the inner motion heard in music. He says that, “provided
the sound has the dynamo-agogic development corresponding to a natural
movement, it will evoke the impression of this movement in us” (Repp, 1993).
Particularly striking is the example he gives of Beethoven who, while compos-
ing, would hum or growl up and down in pitch without singing specific notes.
This is also a phenomenon often heard when jazz musicians are playing. Truslit
used the technology of his time to extract information from acoustic patterns,
as well as information from body movements with the idea of studying their
correlations.

In Gestaltung und Bewegung in der Musik, Alexander Truslit argues that
in order to fully experience music, it is essential to understand its most crucial
characteristic. According to Truslit, this characteristic, the driving force of the
music, is the expression of inner movement. The composer makes music that
is full of inner movement. The musician gives shape to these inner move-
ments by translating them into proper body gestures and the “good” music
listener is able to trace and imitate these movements in order to experience

and understand the music properly.

According to Truslit, not all music listeners are able to perceive the in-
ner movements of the music. However, some music listeners have a special
capacity to couple the auditive information to visual representations. Such
visual representations are referred to as synoptic pictures. Listeners possess-
ing this capability have a great advantage for understanding the musical inner
movement. Central in Truslit’s approach of musical movement are the notions
of dynamics (intensity) and agogics (duration). If the music has the dynamo-
agogic development corresponding to a natural movement, it will evoke the
impression of this movement. Four basic movements are distinguished in
order to identify and understand musical movement. These basic movements
are: straight, open, closed and winding. Furthermore, it is stated that, based
on this basic vocabulary of movements, it is possible to determine the shape
of the inner movements of the music in an objective way. Once the shapes of
the movements are determined, it is useful to make graphical representations
of them. Such graphical representations can be used by musicians and music
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listeners as guidelines for understanding and examining music’s inner move-
ment. Truslit sees the inner movement of music first of all as something that is
presented in the musical melody. The addition of rhythmic, metric or harmonic
elements can only refine this inner movement. A distinction is made between
rhythmic movement and the inner movement of the music that Truslit focuses
on. In contrast to rhythmic movement, which is related to individual parts
of the body, the inner movement forms the melody and is, via the labyrinth
(which is situated in the vestibular system), related to the human body as a
whole.

In accordance with Truslit, Becking (Becking), [1928; Nettheim), 1996) also
makes a connection between music and movement, based on the idea of a
dynamic rhythmic flow beyond the musical surface. This flow, a continuous
up-down movement, connects points of metrical gravitude that vary in relative
weight. Becking’s most original idea was that these metrical weights vary from
composer to composer. The analytical method Becking worked out in order
to determine these weights was his method of accompanying movements,
conducted with a light baton. Like Truslit, Becking determined some basic
movements. These basic movements form the basic vocabulary that allowed
him to classify the personal constants of different composers in different eras.

To sum up, the embodied cognition approach states that the sound/sense
relationship is mediated by the human body, and this is put as an alternative
to the disembodied cognition approach where the mind is considered to be
functioning on its own. The embodied cognition approach of the early 20th
century is largely in agreement with recent thinking about the connections
between perception and action (Prinz_and Hommel, 2002} [Dautenhahn and
Nehaniv), 2002).

1.4.3 Music and emotions

The study of subjective involvement with music draws upon a long tradition
of experimental psychological research, initiated by Wundt in the late 19th
century. Reference can be made to research in experimental psychology in
which descriptions of emotion and affect are related to descriptions of musical
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structure (Hevner (1936 Watson, 1942} [Reinecke, 1964; Imberty, [1976; Wedin,
1972} Juslin and Slobodal, 2001} (Gabrielsson and Juslin, 2003). These studies
take into account a subjective experience with music. Few authors, however,
have been able to relate descriptions of musical affect and emotions with
descriptions of the physical structure that makes up the stimulus. Most studies,
indeed, interpret the description of structure as a description of perceived
structure, and not as a description of physical structure. In other words,
description of musical sense proceeds in terms of perceptual categories related
to pitch, duration, timbre, tempo, rhythms, and so on.

In that respect, Berlyne’s work (Berlyne, [1971) on experimental aesthet-
ics is important for having specified a relationship between subjective expe-
rience (e.g. arousal) and objective descriptions of complexity, uncertainty or
redundancy. In Berlyne’s concept, the latter provides an information-theoretic
account of symbolic structures (e.g. melodies). They are not just based on per-
ceived structures but are extracted directly from the stimulus (as symbolically
represented). However, up to the present, most research has been based on
a comparison between perceived musical structure and experienced musical
affect. What is needed are comparisons of structure as perceived and structure
which is directly extracted from the physical energy (Leman et al., 2003).

1.4.4 Gesture modelling

During the last decade, research has been strongly motivated by a demand
for new tools in view of the interactive possibilities offered by digital media
technology. This stimulated the interest in gestural foundations of musical
involvement2 With the advent of powerful computing tools, and in particular
real-time interactive music systems (Pressing), [1992; [Rowe) [1992), gradually
more attention has been devoted to the role of gesture in music (Wander-
ley and Battier, 2000; Camurri et al., 2001; Sundberg, 2000; Camurri et al.,
2005). This gestural approach has been rather influential in that it puts more
emphasis on sensorimotor feedback and integration, as well as on the cou-

2In 2004, the ConGAS COST-287 action, supported by the EU, established a European

network of laboratories that focus on issues related to gesture and music.
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pling of perception and action. With new sensor technology, gesture-based
research has meanwhile become a vast domain of music research (Paradiso
and O’Modhrain| 2003; Johannsen, 2004} (Camurri and Rikakis, 2004} [Camurri
and Volpe, 2004), with consequences for the methodological and epistemologi-
cal foundations of music cognition research. There is now convincing evidence
that much of what happens in perception can be understood in terms of ac-
tion (Jeannerod), 1994; Berthoz, 1997; Prinz and Hommel, 2002). Pioneering
studies in music (Clynes| 1977} Todd et al.,[1999; [Friberg and Sundberg| (1999)
addressed this coupling of perception and action in musical activity, yet the
epistemological and methodological consequences of this approach have not
been fully worked out in terms of a musicological paradigm (Leman) 1999).
It is likely that more attention to the coupling of perception and action will
result in more attention to the role of corporeal involvement in music, which
in turn will require more attention to multi-sensory perception, perception of
movement (kinaesthesia), affective involvement, and expressiveness of music
(Leman and Camurri, 2005).

1.4.5 Physical modelling

Much of the recent interest in gesture modelling has been stimulated by ad-
vances in physical modelling. A physical model of a musical instrument
generates sound on the basis of the movements of physical components that
make up the musical instrument (for an overview, see (Karjalainen et al.,2001)).
In contrast with spectral modelling, where the sound of a musical instrument
is modelled using spectral characteristics of the signal that is produced by the
instrument, physical modelling focuses on the parameters that describe the
instrument physically, that is, in terms of moving material object components.
Sound generation is then a matter of controlling the articulatory parameters
of the moving components. Physical models, so far, are good at synthesising
individual sounds of the modelled instrument. And although it is still far
from evident how these models may synthesise a score in a musically inter-
esting way — including phrasing and performance nuances — it is certain that
a gesture-based account of physical modelling is the way to proceed (D’haes),
2004). Humans would typically add expressiveness to their interpretation, and
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this expressiveness would be based on the constraints of body movements that
take particular forms and shapes, sometimes perhaps learned movement se-
quences and gestures depending on cultural traditions. One of the goals of
gesture research related to music, therefore, aims at understanding the biome-
chanical and psychomotor laws that characterise human movement in the
context of music production and perception (Camurri and Volpe, 2004).

1.4.6 Motor theory of perception

Physical models suggest a reconsideration of the nature of perception in view
of stimulus-source relationships and gestural foundations of musical engage-
ment. Purves and Lottol (2003), for example, argue that invariance in percep-
tion is based on statistics of proper relationships between the stimulus and the
source that produces the stimulus. Their viewpoint is largely influenced by
recent studies in visual perception. Instead of dealing with feature extraction
and object reconstruction on the basis of properties of single stimuli, they argue
that the brain is a statistical processor which constructs its perceptions by relat-
ing the stimulus to previous knowledge about stimulus-source relationships.
Such a statistics, however, assumes that aspects related to human action should
be taken into account because the source cannot be known unless through ac-
tion. In that respect, this approach differs from previous studies in empirical
modelling, which addressed perception irrespective of action related issues.
Therefore, the emphasis of empirical modelling on properties of the stimulus
should be extended with studies that focus on the relationship between stim-
ulus and source, and between perception and action. Liberman and Mattingly
(1989) had already assumed that the speech production-perception system is,
in effect, an articulatory synthesiser. In the production mode, the synthesiser is
activated by an abstract gestural pattern from which the synthesiser computes
a series of articulatory movements that are needed to realise the gestures into
muscle movements of the vocal tract. In the perception mode, then, the synthe-
siser computes the series of articulatory movements that could have produced
the signal, and from this articulatory representation, the intended gestural pat-
tern, contained in the stimulus, is obtained. Liberman and Mattingly assumed
that a specialised module is responsible for both perception and production of



32 Chapter 1. Sound, Sense and Music Mediation

phonetic structures. The perceptual side of this module converts automatically
from acoustic signal to gesture. Perception of sound comes down to finding
the proper parameters of the gesture that would allow the re-synthesis of what
is heard. So, features related to sound are in fact picked up as parameters for
the control of the articulatory system. Perception of a sound, in that view, is an
inhibited re-synthesis of that sound, inhibited in the sense that the re-synthesis
is not actually carried out but simulated. The things that need to be stored in
memory, then, are not auditory images, but gestures, sequences of parameters
that control the human articulatory (physical) system. The view also assumes
that perception and action share a common representational system. Such
models thus receive input from the sensors and produce appropriate actions
as output and, by doing this, stimuli thus become meaningful in relation to
their sources which are objects of action (Varela et al.,[1992). Action, in other
words, guarantees that the stimuli are connected to the object, the source of the
physical energy that makes up the stimulus. The extension of empirical mod-
elling with a motor theory of perception is currently a hot topic of research.
It has some very important consequences for the way we conceive of music
research, and in particular also for the way we look at music perception and
empirical modelling.

1.5 Embodiment and mediation technology

The embodiment hypothesis entails that meaningful activities of humans pro-
ceed in terms of goals, values, intentions and interpretations, while the physical
world in which these activities are embedded can be described from the point
of view of physical energy, signal processing, features and descriptors. In
normal life, where people use simple tools, this difference between the sub-
ject’s experiences and the physical environment is bridged by the perceptive
and active capabilities of the human body. In that perspective, the human
body can be seen as the natural mediator between the subject and the physical
world. The subject perceives the physical world on the basis of its subjective
and action-oriented ontology, and acts accordingly using the body to realise
its imagined goals. Tools are used to extend the limited capacities of natural
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body. This idea can be extended to the notion of mediation technology.

For example, to hit a nail into a piece of wood, I will use a hammer as
an extension of my body. And by doing this, I'll focus on the nail rather than
on the hammer. The hammer can easily become part of my own body image,
that is, become part of the mental representation of my (extended) body. My
extended body then allows my mental capacities to cross the borders of my
natural human body, and by doing this, I can realise things that otherwise
would not be possible. Apart from hitting nails, I can ride a bike to go to
the library, I can make music by playing an instrument, or I can use my
computer to access digital music. For that reason, technologies that bridge the
gap between our mind and the surrounding physical environment are called
mediation technologies. The hammer, the bike, the musical instrument and
the computer are mediation technologies. They influence the way in which
connections between human experience (sense) and the physical environment
(e.g. sound) can take place.

Mediation concerns the intermediary processes that bridge the seman-
tic gap between the human approach (subject-centered) and the physical ap-
proach (object or sound-centered), but which properties should be taken into
account in order to make this translation effective? The hammer is just a
straightforward case, but what about music that is digitally encoded in an
mp3-player? How can we access it in a natural way, so that our mind can
easily manipulate the digital environment in which music is encoded? What
properties of the mediation technology would facilitate access to digitally en-
coded energy? What mediation tools are needed to make this access feasible
and natural, and what are their properties? The answer to this question is
highly dependent on our understanding of the sound/sense relationship as a
natural relationship. This topic is at the core of current research in music and
sound computing.

1.5.1 An object-centered approach to sound and sense

State-of-the-art engineering solutions are far from being sufficiently robust for
use in practical sense/sound applications. For example, (Paivo) 2007) demon-
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strates that the classical bottom-up approach (he took the melody extraction
from polyphonic audio as a case study, using state-of-the-art techniques in au-
ditory modelling, pitch detection and frame-concatenation into music notes)
has reached its performance platform. Similar observations have been made in
rhythm and timbre recognition. The use of powerful stochastic and probabilis-
tic modelling techniques (Hidden Markov Chains, Bayesian modelling, Sup-
port Vector Machines, Neural Networks) (see also http://www.ismir.net/
for publications) do not really close this gap between sense and sound much
further (De Mulder et al), 2006). The link between sound and sense turns
out to be a hard problem. There is a growing awareness that the engineering
techniques are excellent, but that the current approaches may be too narrow.
The methodological problems relate to:

e Unimodality: the focus has been on musical audio exclusively, whereas
humans process music in a multi-modal way, involving multiple senses
(modalities) such as visual information and movement.

e Structuralism: the focus has been on the extraction of structure from
musical audio files (such as pitch, melody, harmony, tonality, rhythm)
whereas humans tend to access music using subjective experiences (move-

ment, imitation, expression, mood, affect, emotion).

e Bottom-up: the focus has been on bottom-up (deterministic and learn-
ing) techniques whereas humans use a lot of top-down knowledge in
signification practices.

e Perception oriented: the focus has been on the modelling of perception
and cognition whereas human perception is based on action-relevant
values.

e Object/Product-centered: research has focused on the features of the
musical object (waveform), whereas the subjective factors and the so-
cial/cultural functional context in musical activities (e.g. gender, age, ed-
ucation, preferences, professional, amateur) have been largely ignored.
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1.5.2 A subject-centered approach to sound and sense

Research on gesture and subjective factors such as affects and emotions show
that more input should come from a better analysis of the subjective human
being and its social/cultural context. That would imply:

e Multi-modality: the power of integrating and combining several senses
that play a role in music such as auditory, visual, haptic and kinaesthetic
sensing. Integration offers more than the sum of the contributing parts
as it offers a reduction in variance of the final perceptual estimate.

e Context-based: the study of the broader social, cultural and professional
context and its effect on information processing. Indeed, the context is
of great value for the disambiguation of our perception. Similarly, the
context may largely determine the goals and intended musical actions.

e Top-down: knowledge of the music idiom to better extract higher-level
descriptors from music so that users can have easier access to these
descriptors. Traditionally, top-down knowledge has been conceived as
a language model. However, language models may be extended with
gesture models as a way to handle stimulus disambiguation.

e Action: the action-oriented bias of humans, rather than the perception of
structural form (or Gestalt). In other words, one could say that people do
not move just in response to the music they perceive, rather they move to
disambiguate their perception of music, and by doing this, they signify
music.

e User-oriented: research should involve the user in every phase of the
research. It is very important to better understand the subjective factors
that determine the behavior of the user.

The subject-centered approach is complementary to the object-centered
approach. Its grounding in an empirical and evidence-based methodology
fits rather well with the more traditional engineering approaches. The main
difference relates to its social and cultural orientation and the awareness that
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aspects of this orientation have a large impact on the development of mediation
technology. After all, the relationship between sense and sound is not just a
matter of one single individual person in relation to its musical environment.
Rather, this single individual person lives in contact with other people, and in
a cultural environment. Both the social and cultural environment will largely

determine what music means and how it can be experienced.

1.6 Music as innovator

The above historical and partly philosophical overview gives but a brief ac-
count of the different approaches to the sound and sense relationship. This
account is certainly incomplete and open to further refinement. Yet a striking
fact in this overview is that music, in spanning a broad range of domains
from sound to sense and social interaction, appears to be a major driver for
innovation. This innovation appears both in the theoretical domain where
the relationship between body, mind, and matter is a major issue, and in the
practical domain, where music mediation technology is a major issue.

The historical overview shows that major philosophical ideas, as well as
technical innovations, have come from inside music thinking and engagement.
Descartes” very influential dualist philosophy of mind was first developed in
a compendium on music. Gestalt theory was heavily based on music research.
Later on, the embodied cognition approach was first explored by people having
strong roots in music playing (e.g. Truslit was a music teacher). In a similar
way, the first explorations in electronic music mediation technologies were
driven by composers who wanted to have better access to the electronic tools
for music creation. Many of these ideas come out of the fact that music is fully
embedded in sound and that the human body tends to behave in resonance
with sound, whereas the “mind’s1” builds up experiences on top of this. Music
nowadays challenges what is possible in terms of object-centered science and
technology and it tends to push these approaches more in the direction of
the human subject and its interaction with other subjects. The human way
in which we deal with music is a major driver for innovation in science and
technology, which often approaches music from the viewpoint of sound and
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derived sound-features. The innovative force coming from music is related
to the subject-centered issues that are strongly associated with creativity and
social-cultural factors.

The idea that music drives innovation rather than vice versa should not
come as completely unexpected. Music is solidly anchored to scientific foun-
dations and as such it is an epistemological domain which may be studied
with the required scientific rigour. However, music is also an art and there-
fore certain ways of dealing with music do not require scientific justification
per se because they justify themselves directly in signification practices. The
requirements of musical expression can indeed provide a formidable thrust
to scientific and technological innovation in a much more efficient way than
the usual R&D cycles may ever dream of. In short, the musical research car-
ried out in our time by a highly specialised category of professionals (the
composers) may be thought as a sort of fundamental think tank from where
science and technology have extracted (and indeed, may continue to extract
in the future) essential, revolutionary ideas. In short, musical expression re-
quirements depend, in general, on large scale societal changes whose essence
is captured by the sensible and attuned composers. These requirements trans-
late quickly into specific technical requirements and needs. Thus, music acts
in fact as an opaque but direct knowledge transfer channel from the subliminal
requirements of emerging societies to concrete developments in science and

technology.

1.7 Conclusion

This chapter aims at tracing the historical and philosophical antecedents of
sense/sound studies in view of a modern action-oriented and social-cultural
oriented music epistemology. Indeed, recent developments seem to indicate
that the current interest in embodied music cognition may be expanded to
social aspects of music making. In order to cross the semantic gap between
sense and sound, sound and music computing research tends to expand the
object-centered approach engineering with a subject-centered approach from
the human sciences. The subject-centered character of music, that is, its sense,
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has always been a major incentive for innovation in science and technology.
The modern epistemology for sound and music computing is based on the idea
that sound and sense are mediated by the human body, and that technology
may form an extension of this natural mediator. The chapter aims at providing
a perspective from which projections into the future can be made.

The chapter shows that the relationship between sound and sense is
one of the main themes of the history and philosophy of music research. In
this overview, attention has been drawn to the fact that three components of
ancient Greek thinking already provided a basis for this discussion, namely,
acoustics, perception, and feeling (“movement of the soul”). Scientific experi-
ments and technological developments were first (17th — 18th century) based
on an understanding of the physical principles and then (starting from the late
19th century) based on an understanding of the subjective principles, starting
with principles of perception of structure, towards a better understanding of
principles that underly emotional understanding.

During the course of history, the problem of music mediation was a
main motivating factor for progress in scientific thinking about the sound/sense
relationship. This problem was first explored as an extension of acoustic theory
to the design of music instruments, in particular, the design of scale tuning. In
modern times this problem is explored as an extension of the human body as
mediator between sound and sense. In the 19th century, the main contribution
was the introduction of an experimental methodology and the idea that the
human brain is the actual mediator between sound and sense.

In the last decades, the scientific approach to the sound/sense relation-
ship has been strongly driven by experiments and computer modelling. Tech-
nology has played an increasingly important role, first as measuring instru-
ment, later as modelling tool, and more recently as music mediation tools
which allow access to the digital domain. The approach started from a cog-
nitive science (which adopted Cartesian dualism) and symbolic modelling,
and evolved to sub-symbolic modelling and empirical modelling in the late
1980ies. In the recent decades, more attention has been drawn to the idea that
the actual mediator between sound and sense is the human body.

With regards to new trends in embodied cognition, it turns out that the
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idea of the human body as a natural mediator between sound and sense is
not entirely a recent phenomenon, because these ideas have been explored by
researchers such as Lipps, Truslit, Becking, and many others. What it offers is
a possible solution to the sound/sense dichotomy by saying that the mind is
fully embodied, that is, connected to body. Scientific study of this relationship,
based onnovel insights of the close relationship between perception and action,
is now possible thanks to modern technologies that former generations of
thinkers did not have at their disposal.

A general conclusion to be drawn from this overview is that the scientific
methodology has been expanding from purely physical issues (music as sound)
to more subjective issues (music as sense). Scientists conceived these transition
processes often in relation to philosophical issues such as the mind-body prob-
lem, the problem of intentionality and how perception relates to action. While
the sound/sense relationship was first predominantly considered from a cog-
nitive/structural point of view, this viewpoint has gradually been broadened
and more attention has been devoted to the human body as the natural medi-
ator between sound and sense. Perception is no longer conceived in terms of
stimulus and extraction of structures. Instead, perception is conceived within
the context of stimulus disambiguation and simulated action, with the possi-
bility of having loops of action-driven perception. This change in approach
has important consequences for the future research. Music has thereby been
identified as an important driver for innovation in science and technology. The
forces behind that achievement are rooted in the fact that music has a strong
appeal to multi-modality, top-down knowledge, context-based influences and
other subject-centered issues which strongly challenge the old disembodied
Cartesian approaches to scientific thinking and technology development.
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About this chapter

The chapter proposes an overview of musical learning by underlining the force
of the cognitive system, which is able to learn and to treat complex information
at an implicit level. The first part summarises recent research in cognitive
sciences, that studies the processes of implicit learning in music perception.
These studies show that the abilities of non-musicians in perceiving music are
very often comparable to those of musicians. The second part illustrates by
means of some examples the use of multimedia tools for learning tonal and
atonal music; these tools take advantage of the interaction between visual and
auditive modalities.
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2.1 Introduction

Delineating the musical abilities that are specifically linked to an intensive and
formal training from those that emerge through mere exposure to music is a
key issue for music cognition, music education, and all of the disciplines in-
volved in sound and music computing, particularly for disciplines which deal
with content processing of audio signals (see Chapter [3), machine learning
(see Chapter ), and sound design (see Chapter [I0). Non-musicians do not
learn a formal system with which they can describe and think about musi-
cal structures. Nevertheless, they have a considerable amount of experience
with music: they hear music every day of their lives. They have all sung as
children and in school, they are moving and dancing to musical rhythms, and
most of them have attended concerts. Nowadays the new wearable digital
audio players make it easy to listen to a large amount of music in all cir-
cumstances. How sophisticated are the emerging abilities to process music
that result from this exposure when compared to the abilities caused by an
intensive formal musical training? Given the huge differences in training,
tinding disparities between musically trained and untrained listeners would
not be really surprising. However, research in auditory cognition domain has
shown that even non-musician listeners have knowledge about the Western
tonal musical system. Acquired by mere exposure, this implicit knowledge
guides and shapes music perception. This chapter presents recent research
studying implicit learning in music, and some examples of multimedia tools
for learning Western tonal music as well as contemporary music. These tools
are based on advances in cognitive psychology concerning the acquisition and
the representation of knowledge, and the role of memory and of attention
processes.
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2.2 Implicit processing of musical structures

2.2.1 How do non-musician listeners acquire implicit knowl-

edge of music?

Implicit learning processes enable the acquisition of highly complex infor-
mation without complete verbalisable knowledge of what has been learned
(Seger, [1994). Two examples of highly structured systems in our environment
are language and music. Listeners become sensitive to the underlying regu-
larities just by mere exposure to linguistic and musical material in everyday
life. The implicitly acquired knowledge influences perception and interaction
with the environment. This capacity of the cognitive system has been stud-
ied in the laboratory with artificial material containing statistical structures,
such as finite-state grammars or artificial languages (i.e. /Altmann et al., 1995}
Reber)| 1967, [1989; Saffran et al., [1996). Tonal acculturation is one example of
the cognitive capacity to become sensitive to regularities in the environment.
Frances (1958) was one of the first underlining the importance of statistical
regularities in music for tonal acculturation, suggesting that mere exposure
to musical pieces is sufficient to acquire tonal knowledge, even if it remains
at an implicit level. In the music cognition domain, numerous research has
provided evidence for non-musicians” knowledge about the tonal system (see
Bigand and Poulin-Charronnat, 2006, for a review).

2.2.2 Implicit learning of Western pitch regularities

Western tonal music constitutes a constrained system of regularities (i.e. fre-
quency of occurrence and co-occurrence of musical events, and psychoacoustic
regularities) based on a limited number of elements. This section presents the
tonal system from the perspective of cognitive psychology: it underlines the
basic regularities between musical events, which appear in most musical styles
of everyday life (e.g. classical music, pop music, jazz music, Latin music, etc.)
and which can be acquired by implicit learning processes. The Western tonal
system is based on 12 pitches repeated cyclically over octaves. Strong regu-
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larities of co-occurrence and frequencies of occurrence exist among these 12
pitch classes (referred to as the tones C, C#/Db, D, D#/Eb, E, F, F#/Gb, G,
G#/Ab, A, A#/Bb, B): tones are combined into chords and into keys, forming
a three-level organisational system (Figure 2.1). Based on tones and chords,
keys (tonalities) have more or less close harmonic relations to each other. Keys
sharing numerous tones and chords are said to be harmonically related. The
strength of harmonic relations depends on the number of shared events. In
music theory, major keys are conceived spatially as a circle (i.e. the circle
of fifths), with harmonic distance represented by the number of steps on the
circle. Inter-key distances are also defined between major and minor keys.
The three levels of musical units (i.e. tones, chords, keys) occur with strong
regularities of co-occurrence. Tones and chords belonging to the same key are
more likely to co-occur in a musical piece than tones and chords belonging to
different keys. Changes between keys are more likely to occur between closely
related keys (e.g. C and G major) than between less-related ones (e.g. C and E
major). Within each key, tones and chords have different tonal functions creat-
ing tonal and harmonic hierarchies. These within-key hierarchies are strongly
correlated with the frequency of occurrence of tones and chords in Western
musical pieces. Tones and chords used with higher frequency (and longer du-
ration) correspond to events that are defined by music theory as having more
important functions in a given key (Budge, 1943} [Franceés| 1958; Krumhansl,
1990).

This short description reveals a fundamental characteristic of the West-
ern tonal music: functions of tones and chords depend on the established
key. The same event can define an in-key or an out-of-key event and can take
different levels of functional importance. For listeners, understanding context
dependency of musical events’ functions is crucial for the understanding of
musical structures. Music cognition research suggests that mere exposure to
Western musical pieces suffices to develop implicit, but nevertheless sophisti-
cated, knowledge of the tonal system. Just by listening to music in everyday
life, listeners become sensitive to the regularities of the tonal system with-
out being necessarily able to verbalise them (Dowling and Harwood, 1986
Frances, 1958 Krumhansl, 1990). The seminal work by Krumhansl, Bharucha
and colleagues has investigated the perception of relations between tones and
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Tones |:

Chords

Keys

Figure 2.1: Schematic representations of the three organisational levels of the
tonal system.

a) 12 pitch classes, followed by the diatonic scale in C Major. b) construction of
three major chords, followed by the chord set in the key of C Major. c) relations
of the C Major key with close major and minor keys (left) and with all major
keys forming the circle of fifths (right). Tones are represented in italics, minor
and major chords/keys in lower and upper case respectively (from [Tillmann
et al., 2001).

between chords as well as the influence of a changing tonal context on the
perceived relations (see Krumhansl, 1990, for a review). The data showed the
cognitive reality of tonal and harmonic hierarchies for listeners and the context
dependency of musical tones and chords in perception and memorisation.

2.2.3 Connectionist model of musical knowledge representa-

tion and its acquisition

Bharuchal (1987) proposed a connectionist account of tonal knowledge repre-
sentation. In the MUSACT model (i.e. MUSical ACTivation), tonal knowledge
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is conceived as a network of interconnected units (Figure 2.2). The units are
organised in three layers corresponding to tones, chords, and keys. Each tone
unit is connected to the chords of which that tone is a component. Anal-
ogously, each chord unit is connected to the keys of which it is a member.
Musical relations emerge from the activation that reverberates via connected
links between tone, chord and key units. When a chord is played, the units
representing the sounded component tones are activated and activation rever-
berates between the layers until equilibrium is reached (see Bharucha, 1987;
Bigand et al.,[1999, for more details). The emerging activation patterns reflect
tonal and harmonic hierarchies of the established key: for example, units rep-
resenting harmonically related chords are activated more strongly than units
representing unrelated chords. The context dependency of musical events in
the tonal system is thus not stored explicitly for each of the different keys, but
emerges from activation spreading through the network.

(Linked to lower edge--minor chords)
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Figure 2.2: MUSACT model of tonal knowledge activation. The tone layer is
the input layer, which is connected to the chord layer (consisting of major and
minor chords). The chord layer is connected to the key layer (the third layer).
Adapted from Bharuchal (1987).

In Tillmann et al.| (2000), we take advantage of the learning possibili-
ties of artificial neural networks (e.g. connectionist models) to simulate tonal
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knowledge acquisition in non-musician listeners. For this purpose, unsu-
pervised learning algorithms seem to be well suited: they extract statistical
regularities via passive exposure and encode events that often occur together
(Grossberg), 1970, [1976; Kohonen), [1995; Rumelhart and Zipser, [1985; von der
Malsberg),1973). Self-organizing maps (Kohonen) [1995) are one version of un-
supervised learning algorithms that leads to a topological organisation of the

learned information.

To simulate tonal acculturation, a hierarchical network composed of
two self-organizing maps was exposed to short musical sequences (i.e., chord
sequences). After learning, the connections in the network have changed and
the units have specialised for the detection of chords and keys (the input layer
coded the tones of the input material). The learned architecture is associated
with a spreading activation process (as in MUSACT) to simulate top-down
influences on the activation patterns. Interestingly, the learned connections
and the activation patterns after reverberation mirror the outcome of the hard-
wired network MUSACT, which has been conceived as an idealised end-state
of implicit learning processes (see [Tillmann et al., 2000). In collaboration with
Michel Paindavoine (LE2I-CNRS, Dijon) and Charles Delbé (LEAD-CNRS,
Dijon), the authors are currently working on several extensions of this con-
nectionist approach. One of the projects concerns the construction of a set
of “artificial musical ears” for this modelling approach. A step of auditory
pre-processing will allow us to decode sound files and to work with musical
stimuli having greater acoustic complexity. On the basis of this richer input, a
network will be trained with a corpus of real recordings containing a variety
of musical pieces.

2.24 Studying implicit learning processes with artificial ma-

terials

Implicit learning processes are supposed to be at the origin of listeners’ tonal
knowledge, acquired in everyday life. Implicit learning processes are studied
more closely in the laboratory with artificial materials containing statistical
regularities. In the seminal work by Reber! (1967), participants were asked to
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memorise grammatical letter strings in a first phase of the experiment. They
were unaware that rules existed. During the second phase of the experiment,
they were informed that the previously seen sequences had been produced
by a rule system (which was not described) and were asked to judge the
grammaticality of new letter strings. Participants differentiated grammatical
letter strings from new ungrammatical ones at better than chance level. Most of
them were unable to explain the rules underlying the grammar in free verbal
reports (e.g. Altmann et al) [1995; Dienes et al., 1991 Dienes and Longuet-
Higgins| [2004; Reber, 1967, 1989).

Various findings are convergent in demonstrating the cognitive capac-
ity to learn complex structures and regularities. The acquisition of regularities
in the experimental material is not restricted to visual events (e.g. letters,
lights, shapes), but has been extended to auditory events, such as sine waves
(Altmann et al., 1995), musical timbres (e.g. gong, trumpet, piano, violin,
voice in Bigand et al., 1998) or environmental sounds (e.g. drill, clap, steam
in Howard and Ballas, (1980, [1982). Recent studies have started to consider
the acoustical characteristics of the sound, such as prosodic cues (Johnson and
Jusczyk| 2001} Thiessen and Saffran| 2003} Saffran et al., 1996) or acoustical
similarities (Tillmann and McAdams), 2004). The aim of the studies was to test
whether the relation between the statistical regularities and regularities inher-
ent in the acoustical material could influence learning: conflicting information
might hinder statistical learning, while converging information might facili-
tate learning. Tonal acculturation might represent a beneficial configuration:
musical events appearing frequently together are also linked acoustically since
they share (real and virtual) harmonics. To investigate whether convergence
with acoustical features represent a facilitating or even necessary condition
for statistical learning, Tillmann and McAdams| (2004) systematically manip-
ulated acoustical similarities between timbres so that they either underline
the statistical regularities of the timbre units, contradict these regularities or
are neutral to them. The outcome showed that listeners learned the statistical
regularities of the complex auditory material and that the manipulated surface
characteristics did not affect this statistical learning. The surface characteristics
only affected grouping and overall preference bias for the different materials.
This outcome suggests that tonal acculturation does not necessarily need the
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convergence between statistical and acoustical regularities. Supporting ev-
idence can be found in acculturation to Arabic music, which is lacking the
convergence between statistical and acoustic features (Ayari and McAdams,
2003). Together with the implicit learning study on twelve-tone music (see
below), the data emits the rather encouraging hypothesis about the possibility
to learn regularities of new musical styles.

2.2.5 Implicit learning of new musical systems

Music is an interesting medium to investigate implicit learning processes for
several reasons. It is a highly complex structure of our environment that
is too complex to be apprehended through explicit thoughts and deductive
reasoning. Musical events per se are of no importance, yet musical pieces are
more than a pleasing succession of coloured sounds. The psychological effects
of musical sounds come from the complex multilevel relationships between
musical events involved in a given piece (Meyer)1956; Lerdahl and Jackendoff,
1983). The abstract associative and architectonic relationships that are not close
in time define relevant structures in music. These relations cannot be easily
articulated in an explicit way. Despite an eminent tradition in music history,
as well as in contemporary music theory, to formalise the relevant structure
of Western music (see |Lerdahl and Jackendoff, [1983; Lerdahl, 2001} Narmour),
1990), none of these frameworks provides a complete and satisfactory account
of the Western musical grammars. A further interesting feature of music for
research onimplicitlearning is that musical structures are not always conceived
for being explicitly processed. It is even of crucial importance for composers
that listeners are sensitive to the structures that underlie a musical piece while
still being unaware of them. And in fact, the most common impression among
a general audience is that of being unable to verbally describe what they
perceive. In some instances, people are even convinced that they do not
perceive any underlying structure. The fact that musical events do not refer to
any specific object in the external world probably contributes to the difficulty
of apprehending musical structures in an explicit way.

A final interesting feature is that musical systems constantly evolve to-
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wards new musical grammars. Being faced with masterpieces that derive from
an entirely new musical system is not an artificial situation for contemporary
listeners and this raises a challenging issue for implicit learning theories. The
considerable and persistent confusion reported by listeners to contemporary
music suggests that some musical grammars may be too artificial to be inter-
nalised through passive exposure (Lerdahl, [1989). As a consequence, several
cognitive constraints have been delineated, and musical grammars should
obey these constraints in order to be learnable (Lerdahl, 1988, 2001). Contem-
porary music challenges the ability of the human brain to internalise all types
of regularities. This raises a question with implications for cognitive science,

music cognition, and contemporary music research.

To the best of our knowledge, very little research has directly addressed
implicit learning with musical material (Bigand et al.,[1998; Dienes et al., 1991).
Numerous research in music cognition, however, deals indirectly with implicit
learning processes by showing that explicit learning is not necessary for the
development of a sensitivity to the underlying rules of Western musicl (see
section above). Only a few studies have addressed the implicit learning of new
musical systems. Most of them have focused on the learning of serial music, a
system that appeared in the West in the first half of the 20th century. During
this period, the tonal system was overtaken by the serial system developed,
in particular, by Schoenberg (Griffiths, 1978). Serial works of music obey
compositional rules that differ from those that govern tonal music.

A serial musical piece is based on a specific ordering of the chromatic
scale called the twelve-tone row. A twelve-tone row is an arrangement, into a
certain order, of the twelve tones of the chromatic scale regardless of register
(Figure[2.3)). The tones of the row mustbe used in their chosen order (repetition
of tones is allowed in certain circumstances and two or more successive tones
of the row may appear as a chord), and once all twelve tones of the row have
appeared, the row is repeated again and again until the end of the composition.
The row may appear in any of its four basic forms: the original row, the

'The tonal system designates the most usual style of music in the West, including, Baroque
(Bach), Classic (Mozart) and Romantic (Chopin) music, as well as to a certain extent folk music

such as pop-music, jazz and Latin-music.
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inverted form (in which ascending intervals of the original row are replaced
by equivalent descending ones and vice versa), the retrograde form (in which
the tones of the original row are read backwards), and the retrograde inversion
(in which the tones of the inverted form are read backwards), and each of the
four forms of the row may be transposed to any of the twelve tones of the
chromatic scale, thus making available forty-eight permissible patterns of one
row. In theory, each tone of the row should have roughly the same frequency
of occurrence over the entire piece.

Each serial composition results from a complex combination of all of
these transformations which are applied to one specific tone row. Schoen-
berg argued that these manipulations would produce an interesting balance
between perceptual variety and unity. A critical point on which he insisted
was that the initial row must remain unchanged throughout the entire piece.
In other words, Schoenberg’s cognitive intuition was that the perceptual co-
herence deriving from the serial grammar was unlikely to be immediately
perceived but would result from a familiarisation with the row.

Several experimental studies have addressed the psychological reality of
the organisation resulting from serial musical grammar. The oldest, by Frances
(1958, exp. 6), consisted of presenting participants with 28 musical pieces based
on a specific tone row and requiring participants to detect four pieces that
violated the row. These odd pieces were actually derived from another row
(the foil row). The analysis of accurate responses revealed that participants had
considerable difficulty in detecting the four musical pieces that violated the
initial row. Moreover, the fact that music theorists specialised in serial music
did not respond differently from musically untrained participants suggests that
extensive exposure to serial works is not sufficient for the internalisation of
this new musical system. Although Frances’ research is remarkable as pioneer
work in this domain, the study contained several weaknesses relative to the
experimental design as well as to the analysis of the data and this detracts from
the impact of his conclusion. The most noticeable problem concerns the foil
row, notably because it was strongly related to the tested row.

Empirical evidence supporting the perceptual reality of the rules of se-
rial music was reported by Dowling| (1972) with short melodies of 5 tones.
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In Dowling’s experiment, participants were trained to identify reversed, ret-
rograde and retrograde-inversion of standard melodies of 5 tones with equal
duration. The melodies were deliberately made with small pitch intervals in
order to improve performance. Dowling observed that musically untrained
participants managed to identify above chance the rules of the serial music,
with highest accuracy for the reversed transformation and the lowest for the
retrograde inversion. Given that Dowling’s musical stimuli were extremely
short and simple, it is difficult to conclude that the rules of serial music may
be internalised from a passive hearing of serial music. Moreover, in a very
similar experiment using 12 tones instead of 5, Delannoy| (1972) reported that
participants did not succeed above chance in distinguishing permitted trans-
formations of a standard musical sequence from those that violated the serial
rules.

More recently, Dienes and Longuet-Higgins (2004) have attempted to
train participants in the grammar of serial music by presenting them with
50 musical sequences that illustrated one of the transformation rules of serial
music. The second half of the row was a transformation of the first half
(i.e., a reverse, a retrograde or a retrograde inversion transformation). After
this familiarisation phase, participants were presented with a new set of 50
sequences, some of them violating the rules of serial music (i.e., the last 6
notes were not a permitted transformation of the first 6). Participants were
required to differentiate grammatical pieces (according to serial rules) from
non-grammatical ones. Accuracy rates generally did not differ from chance
level, which is consistent with [Frances (1958)” and [Delannoy| (1972)’s findings.

A critical feature of the experiment of Dienes and Longuet-Higgins
(2004) is that participants had never been exposed to a single tone row. Partic-
ipants were trained with the transformational rules of serial music, but these
rules were always instantiated with a new set of tones. The temporal order
of the first 6 notes was chosen at random. As a consequence, the referential
row was constantly moving from one trial to the other. This procedure is very
demanding since it consists in requiring participants to learn abstract rules
which are illustrated by a constantly changing alphabet. To the best of our
knowledge, there is no evidence in the implicit learning domain to show that
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learning can occur in this kind of situation. If participants do not have the
opportunity to be exposed to an invariant tone row in the training phase, it
is not surprising that they fail to exhibit sensitivity to the serial grammar in
the test phase. It should be noticed that this situation violates the basic prin-
ciple of serial music postulating that only one row should be used for one
piece. Krumhansl and Sandell (1987) have provided the strongest support
for the psychological relevance of serial rules. As illustrated in their study,
experiments 1 and 2 were run with simple forms of two tone rows. That is to
say, the tone rows were played with isochronous tones that never exceeded
the pitch range of one octave. Experiments 3 and 4 were run with excerpts
of Wind Quintet op. 26 and String Quartet op. 37 by Schoenberg. The re-
sults of the classification tasks used in Experiments 2 and 3 demonstrated that
participants discriminated, above chance level, between inversion, retrograde,
and retrograde inversion of the two tone rows with correct responses varying
from 73% to 85% in Experiment 2, and from 60% to 80% in Experiment 3. At
tirst glance, this high accuracy is surprising. However, it should be noticed
that participants were exposed to very simple forms of the tone rows a great
number of times during Experiment 1. It seems likely that this exposure helps
to explain the good performance. In other words, the peculiar importance of
this study lies in the suggestion that previous exposure to a tone row can be
a critical feature for the perception of the rules of serial music. The question
remains, however, about the type of learning that actually occurred during
this prior exposure. Given that all participants had formal instruction in mu-
sic education, we cannot rule out the possibility that they used their explicit
knowledge of musical notation to mentally represent the structures of the two
TOWS.

In order to define the nature (implicit/explicit) of the knowledge in learn-
ing serial music rules, Bigand, D’Adamo and Poulin (in revision) have tested
the ability of musically untrained and trained listeners to internalise serial
music rules with 80 two-voice pieces, especially designed by the composer D.
A.D’Adamo. A set of 40 pieces defined various instantiations (transpositions)
of one twelve-tone row (grammatical pieces). The other set of 40 pieces were
derived from another twelve-tone row (ungrammatical pieces). As it is shown
in Figure 2.3 each ungrammatical piece was matched to a grammatical piece
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according to their superficial features (rhythm, pitch ranges, overall form of
melodic contour, duration, dynamics). The ungrammatical pieces differed
from the grammatical pieces only in the twelve-tone row used. In the learning
phase, 20 pieces were presented twice to the participants, who had simply to
indicate whether a given piece was heard for the first time or for the second
time. In the test phase, 20 pairs of pieces were presented to the participants.
Each pair contained a grammatical piece which had not been heard in the train-
ing phase and a matched ungrammatical piece (Figure[2.3). Since the pieces of
a pair shared the same musical surface (i.e. same pitch range, melodic contour
and rhythm), even if they were derived from two different twelve-tone rows,
they sounded very close. The participants were asked to indicate which piece
of the pair was composed in the same way as the pieces of the learning phase
had been. All participants reported extreme difficulties in performing the
task. Numerous participants complained that it was difficult to differentiate
the two pieces of the pairs. Both experimental groups nevertheless performed
above chance with 61% correct responses for non-musicians and 62% of cor-
rect responses for musicians, and with no significant difference between the
two groups. In a second experiment (run with musically untrained listeners
only), the stimuli of the learning phase were identical to those of the previous
experiment, whereas the stimuli of the test phase consisted of pairs in which
one of the pieces was derived from a retrograde inversion of the tested row.
The striking finding was that the participants continued to discriminate gram-
matical from ungrammatical pieces above chance (60% of correct responses),
suggesting that even musically untrained listeners are able to internalise via
passive exposure complex regularities derived from the twelve-tone technique.
This conclusion is consistent with other findings showing that the structures
of Western contemporary music are processed in a similar way by musically
trained and untrained listeners. After a short exposition phase, listeners were
sensitive to the structure of twelve-tone music. The perception of this music
is assumed to be based on frequency distributions of tone intervals. These
results shed some light on the implicit versus explicit nature of the acquired
knowledge, and the content of the information internalised through listening
to these pieces.

Most probably, the knowledge internalised during the listening to the
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serial pieces was inaccessible to the explicit thought of the participants. If
knowledge internalised through exposure was represented at an explicit level,
then experts should be more able than non-expert participants to explicitly
use this knowledge. This difference should result in a clear advantage for
musical experts over musically untrained listeners. If, however, the acquired
knowledge is represented at an implicit level, no strong difference should
be observed between musically expert and novice participants. The present
study converges with conclusions drawn from several other studies run with
Western tonal music and argues in favor of the implicit nature of acquired
musical knowledge.
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Figure 2.3: Higher panel: One of the two twelve-tone row used in the study (the
“grammatical” one). The row is shown in these four basic forms: original (O),
inverted (INV), retrograde (RET), and retrograde inversion (RET INV). Lower
panels: Example of pairs of matched pieces composed using two different rows
(“grammatical” and “ungrammatical”). Both pieces share the same superficial
features (rhythm, pitch ranges, overall form of melodic contour, duration,
dynamics).
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2.3 Perspectives in musical learning: using multi-

media technologies

2.3.1 How should the learning of Western tonal music be op-

timised with the help of multimedia technologies?

Explaining the theoretical core of the Western musical system is one of the
most difficult tasks for music teachers, and it is generally assumed that this
explanation should only occur at the end of the curriculum in both music
conservatoire and university departments. Lerdahl’s Tonal Pitch Space Theory
(TPST, Lerdahl, 2001)) is likely to contribute to the development of music tools
that would help music lovers as well as those at an early stage of musical
study to improve their understanding of Western tonal music. The TPST can
be considered as an idealised knowledge representation of tonal hierarchy.
The psychological representation of knowledge implies a certain number of
questions, for which different solutions have been proposed (Krumhansl et al.,
1982alb; Krumhansl and Kessler, [1982; Longuet-Higgins| [1978). For all these
approaches, tonal hierarchies are represented in the form of a multidimensional
space, in which the distances of chords from the instantiated tonic correspond
to their relative hierarchical importance. The more important the chord is,
the smaller the distance. Lerdahl successfully explains the way in which the
TPST synthesises various existing musicological and psychological models and
suggests new solutions. In the opinion of the authors, the crucial contribution
of the model is the description of a formal tool to quantify the tonal distances
between any couple of events belonging to any key, a quantification that no
other approach proposes.

The TPST model outlines several developments to the model initially
described in an earlier series of articles (Lerdahl, 1988 [1991). We summarise
here the basic ideas. According to the theory, tonal hierarchy is represented in
three embedded levels. The first two (the pitch class level and chordal level)
represent within-key hierarchies between tones and chords. The third level
represents the distances between keys (region level). The pitch class level
(basic space) represents the relation between the 12 pitch classes. It contains
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five sublevels (from level a to e), corresponding to the chromatic level (level
e), diatonic level (level d), triadic level (level c), fifth level (level b) and the
tonic level (level a). In a given context, a tonic tone, part of a tonic chord,
will be represented at all five levels. The fifth and the third tones of a tonic
chord will be represented at four levels (from b to e) and three levels (from c
to e) respectively. A diatonic but non-chordal tone will be represented at two
levels (from d to e). A non-diatonic chord will be represented at only one level
(level e). The level at which a given pitch class is represented thus reflects its
importance in the tonal context. For example, in the C major key, the tone C is
represented at all levels (from a to e), the tone G, at four levels (from b to e),
the tone E, at three levels (from c to e) and the diatonic tones of the C major
scale are represented at two levels only (from d to e).

This representation has two implications. First, it allows an understand-
ing as to why tones (e.g. of a C major chord), which are distant in interval
(C-E-G-C), can nevertheless be perceived being as close as are adjacent notes
(C-D-E-F-G). Though forming distant intervals, the notes of the chord are ad-
jacent at the triadic level in the representational space (level c). Moreover,
this explanation of musical tension bound to these forces of attraction consti-
tutes a very promising development for psychology. The second implication
concerns the computation of distances between chords. If the C major chord
was played in the context of G major, the tone F# will be represented at two
levels (from d to e), while the tone F would remain at only one level (level e).
This would produce one change in pitch class. The central idea of the TPST
is to consider the number of changes that occurs in this basic space when the
musical context is changed (as in the present example) as a way to define the
pitch-space distance between two musical events.

The second level of the model involves the chordal level, that is the
distance between chords in a given key. The model computes the distances
separating the seven diatonic chords taking into account the number of steps
that separate the roots of the chords along the circle of fifths (C-G-D-A-E-
B-F) and the number of changes in pitch-class levels created by the second
chord. Let us consider the distance between the C and G major chords in
the key of C major. The G major chord induces 4 changes in the pitch-class
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level. The dominant tone D is now represented at 2 additional levels (from
b to e), the third tone B at one additional level (from c¢ to e) and the tonic
tone at one additional level (from a to e). The number of steps that separates
the two chords on the circle of fifths equals 1. As a consequence the tonal
pitch-space distance between these two chords in this key context equals 5.
Following the same rationale, the distance in pitch-space between the tonic
and the subdominant chords equals 5. The distance between the tonic and the
submediant (sixth degree) chords equals 7, as does the distance between the
tonic and the mediant chords (third degree). The distance between the tonic
chord and the supertonic (second degree) equals 8 as does the distance between
the tonic and the diminished seventh chords (seventh degree). This model
quantifies the strength of relations in harmonic progressions. Accordingly, the
succession tonic/submediant (I/vi) corresponds to a harmonic progression that
creates stronger tension than the succession tonic/subdominant (I-IV).

The third level of the TPST model involves the regional level. It evalu-
ates distances between chords of different regions by taking into account the
distances between regions as well as the existence of a pivot region. The re-
gional space of the TPST is created by combining the cycle of fifths and the
parallel/relative major-minor cycle. That is to say, the shortest distance in re-
gional space (i.e., 7) is found between a given major key (say C major) and its
dominant (G), its subdominant (F), its parallel minor (C minor) and its relative
minor key (A minor). The greatest distance (30) is found between a major key
and the augmented fourth key (C and F#). The tonal distance between two
chords of different keys depends on the musical interpretation of the second
chord. For example, in the context of C major key the distance between a C
major chord and a C# minor chord would equal 23 if the C# is interpreted
as a sixth degree (vi) of the E major key. The distance equals 30 if the C# is
understood as the tonic chord of the Db minor key. As a consequence, the dis-
tance in pitch-space between two events that belong to distant keys depends
on the selected route between the two events. In most cases, the selected route
is defined by the overall musical context. By default, the model computes
this distance according to the principle of the shortest path: “the pitch-space
distance between two events is preferably calculated for the smallest value”
(Lerdahl, 2001} p.74). The shortest path principle is psychologically plausible.
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It has the heuristic merit of being able to influence the analysis of time-span
and prolongational reductions (Lerdahl and Jackendotff, [1983) by preferring
an analysis that reduces the value of these distances. The implementation of
this principle in an artificial system should fairly easily lead to “intelligent”
systems capable of automatic harmonic analysis.

One of the main features of the TPST as an efficient learning tool is
to bridge the intuitive mental representations of untrained listeners with the
mental representations of experts. Current developments in multimedia offer
considerable opportunities to evolve the naive representation of novices in
a given domain. The basic strategy consists in combining different modes
of knowledge representation (e.g. sounds, image, language, animation) to
progressively transform the initial mental representation into a representation
of the domain that fits as closely as possible with that of experts. In the present
case, the use of a space to describe the inner structure of the Western tonal
system considerably facilitates this transformation. The mental representation
of a complex system in a two or three-dimensional space is a metaphor that
is common in a large variety of domains and that is intuitively accessible
even for a child. A musical learning tool may thus consist of a multimedia
animation that illustrates how music progresses through pitch-space. As it
is shown in Figure 2.4 the animation displays in real-time every distance
travelled through pitch space. After having listened several times to the piece,
the journey through the pitch-space of the piece would be stored in memory
in both visual and auditory formats. After listening to several pieces of the
same stylistic period, the journeys through the pitch-space specific to this style
would be stored in memory. After listening to several pieces of the Western
music repertoire, listeners would create a mental representation of the overall
structure of the tonal pitch space that fits with that of the experts. From a
teaching perspective, the interesting point is that this mental representation
will emerge from mere exposure to musical pieces presented with this music
tool. In other words, the tool allows a passive exploration of the tonal pitch
space by visualizing in a comprehensible format the deep harmonic structure
of the heard pieces.

The structure of the space can be adapted at will and should notably
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be adjusted to suit the age of the user. At this early stage of development of
the multimedia tool, we chose a structure that mimics real space with planets
and satellites. Given the circularity of the Western musical space, only one
portion of the space can be seen at a given time point, but this portion will
progressively change when the music is moving from one region to another.
A planet metaphorically represents a key, while the satellites represent the
seven diatonic chords. Satellites corresponding to played chords are lit up in
yellow, thus representing the route of the harmonic progressions within each
key. The colour of the planet representing the key intensifies when several
chords from the key are played, thus imitating the fact that the feeling of the
tonality increases with duration. When the music modulates to another key,
chords from both the initial key and the new key light up, and the anima-
tion turns towards the new key, and then discovering another portion of the
tonal pitch-space. When the piece of music progresses rapidly towards distant
keys, as in the case of Chopin’s Prelude in E major, the pivot keys are briefly
highlighted and passed quickly. The journey depends upon the modulations
that have occurred. With the present tool, the user can associate the visual
journey through tonal pitch space with the auditory sensation created by the
music. The animation contains sufficient music theoretic information to al-
low the user to describe this musical journey in terms that are close to those
employed by musicologists. Of course, this animation may also bring other
important elements for the comprehension of harmonic processes, such as the
arrangement of chords and voice leading. Connected to a MIDI instrument,
it may equally be transformed into a tool for tonal music composition. By
chaining chords together, the user can follow his or her journey through tonal
space, and explore the structure of the tonal space.
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Figure 2.4: Musical tool derived from TPST and which is currently be-
ing developed by LEAD - This animation is available at the address http:
//www .u-bourgogne. fr/LEAD/people/bigand_e.html. This research is supported
by a CNRS grant “Société de l'information”. The animation was realised in
collaboration with Aristide Quenel.
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2.3.2 Creating learning multimedia tools for music with the

contribution of cognitive sciences and ergonomics

The first multimedia works comprising music began to emerge at the beginning
of the nineties. Since then, the number and diversity of musical multimedia
products (CD-Rom, DVD-Rom, web sites) have been increasing considerably.
However, multimedia products helping the user to integrate musical struc-
tures are rare. If we want to propose successful learning multimedia tools, the
main question is how to use multimedia resources and why. We are going to
present some assumptions of cognitive ergonomics that seem fundamental to
multimedia dedicated to music education. These assumptions will be illus-
trated by two multimedia learning tools created at the LEAD. The perceptual
supposed advantage of the tools will be evaluated during a next phase by
several tests concerning attentional processing, memory and understanding.

The first principle is that the vantage point of music learning tools
should be immediate representation formats of the non-experts. The tools have
to combine in an advantageous way the various possibilities of multimodal
representations to make these initial representations evolve towards those of
experts (the principle of affordance; (Gibson, 1977). Multimodality should be
used as a powerful means to clarify the structure of complex systems, and to
allow the user to easily develop a mental representation of the system. This
mental representation should be compatible with the representation of experts.
The aim of the project was to give listeners the access to a musical system that
is often considered as complex (contemporary music) while being potentially
of high educational value. It was an ideal opportunity to try out a multimedia
approach to the learning of a complex system.

Reduction of information and optimisation of presentation forms

One of the main problems concerning multimedia is an overload of presen-
tation forms. Multiplication of presentation forms (text, picture, animation,
video, sound, etc.) often entails a cognitive cost that is high compared to the
benefits in terms of training. This profusion of presentation forms often leads
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to an explosion of the quantity of information presented to the user, and to
the lack of an objective analysis of the presentation forms used and of the
combination of learning modes (visual & auditory, verbal & visual, etc.) avail-
able in the proposed tools. Information overload is often accompanied by an
organisation of knowledge based on models that are not adapted to the initial
knowledge of a user. The second fundamental principle in producing multime-
dia learning tools is thus reducing the quantity of information and optimizing
the form in which it is presented. Properly used multimodality, particularly
concerning the interaction between vision and audition, improves attentional
processes, memorisation of musical material, and develops the capacity to
represent the musical structures. There are several types of representation of
the musical structures. The score is the best known of the notation. However,
it requires specific knowledge and regular musical practice. There are other
forms of music representation: tablatures of string instruments, sonograms
(time-evolving spectrum), wave forms (amplitude), tracks or piano-rolls of
sequencer softwares, etc. All these representation modes can certainly be
employed in multimedia, but they often require expert knowledge.

The project carried out at the LEAD used graphical representations
that can advantageously replace the representation forms of experts. These
graphics consist of simple forms symbolizing one or more elements of mu-
sical structure (melodic contour, texture, harmonic density, rhythmic pattern,
etc). The principal constraint is that these forms should not require additional
coding, but induce the musical structure in an intuitive and direct way. Other
presentation forms, which require expert knowledge, never intervene in the
initial presentation of a musical excerpt. Figures 2.5 and 2.6l show two rep-
resentation forms of a chord sequence in the piece Couleurs de la Cité Céleste
by Oliver Messiaen. The constitution in terms of tones is identical for the
13 chords. It is the register, the duration and the change in instrumentation
between the various instruments which give listeners an impression of a suc-
cession of sound colours (Klangfarbenmelodie). The excerpt is represented by
blocks of colours whose width corresponds to the duration of the chords. The
choice of the colours has been determined by the name of the colours written
by the composer in the score. Their height symbolises the extent of chords
(from the lowest to the highest). The position on the scale (on the left) repre-



2.3. Perspectives in musical learning: using multimedia technologies 71

sents the register. Blocks appear synchronously with the sound. With this type
of representation, it is easy, for non-expert listeners, to perceive a degree of
similarity between certain chords. Based on this type of representation, a user
may intuitively become aware of the external structure of a sequence, even
if it is not sufficient to form a precise representation of the musical structure.
Figure 2.6lrepresents the same sequence of chords in form of a score. In order
to focus listener’s attention on the harmonic structure, the real duration of the
chords was replaced by an equal duration for all chords. However, in contrast
to a graphical representation of sound that was privileged here, this mode of
representation is to give the users an opportunity to decompose musical struc-
tures. The users can choose what they want to listen to: the whole sequence,
each chord separately, groups of instruments within a chord or each note of a
chord.

2¢ séquence de couleurs

Dans 12 deuxiéme séquence de couleurs, 8 couleurs se succedent
Certaines sont répétées mais jamais de fagon identigue.
Chaque couleur est définie par son ambitus, son registre ct sa durée.

Figure 2.5: Multimedia tool for learning contemporary music. Graphic repre-
sentation of a chord sequence of Couleurs de la Cité céleste by Olivier Messiaen.
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2¢ séquence de couleurs

Chague accord est constitué de la superpcsition des 12 sons du total chromatique
(le cor dcouble les trompettes 3 & 4) répartis entre les 5 groupes d'instrumentaux.
La sonorité (la couleur) de chaque accord dépend de la répartition des notes.

Clarinettes

il

I.
i

Trompettes

Trombones.

N Cliquez sur les notes du 1* accord pour
entendre les instruments séparément

Figure 2.6: Multimedia tool for learning contemporary music. Score represen-
tation of the same chord sequence as Figure 2.5.

Synthesis of knowledge and implementation of continuity

Multimedia tools of learning should synthesise the knowledge of music in
order to make it available to non-experts. Thus, it is necessary to implement
this knowledge in a way adapted to the initial knowledge of the user. In the
case of music (complex music in particular), it is important to raise the question
of perceptibility of musical structures. It is a question of knowing exactly what
should be emphasised. In our project, the pieces were selected according to
the cognitive problems they represent (relating to their aesthetic differences).
For example, Couleurs de la Cité Céleste by Messiaen is representative of the
aesthetics where colour and timbre are important. This piece is composed of
a great variety of musical elements that follow one another to form a sound
mosaic. Globally, a multimedia learning tool must favour categorisation and
memorisation of musical material, in order to allow the emergence of the
mental representation of a temporal organisation of a piece. Figure 2.71shows
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the main page of the multimedia learning tool of Messiaen’s piece. One can
see the representation of the formal structure of the excerpt in the center of the
screen. Eighticons on the right and on the left of the screen give access to eight
links (history of the piece, composer’s biography, the orchestra, a large-scale
structure of the excerpt, and four of the main materials of the piece: texts and
metaphors of the Apocalypse, Gregorian chant, colours, and bird songs).

Figure 2.7: Multimedia tool for learning contemporary music. Main page of
the multimedia learning tool of Couleurs de la Cité céleste de la Cité céleste by
Olivier Messiaen.

One of the crucial problems in the pedagogy of listening is that of at-
tention. Perception of musical structures is strongly dependent on attentional
processes. In the simplest case, attentional processes are guided by the music
itself (when, for example, a composer emphasises the principal melody by a
discrete accompaniment) or by the performer (when he chooses to empha-
sise a specific structural element). However, most of the time, music has a
complex and deliberately ambiguous structure. Contrary to the traditional
methods in music education, multimedia tools make it possible to easily focus
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the listener’s attention on internal or external elements of musical structure.

One part of our project consisted in seeking in the resources of multime-
dia the means of guiding attentional processes and, beyond, of favouring the
memorisation and the comprehension of musical structures. The schematic
representation of the formal structure of the beginning of Couleurs de la Cité
Céleste (Figure[2.7) was conceived to facilitate mental representation of a com-
plex formal structure in which short musical sequences follow one another
in form of a mosaic that would emerge during perception. This multimedia
animation does not contain any oral or textual explanation. Awareness of the
structure emerges solely from the visual and auditory interaction. The choice
of a circular representation corresponds to the form of a piece whose elements
return in a recurrent and circular way. Each piece of the mosaic corresponds
to a short musical sequence. Each colour represents a type of musical material
(e.g. blue for bird songs). Nuances of colours differentiate the variations in-
side each category of sequence. The animation takes into account the cognitive
processes of attention and memorisation. At the beginning of the animation,
the stained-glass scheme is empty. Progressively, as the music unfolds, empty
spaces are filled until the stained-glass is completed (all the sequences were
played). When a sequence has ended, the corresponding stained-glass is grad-
ually obscured (approximately 6 to 7 seconds, according to the maximum
duration of the perceptual present; Fraisse, [1957). The luminosity of the piece
of stained-glass solidifies at a very low rate. This process is very close to a
trace of an event remaining in memory. When an identical sequence returns,
the part that had been previously activated is briefly reactivated and then
turns over in stand-by. This multimedia artifice supports the categorisation
and the memorisation of materials. It also makes it possible to establish bonds
of similarity and consequently gives direction to the formal structure which
proceeds under the eyes of the user. This example illustrates how it is possible
to guide listeners to focus their attention on sequential events. It is also useful
to focus the attention of the user on simultaneous events. Figure[2.8/shows the
animated representation of the formal structure of the beginning of Eight Lines
by S. Reich. In contrast to the Messiaen’s piece represented by stained-glass,
the piece by Reich, whose unfolding follows a linear trajectory, is represented
by 8 rectangular boxes. Coloured rectangular paving stones indicate the mo-
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Violon 1

Violon 2

“ 0 ©

Figure 2.8: Multimedia tool for learning contemporary music. Formal struc-
ture represented in the multimedia learning tool of Eight Lines by S. Reich.

ment of appearance and the duration of intervention of each instrumental part.
Synchronisation between the sound and the image is visualised by a vertical
marker. When an instrument is active, its coloured paving stone is cleared up.
In Figure 2.8} the active instrumental parts are the parts of viola and violon-
cello (lines 7 and 8, at the bottom), flute and bass clarinet (lines 1 and 2, at the
top). Inside a paving stone, graphical animations, always synchronised with
music, emerge to focus the attention on the melody of the instrumental part.
The points indicate the onset of pitches, the lines indicate the melody contour.

New technologies of sound processing may provide other new possi-
bilities for multimedia learning tools for music. The sound files obtained with
these techniques or especially dedicated software can be integrated into the
multimedia in order to improve the learning tools. The possibility of an in-
teractive deconstruction or reconstruction of the musical structures combined
to specific visual interfaces is certainly the most promising perspective in the
nearest future.
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Conclusion

The power of implicit learning is without doubt one of the major contributions
of research into musical cognition. It reduces the distance between listeners
(non-musicians and musicians) and leads to question the common practices
in music education. Implicit learning supplies a solid scientific basis, together
with the contributions of cognitive psychology (memory and attending pro-
cesses), ergonomics and new technologies to create multimedia learning tools
for music.
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About this chapter

In this chapter, we provide an overview of state-of-the-art algorithms for the
automatic description of music audio signals, both from a low-level perspective
(focusing on signal characteristics) and a more musical perspective (focusing
on musically meaningful dimensions). We also provide examples of applica-
tions based on this description, such as music identification, music browsing
and music signal transformations. Throughout the chapter, a special focus is
put on promising research directions.
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3.1 Introduction

Music Information Retrieval (MIR) is a young and very active research area.
This is clearly shown in the constantly growing number and subjects of arti-
cles published in the Proceedings of the annual International Conference on
Music Information Retrieval (ISMIR, the premier international scientific forum
for researchers involved in MIR). MIR research is also increasingly published
in high-standard scientific journals (e.g. the Communications of the ACM, or
the IEEE Transactions on Audio, Speech and Language Processing)!' and inter-
national conferences, as the ACM Multimedia, the International ACM SIGIR
Conference, the IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing, the IEEE International Conference on Multimedia and Expo,
or the conference on Computer Music Modelling and Retrieval (CMMR), to
name a few. In MIR, different long-established disciplines such as Musicology,
Signal Processing, Psychoacoustics, Information Science, Computer Science,
or Statistics converge by means of a multidisciplinary approach in order to
address the wealth of scenarios for interacting with music posed by the dig-
ital technologies in the last decades (the standardisation of world-wide low-
latency networks, the extensive use of efficient search engines in everyday life,
the continuously growing amount of multimedia information on the web, in
broadcast data streams or in personal and professional databases and the rapid
development of on-line music stores). Applications are manifold; consider for
instance automated music analysis, personalised music recommendation, on-
line music access, query-based retrieval (e.g. “by-humming,” “by-example”)
and automatic play-list generation. Among the vast number of disciplines and
approaches to MIR (overviews of which can be found in [Downie) 2003al and
Ori0,2006), content processing of audio signals plays an important role. Music
comes in many forms but content-based audio processing is only concerned
with one of them: audio signals? This chapter does not deal with the anal-

both featuring recent special issues on MIR, see
http://portal.acm.org/citation.cfm?id=1145287.1145308/and

http://www.ewh.ieee.org/soc/sps/tap/sp_-issue/ctp-mir.html
?Hence the undifferentiated use in this chapter of the terms “music content processing”

and “audio content processing.”
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ysis of symbolic music representations as e.g. digitised scores or structured
representation of music events as MIDI. We also do not address the relatively
new direction of research concerning the automated analysis of social, cultural
and marketing dimensions of music networks (on these topics, we refer to
Chapter4] and the works by Cano et al., 2005b} 2006aland by [Whitman), 2005).
This section defines the notion of music content at diverse levels of abstraction
and what we understand by processing music content: both its description and
its exploitation. We also shortly mention representation issues in music content
processing. Section 3.2 provides an overview of audio content description
according to low-level features and diverse musically-meaningful dimensions
as pitch, melody and harmony (see Section [3.2.4), rhythm (see Section [3.2.5),
and music genre (see Section[3.2.6). The organisation follows increasing levels
of abstraction. In Section 3.3, we address content exploitation and present
different applications to content-based audio description. Finally, promising
avenues for future work in the field are proposed in Section 3.4l

3.1.1 Music content: A functional view

A look at a dictionary reveals, at least, three senses for the word “content”:

e Everything that is included in a collection;
e What a communication that is about something is about;

e The sum or range of what has been perceived, discovered or learned.

The disciplines of information science and linguistics offer interesting per-
spectives on the meaning of this term. However, we will rather focus on a
more pragmatic view. The Society of Motion Picture and Television Engineers
(SMPTE) and the European Broadcasting Union (EBU) have defined content
as the combination of two entities termed metadata and essence. Essence is the
raw program material itself, the data that directly encodes pictures, sounds,
text, video, etc. Essence can also be referred to as media (although the former
does not entail the physical carrier). In other words, essence is the encoded
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information that directly represents the actual message, and it is normally pre-
sented in a sequential, time-dependent manner. On the other hand, metadata
(literally, “data about the data”) is used to describe the essence and its different
manifestations. Metadata can be classified, according to SMPTE/EBU, into
several categories:

e Essential (meta-information that is necessary to reproduce the essence,
like the number of audio channels, the Unique Material Identifier, the
video format, etc.);

e Access (to provide control and access to the essence, i.e. copyright infor-
mation);

e Parametric (to define parameters of the essence capture methods like
camera set-up, microphone set-up, perspective, etc.);

e Relational (to achieve synchronisation between different content compo-
nents, e.g. time-code);

e Descriptive (giving a description of the actual content or subject matter
in order to facilitate the cataloging, search, retrieval and administration
of content; i.e. title, cast, keywords, classifications of the images, sounds
and texts, etc.).

In a quite similar way the National Information Standards Organisation con-
siders three main types of metadata:

e Descriptive metadata, which describe a resource for purposes such as
discovery and identification; they can include elements such as title,
abstract, author, and keywords.

e Structural metadata, which indicate how compound objects are put to-
gether, for example, how visual or audio takes are ordered to form a
seamless audiovisual excerpt.

e Administrative metadata, which provide information to help manage a
resource, such as “when” and “how” it was created, file type and other
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technical information, and who can access it. There are several subsets
of administrative data; two of them that are sometimes listed as separate
metadata types are:

- Right Management metadata, which deals with intellectual property
rights;
— Preservation metadata, which contains information needed to archive

and preserve a resource.

In accordance with these rather general definitions of the term “metadata,” we
propose to consider as content all that can be predicated from a media essence. Any
piece of information related to a music piece that can be annotated, extracted,
and that is in any way meaningful (i.e. it carries semantic information) to
some uset, can be technically denoted as metadata. Along this rationale, the
MPEG-7 standard defines a content descriptor as “a distinctive characteristic
of the data which signifies something to somebody” (Manjunath et al., 2002).
This rather permissive view on the nature of music contents has a drawback:
as they represent many different aspects of a music piece, metadata are not
certain to be understandable by any user. This is part of the “user-modelling
problem,” whose lack of precision participates in the so-called semantic gap,
that is, “the lack of coincidence between the information that one can extract
from the (sensory) data and the interpretation that the same data has for a
user in a given situation” (Smeulders et al., 2000). That has been signaled by
several authors (Smeulders et al., 2000; Lew et al., 2002} Jermyn et al.,2003) as
one of the recurrent open issues in systems dealing with audiovisual content.
It is therefore important to consider metadata together with their functional
values and address the question of which content means what to which users,
and in which application. A way to address this issue is to consider content
hierarchies with different levels of abstraction, any of them potentially useful
for some users. In that sense, think of how different a content description of
a music piece would be if the targeted user was a naive listener or an expert
musicologist. Even a low-level descriptor such as the spectral envelope of a
signal can be thought of as a particular level of content description targeted for
the signal processing engineer. All these specifically targeted descriptions can
be thought of as different instantiations of the same general content description
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scheme. Let us here propose the following distinction between descriptors of
low, mid and high levels of abstraction (the latter being also sometimes referred
to as “semantic” descriptors) (Lesaffre et al., 2003; Herrera, in print):

e Alow-level descriptor can be computed from the essence data in a direct
or derived way (i.e. after signal transformations like Fourier or Wavelet
transforms, after statistical processing like averaging, after value quanti-
sation like assignment of a discrete note name for a given series of pitch
values, etc.). Most of low-level descriptors make little sense to the ma-
jority of users but, on the other hand, their exploitation by computing
systems are usually easy. They can be also referred to as “signal-centered
descriptors” (see Section 3.2.1).

e Mid-level descriptors require an induction operation that goes from avail-
able data towards an inferred generalisation about them. These descrip-
tors usually pave the way for labelling contents, as for example a neural
network model that makes decisions about music genre or about tonality,
or a Hidden Markov Model that makes it possible to segment a song ac-
cording to timbre similarities. Machine learning and statistical modelling
make mid-level descriptors possible, but in order to take advantage of
those techniques and grant the validity of the models, we need to gather
large sets of observations. Mid-level descriptors are also sometimes re-
ferred to as “object-centered descriptors.”

e The jump from low- or mid-level descriptors to high-level descriptors
requires bridging the semantic gap. Semantic descriptors require an
induction that has to be carried by means of a user-model (in order to
yield the interpretation of the description), and not only a data-model as
it was in the case of mid-level descriptors. As an example, let us imagine
a simplistic “mood” descriptor consisting of labels “happy” and “sad.”
In order to compute such labels, one may? compute the tonality of the
songs (i.e. “major” and “minor”) and the tempo by means of knowledge-
based analyzes of spectral and amplitude data. Using these mid-level
descriptors, a model for computing the labels “happy” and “sad” would

Sand it is only a speculation here
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be elaborated by getting users’ ratings of songs in terms of “happy”
and “sad” and studying the relationships between these user-generated
labels and values for tonality and tempo. High-level descriptors can also
be referred to as “user-centered descriptors.”

Standards In order to be properly exploited, music content (either low-, mid-
or high-level content) has to be organised into knowledge structures such as
taxonomies, description schemes, or ontologies. The Dublin Core and MPEG-
7 are currently the most relevant standards for representing music content.
The Dublin Core (DC) was specified by the Dublin Core Metadata Initiative,
an institution that gathers organisations such as the Library of Congress, the
National Science Foundation, or the Deutsche Bibliothek, to promote the wide-
spread adoption of interoperable metadata standards. DC specifies a set of six-
teen metadata elements, a core set of descriptive semantic definitions, which is
deemed appropriate for the description of content in several industries, disci-
plines, and organisations. The elements are Title, Creator, Subject, Description,
Publisher, Contributor, Date, Type, Format, Identifier, Source, Language, Re-
lation, Coverage, Rights, and Audience. Description, for example, can be an
abstract, a table of contents, a graphical representation or free text. DC also
specifies a list of qualifiers that refine the meaning and use of the metadata
elements, which open the door to refined descriptions and controlled-term
descriptions. DC descriptions can be represented using different syntaxes,
such as HTML or RDF/XML. On the other hand, MPEG-7 is a standardisation
initiative of the ISO/IEC Moving Picture Expert Group that, contrasting with
other MPEG standards, does not address the encoding of audiovisual essence.
MPEG-7 aims at specifying an interface for the description of multimedia
contents. MPEG-7 defines a series of elements that can be used to describe
content, but it does not specify the algorithms required to compute values for
those descriptions. The building blocks of MPEG-7 description are descriptors,
description schemes (complex structures made of aggregations of descriptors),
and the Description Definition Language (DDL), which defines the syntax that
an MPEG-7 compliant description has to follow. The DDL makes hence pos-
sible the creation of non-standard, but compatible, additional descriptors and
description schemes. This is an important feature because different needs will
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call for different kinds of structures, and for different instantiations of them.
Depending on the theoretical and/or practical requirements of our problem, the
required descriptors and description schemes will vary but, thanks to the DDL,
we may build the proper structures to tailor our specific approach and required
functionality. MPEG-7 descriptions are written in XML but a binary format
has been defined to support their compression and streaming. The MPEG-7
standard definition covers eight different parts: Systems, DDL, Visual, Audio,
Multimedia Description Schemes, Reference, Conformance and Extraction. In
the audio section, we find music-specific descriptors for melody, rhythm or
timbre, and in the Multimedia Description Schemes we find structures suit-
able to define classification schemes and a wealth of semantic information. As
mentioned by (Gomez et al. (2003alb)), the status of the original standard (see
Manjunath et al., 2002, for an overview), as to representing music contents,
is nevertheless a bit deceiving and it will probably require going beyond the
current version for it to be adopted by the digital music community.

3.1.2 Processing music content: Description and exploitation

“Processing,” beyond its straight meaning of “putting through a prescribed
procedure,” usually denotes a functional or computational approach to a wide
range of scientific problems. “Signal processing” is the main term of reference
here, but we could also mention “speech processing,” “language processing,”
“visual processing” or “knowledge processing.” A processing discipline fo-
cuses on the algorithmic level as defined by Marr (1982). The algorithmic
level describes a system in terms of the steps that have to be carried out to
solve a given problem. This type of description is, in principle, independent of
the implementation level (as the algorithm can be effectively implemented in
different ways). relationships and in terms of what is computed and why: for
a given computational problem, several algorithms (each one implemented in
several different ways) can be defined. The goal of a functional approach is
that of developing systems that provide solutions to a given computational
problem without considering the specific implementation of it. However, it
is important to contrast the meaning of content processing with that of sig-
nal processing. The object of signal processing is the raw data captured by
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sensors, whereas content processing deals with an object that is within the
signal, embedded in it like a second-order code, and to which we refer to
using the word metadata. The processes of extraction and modelling these
metadata require the synergy of, at least, four disciplines: Signal Processing,
Artificial Intelligence, Information Retrieval, and Cognitive Science. Indeed,
they require, among other things:

e Powerful signal analysis techniques that make it possible to address com-
plex real-world problems, and to exploit context- and content-specific

constraints in order to maximise their efficacy.

e Reliable automatic learning techniques that help building models about
classes of objects that share specific properties, about processes that show
e.g. temporal trends.

e Availability of large databases of describable objects, and the technologies
required to manage (index, query, retrieve, visualise) them.

e Usable models of the human information processing involved in the pro-
cesses of extracting and exploiting metadata (i.e. how humans perceive,
associate, categorise, remember, recall, and integrate into their behavior
plans the information that might be available to them by means of other
content processing systems).

Looking for the origins of music content processing, we can spot different
forerunners depending on the contributing discipline that we consider. When
focusing on the discipline of Information Retrieval, Kassler (1966) and [Lincoln
(1967)) are among the acknowledged pioneers. The former defines music infor-
mation retrieval as “the task of extracting, from a large quantity of music data,
the portions of that data with respect to which some particular musicological
statement is true” (p. 66) and presents a computer language for addressing
those issues. The latter discusses three criteria that should be met for au-
tomatic indexing of music material: eliminating the transcription by hand,
effective input language for music, and an economic means for printing the
music. This thread was later followed by Byrd! (1984), Downiel (1994), McNab
et al.| (1996) and Blackburn/ (2000) with works dealing with score processing,
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representation and matching of melodies as strings of symbols, or query by
humming. Another batch of forerunners can be found when focusing on Dig-
ital Databases concepts and problems. Even though the oldest one dates back
to the late eighties (Eaglestone, [1988), the trend towards databases for “content
processing” emerges more clearly in the early nineties (de Koning and Oates,
1991;; Eaglestone and Verschoor, 1991} [Feiten et al., 1991} Keislar et al., [1995).
These authors address the problems related to extracting and managing the
acoustic information derived from a large amount of sound files. In this group
of papers, we find questions about computing descriptors at different levels
of abstraction, ways to query a content-based database using voice, text, and
even external devices, and exploiting knowledge domain to enhance the func-
tionalities of retrieval systems. To conclude with the antecedents for music
content processing, we must also mention the efforts made since the last 30
years in the field of Music Transcription, whose goal is the automatic recov-
ering of symbolic scores from acoustic signals (see [Klapuri and Davy, 2006
for an exhaustive overview of music transcription research and |Scheirer, 2000
for a critical perspective on music transcription). Central to music transcrip-
tion is the segregation of the different music streams that coexist in a complex
music rendition. Blind Source Separation (BSS) and Computational Auditory
Scene Analysis (CASA) are two paradigms that address music stream segre-
gation. An important conceptual difference between them is that, unlike the
latter, the former intends to actually separate apart the different streams that
summed together make up the multi-instrumental music signal. BSS is the
agnostic approach to segregate music streams, as it usually does not assume
any knowledge about the signals that have been mixed together. The strength
of BSS models (but at the same time its main problem in music applications)
is that only mutual statistical independence between the source signals is as-
sumed, and no a priori information about the characteristics of the source
signals (Casey and Westner, 2000} Smaragdis| 2001). CASA, on the other hand,
is partially guided by the groundbreaking work of Bregman| (1990) — who
originally coined the term “Auditory Scene Analysis” (ASA) — on the percep-
tual mechanisms that enables a human listener to fuse or fission concurrent
auditory events. CASA addresses the computational counterparts of ASA.
Computer systems embedding ASA theories assume, and implement, specific
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heuristics that are hypothesised to play a role in the way humans perceive the
music, as for example Gestalt principles. Worth mentioning here are the works
by Mellinger| (1991), Brown! (1992), Ellis (1996), Kashino and Murase (1997),
and Wang and Brown! (2006). A comprehensive characterisation of the field of
music content processing was offered by [Leman! (2003): “the science of musi-
cal content processing aims at explaining and modelling the mechanisms that
transform information streams into meaningful musical units (both cognitive
and emotional).” Music content processing is, for Leman, the object of study
of his particular view of musicology, much akin to the so-called systematic
musicology than to historic musicology. He additionally provides a definition
of music content processing by extending it along three dimensions:

e The intuitive-speculative dimension, which includes semiotics of music,
musicology, sociology, and philosophy of music. These disciplines pro-
vide a series of concepts and questions from a culture-centric point of
view; music content is, following this dimension, a culture-dependent

phenomenon.

e The empirical-experimental dimension, which includes research in phys-
iology, psychoacoustics, music psychology, and neuro-musicology. These
disciplines provide most of the empirical data needed to test, develop or
ground some elements from the intuitive dimension; music content is,
following this dimension, a percept in our auditory system.

e The computation-modelling dimension, which includes sound analysis
and also computational modelling and simulation of perception, cog-
nition and action. Music content is, following this dimension, a series
of processes implemented in a computer, intended to emulate a human
knowledge structure.

One can argue that these three dimensions address only the descriptive aspect
of music content processing. According to |Aigrain| (1999), “content process-
ing is meant as a general term covering feature extraction and modelling
techniques for enabling basic retrieval, interaction and creation functionality.”
He also argues that music content processing technologies will provide “new
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aspects of listening, interacting with music, finding and comparing music, per-
forming it, editing it, exchanging music with others or selling it, teaching it,
analyzing it and criticizing it.” We see here that music content processing can
be characterised by two different tasks: describing and exploiting content. Fur-
thermore, as mentioned above, the very meaning of “music content” cannot
be entirely grasped without considering its functional aspects and including
specific applications, targeted to specific users (Gouyon and Meudic, 2003).
Hence, in addition to describing music content (as reviewed in Section [3.2),
music content processing is also concerned with the design of computer sys-
tems that open the way to a more pragmatic content exploitation according to
constraints posed by Leman’s intuitive, empirical and computational dimen-
sions (this exploitation aspect is the subject of Section [3.3).

3.2 Audio content description

3.2.1 Low-level audio features

Many different low-level features can be computed from audio signals. Lit-
erature in signal processing and speech processing provides us with a dra-
matic amount of techniques for signal modelling and signal representations
over which features can be computed. Parametric methods (e.g. AR mod-
elling, Prony modelling) directly provide such features, while additional post-
processing is necessary to derive features from non-parametric methods (e.g. peaks
can be extracted from spectral or cepstral representations). A comprehensive
overview of signal representation and modelling techniques and their associ-
ated features is clearly beyond the scope of this chapter. Thus, we will only
mention some features commonly used in music audio signal description, with
a special focus on work published in the music transcription and MIR litera-
ture. Commonly, the audio signal is first digitised (if necessary) and converted
to a general format, e.g. mono PCM (16 bits) with a fixed sampling rate (rang-
ing from 5 to 44.1 KHz). A key assumption is that the signal can be regarded as
being stationary over intervals of a few milliseconds. Therefore, the signal is
divided into frames (short chunks of signal) of for example 10 ms. The number
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of frames computed per second is called frame rate. A tapered window func-
tion (e.g. a Gaussian or Hanning window) is applied to each frame to minimise
the discontinuities at the beginning and end. Consecutive frames are usually
considered with some overlap for smoother analyzes. The analysis step, the
hop size, equals the frame rate minus the overlap.

Temporal features Many audio features can be computed directly from the
temporal representation of these frames, for instance, the mean (but also the
maximum or the range) of the amplitude of the samples in a frame, the energy, the
zero-crossing rate, the temporal centroid (Gomez et al., 2005) and auto-correlation
coefficients (Peeters,2004). Some low-level features have also shown to correlate
with perceptual attributes, for instance, amplitude is loosely correlated with
loudness.

Spectral features It is also very common to compute features on a differ-
ent representation of the audio, as for instance the spectral representation.
Hence, a spectrum is obtained from each signal frame by applying a Discrete
Fourier Transform (DFT), usually with the help of the Fast Fourier Transform
(FFT). This procedure is called Short-Time Fourier Transform (STFT). Some-
times, the time-frequency representation is further processed by taking into
account perceptual processing that takes place in the human auditory system
as for instance the filtering performed by the middle-ear, loudness perception,
temporal integration or frequency masking (Moore} [1995). Many features can
be computed on the obtained representation, e.g. the spectrum energy, energy
values in several frequency sub-bands (e.g. the perceptually-motivated Bark
bands, Moore, [1995), the mean, geometric mean, spread, centroid, flatness, kurtosis,
skewness, spectral slope, high-frequency content and roll-off of the spectrum fre-
quency distribution or the kurtosis and skewness of the spectrum magnitude
distribution (see Peeters, 2004/ and (Gomez et al., 2005 for more details on these
numerous features). Further modelling of the spectral representation can be
achieved through sinusoidal modelling (McAulay and Quatieri, 1986) or sinu-
soidal plus residual modelling (Serra, [1989). Other features can be computed
on the series of spectral peaks corresponding to each frame and on the spectrum
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of the residual component. Let us mention, for instance, the mean (and the ac-
cumulated) amplitude of sinusoidal and residual components, the noisiness, the
harmonic distortion, the harmonic spectral centroid, the harmonic spectral tilt and
different ratios of peak amplitudes as the first, second and third tristimulus or
the odd-to-even ratio (Serra and Bonada, [1998; Gémez et al.,2005). Bear in mind
that other transforms can be applied instead of the DFT such as the Wavelet
(Kronland-Martinet et al.,[1987) or the Wigner-Ville transforms (Cohen, [1989).

Cepstral features Mel-Frequency Cepstrum Coefficients (MFCCs) are wide-
spread descriptors in speech research. The cepstral representation has been
shown to be of prime importance in this field, partly because of its ability
to nicely separate the representation of voice excitation (the higher coeffi-
cients) from the subsequent filtering performed by the vocal tract (the lower
coefficients). Roughly, lower coefficients represent spectral envelope (i.e. the
formants) while higher ones represent finer details of the spectrum, among
them the pitch (Oppenheim and Schater, 2004). One way of computing the
Mel-Frequency Cepstrum from a magnitude spectrum is the following;:

1. Projection of the frequency axis from linear scale to the Mel scale of
lower dimensionality (i.e. 20, by summing magnitudes in each of the 20
frequency bands of a Mel critical-band filter-bank);

2. Magnitude logarithm computation;

3. Discrete Cosine Transform (DCT).

The number of output coefficients of the DCT is variable. It is often set to 13,
as in the standard implementation of the MFCCs detailed in the widely-used
speech processing software Hidden Markov Model Toolkit (HTK)®

Temporal evolution of frame features Apart from the instantaneous, or
frame, feature values, many authors focus on the temporal evolution of fea-
tures (seeMeng), 2006, for an overview). The simplest way to address temporal

“http://htk.eng.cam.ac.uk/
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evolution of features is to compute the derivative of feature values (which can
be estimated by a first-order differentiator). The degree of change can also be
measured as the feature differential normalised with its magnitude (Klapuri
etal,,2006). This is supposed to provide a better emulation of human audition,
indeed, according to Weber’s law, for humans, the just-noticeable-difference in
the increment of a physical attribute depends linearly on its magnitude before
incrementing. That is, Ax/x (where x is a specific feature and Ax is the smallest
perceptual increment) would be constant.

3.2.2 Segmentation and region features

Frame features represent a significant reduction of dimensionality with respect
to the audio signal itself, however, it is possible to further reduce the dimen-
sionality by focusing on features computed on groups of consecutive frames
(Meng), 2006)), often called regions. An important issue here is the determina-
tion of relevant region boundaries: i.e. the segmentation process. Once a given
sound has been segmented into regions, it is possible to compute features as
statistics of all of the frame features over the whole region (Serra and Bonada)
1998).

Segmentation Segmentation comes in different flavors. For McAdams and
Bigand (1993), it “refers to the process of dividing an event sequence into dis-
tinct groups of sounds. The factors that play a role in segmentation are similar
to the grouping principles addressed by Gestalt psychology.” This definition
implies that the segmentation process represents a step forward in the level
of abstraction of data description. However, it may not necessarily be the
case. Indeed, consider an adaptation of a classic definition coming from the
visual segmentation area (Pal and Pal, [1993): “[sound] segmentation is a pro-
cess of partitioning [the sound file/stream] into non-intersecting regions such
that each region is homogeneous and the union of no two adjacent regions is
homogeneous.” The notion of homogeneity in this definition implies a prop-
erty of signal or feature stationarity that may equate to a perceptual grouping
process, but not necessarily. In what is sometimes referred to as model-free
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segmentation, the main idea is using the amount of change of a feature vector
as a boundary detector: when this amount is higher than a given threshold,
a boundary change decision is taken. Threshold adjustment requires a cer-
tain amount of trial-and-error, or fine-tuned adjustments regarding different
segmentation classes. Usually, a smoothing window is considered in order to
weight contributions from closer observations (Vidal and Marzal, 1990, p. 45).
It is also possible to generalise the previous segmentation process to multi-
dimensional feature vectors. There, the distance between consecutive frames
can be computed with the help of different measures as for example the Maha-
lanobis distance (Tzanetakis and Cook, [1999). In the same vein, [Footel (2000)
uses MFCCs and the cosine distance measure between pairs of frames (not
only consecutive frames), which yields a dissimilarity matrix that is further
correlated with a specific kernel. Different kernels can be used for different
types of segmentations (from short- to long-scale). The level of abstraction
that can be attributed to the resulting regions may depend on the features
used in the first place. For instance, if a set of low-level features is known to
correlate strongly with a human percept (as the fundamental frequency corre-
lates with the pitch and the energy in Bark bands correlates with the loudness)
then the obtained regions may have some relevance as features of mid-level
of abstraction (e.g. music notes in this case). Model-based segmentation on
the other hand is more directly linked to the detection of mid-level feature
boundaries. It corresponds to a focus on mid-level features that are thought,
a priori, to make up the signal. A classical example can be found in speech
processing where dynamical models of phonemes, or words, are built from
observations of labelled data. The most popular models are Hidden Markov
Models (HMM) (Rabiner, 1989). Applications of HMMs to the segmentation
of music comprise segmentation of fundamental frequency envelopes in mu-
sic notes (Raphael, 1999) and segmentation of MFCC-based temporal series in
regions of globally-homogeneous timbres (Batlle and Cano), 2000). Rossignol
(2000) proposes other examples of model-based segmentation and reports on
the performance of different induction algorithms — Gaussian Mixture Models
(GMM), k-Nearest Neigbours (k-NN) and Artificial Neural Networks (ANN)
— in the tasks of speech/music segmentation and intra-note segmentation (see
also Chapter ). In the more general context of signal segmentation (not just
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music signals), Basseville and Nikiforovl| (1993) propose many segmentation
techniques, some of which entail the use of signal models. For instance, they
propose a time-domain technique in which two temporal windows are used:
a sliding window with fixed size and a window with constant size increase.
In this technique, a distance estimation is computed between two AR models
built on each window (derived from the cross entropy between the conditional
distributions of the two models). Here also, a threshold is used to determine
whether the distance should be considered representative of a boundary or
not. Application of this technique to music signals can be found in the works
by Jehan! (1997) and Thornburg and Gouyon! (2000).

Note onset detection The detection of note onsets in music signals has at-
tracted many computer music researchers since the early eighties (Gordon)
1984). Several methods have been designed, making use of diverse low-level
features. The simplest focus on the temporal variation of a single feature, for
instance the energy or the pitch. However, the combined use of multiple fea-
tures (as energy and pitch) seems to provide better estimates, state-of-the-art
algorithms often making use of band-wise energy processing (Klapuri, 1999}
Bello, 2003). Model-based note onset segmentation has also been an active re-
search field (Thornburg and Gouyon, 2000). The literature on onset detection
is extensive and a review is beyond the scope of this chapter (for an exhaustive
overview, see Bello, 2003} Bello et al., 2005).

Intra-note segmentation In addition to note onset detection, some research
has also been dedicated to the segmentation of music signals in terms of Attack,
Sustain and Release regions. This is especially relevant, from a feasibility point
of view, when dealing with isolated instrument samples or musical phrases
played by a monophonic instrument (Jenssen)1999;Maestre and Gémez,2005).
Given starting and ending boundaries of these regions, it is possible to compute
a number of features that relate to their durations as for example the log-attack
time (Peeters, 2004). Some authors also focus on the variations of low-level
frame features in these regions, such as the energy (Maestre and Gémez, 2005)
or the fundamental frequency in sustain regions, characterizing therefore the
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vibrato (Herrera and Bonada), [1998; [Rossignol et al., [1999; [Collins, 2005).

Speech/Music segmentation A large body of work in automatic segmenta-
tion of audio signal also concerns the determination of boundaries of speech
regions and music regions. This is usually achieved by model-based segmenta-
tion of multiple low-level features (Scheirer and Slaney), [1997; Harb and Chen,
2003} Pinquier et al., 2003} Kotti et al., 2006).

3.2.3 Audio fingerprints

Audio fingerprints have attracted a lot of attention for their usefulness in audio
identification applications (see Section 3.3). Audio fingerprints are compact
content-based signatures summarizing audio recordings (e.g. energies in spe-
cific frequency bands) that can be extracted from a music audio piece and
stored in a database. Fingerprints of unlabelled pieces of audio can be cal-
culated and matched against those stored in the database, providing a link
to corresponding metadata (e.g. artist and song name). Section [3.3] provides
more details on the main requirements of fingerprinting systems and appli-
cation scenarios (for a general functional framework of audio fingerprinting
systems and an overview of current technologies, see/Cano et al., 2005a). This
section provides a short overview of audio features commonly used in the
design of audio fingerprints.

Fingerprint extraction The fingerprint extraction derives a set of features
from a recording in a concise and robust form. Fingerprint requirements

include:

e Discrimination power over huge numbers of other fingerprints;
e Invariance to distortions;

e Compactness;

Note that “fingerprinting” should not be mistaken for “watermarking,” differences are
explained in (Gomes et al.,[2003).
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e Computational simplicity.

The simplest approach one may think of — using directly the digitised wave-
form - is neither efficient nor effective. A more efficient implementation of
this approach could use a hash method such as MD5 (Message Digest 5) or
CRC (Cyclic Redundancy Checking) to obtain a compact representation of the
binary file. However, hash values are fragile, a single bit flip is sufficient for
the hash to completely change. They are also not robust to compression or
distortions. Most fingerprint extraction systems consist of a front-end and a
fingerprint modelling block (see Figure[3.1). The front-end computes low-level
features from the signal and the fingerprint model defines the final fingerprint
representation; we now briefly describe them in turn.

Audio
FRONT-END
Y
A/D Conversion
Mono Conversion » Preprocessing Frame size = 10-500 ms
Sampling Rate Overlap=50 - 98 %
Pre-emphasis / 2 Window Type
Normalisation )
Band-filtering Framing& Overlap
GSM coder/decoder T
Energy Filterbank
DFT ¥ Transform MFCC
MCLT / Spectral Flatness
Haar v High-level descriptors
Hadamard Pitch
Wavelet Feature extract. [N Bass
™~ Robust Hash
iy Freg. Modulation
Post-Processing
Normalisation |
Decorrelation v (VQ) Histograms
Differentiation Trajectories
Quantisation FINGERPRINT Statistics
MODELING ~ Sg M
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v Error Correc. Words
Audio High-level attribut.

Fingerprint

Figure 3.1: Fingerprint Extraction Framework: Front-end (top) and Fingerprint
modelling (bottom).
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Front-end Several driving forces co-exist in the design of the front-
end: dimensionality reduction, perceptually meaningful parameters (similar
to those used by the human auditory system), invariance/robustness (to chan-
nel distortions, background noise, etc.) and temporal correlation (systems that
capture spectral dynamics). After the first step of audio digitisation, the audio
is sometimes preprocessed to simulate the channel, for example band-pass
tiltered in a telephone identification task. Other types of processing are a GSM
coder/decoder in a mobile phone identification system, pre-emphasis, ampli-
tude normalisation (bounding the dynamic range to [-1,1]). After framing
the signal in small windows, overlap must be applied to assure robustness
to shifting (i.e. when the input data is not perfectly aligned to the recording
that was used for generating the fingerprint). There is a trade-off between the
robustness to shifting and the computational complexity of the system: the
higher the frame rate, the more robust to shifting the system is but at a cost
of a higher computational load. Then, linear transforms are usually applied
(see Figure [3.1). If the transform is suitably chosen, the redundancy is sig-
nificantly reduced. There are optimal transforms in the sense of information
packing and de-correlation properties, like Karhunen-Loeve (KL) or Singular
Value Decomposition (SVD). These transforms, however, are computationally
complex. For that reason, lower complexity transforms using fixed basis vec-
tors are common (e.g. the DFT). Additional transformations are then applied
in order to generate the final acoustic vectors. In this step, we find a great
diversity of algorithms. The objective is again to reduce the dimensionality
and, at the same time, to increase the invariance to distortions. It is very
common to include knowledge of the transduction stages of the human audi-
tory system to extract more perceptually meaningful parameters. Therefore,
many systems extract several features performing a critical-band analysis of
the spectrum. Resulting features are for example MFCCs, energies in Bark-
scaled bands, geometric mean of the modulation frequency, estimation of the
energy in Bark-spaced band-filters, etc., or many of the features presented in
Section B.2.Jl Some examples are given in Figure 3.2l Most of the features
described so far are absolute measurements. In order to better characterise
temporal variations in the signal, higher order time derivatives are added to
the signal model. Some systems compact the feature vector representation
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Figure 3.2: Feature Extraction Examples

using transforms such as Principal Component Analysis (PCA). It is also quite
common to apply a very low resolution quantisation (ternary or binary) to the
features, the purpose of which is to gain robustness against distortions and

reduce the memory requirements.

Fingerprint models The sequence of features calculated on a frame-
by-frame basis is then further reduced to a fingerprint model that usually
implies statistics of frame values (mean and variance) and redundancies in
frame vicinity. A compact representation can also be generated by cluster-
ing the feature vectors. The sequence of vectors is thus approximated by a
much lower number of representative code vectors, a codebook. The temporal
evolution of audio is lost with this approximation, but can be kept by collect-
ing short-time statistics over regions of time or by HMM modelling (Batlle
et al., 2002). At that point, some systems also derive musically-meaningful
attributes from low-level features, as the beats (Kirovski and Attias, 2002) (see
SectionB.2.5) or the predominant pitch (Blum et al, 1999) (see Section 3.2.4).
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3.2.4 Tonal descriptors: From pitch to key

This section first reviews computational models of pitch description and then
progressively addresses tonal aspects of higher levels of abstraction that imply
different combinations of pitches: melody (sequence of single pitches combined
over time), pitch classes and chords (simultaneous combinations of pitches), and
chord progressions, harmony and key (temporal combinations of chords).

Pitch

The fundamental frequency is the main low-level descriptor to consider when
describing melody and harmony. Due to the significance of pitch detection
for speech and music analysis, a lot of research has been done in this field.
We present here a brief review of the different approaches for pitch detection:
fundamental frequency estimation for monophonic sounds, multi-pitch esti-
mation and predominant pitch estimation. We refer to the paper by (Gémez
et al. (2003c) for an exhaustive review.

Fundamental frequency estimation for monophonic sounds As illustrated
in Figure[3.3] the fundamental frequency detection process can be subdivided
into three successive steps: the preprocessor, the basic extractor, and the post-
processor (Hess| 1983). The basic extractor converts the input signal into a
series of fundamental frequency estimates, one per analysis frame. Pitched/un-
pitched measures are often additionally computed to decide whether estimates
are valid or should be discarded (Cano, 1998). The main task of the pre-
processor is to facilitate the fundamental frequency extraction. Finally, the
post-processor performs more diverse tasks, such as error detection and cor-
rection, or smoothing of an obtained contour. We now describe these three
processing blocks in turn. Concerning the main extractor processing block, the
tirst solution was to adapt the techniques proposed for speech (Hess| 1983).
Later, other methods have been specifically designed for dealing with music
signals. These methods can be classified according to their processing domain:
time-domain algorithms vs frequency-domain algorithms. This distinction is
not always so clear, as some of the algorithms can be expressed in both (time
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Figure 3.3: Steps of the fundamental frequency detection process

and frequency) domains, as the autocorrelation function (ACF) method. An-
other way of classifying the different methods, more adapted to the frequency
domain, is to distinguish between spectral place algorithms and spectral inter-
val algorithms (Klapuri, 2004). The spectral place algorithms weight spectral
components according to their spectral location. Other systems use the infor-
mation corresponding to spectral intervals between components. Then, the
spectrum can be arbitrarily shifted without affecting the output value. These
algorithms work relatively well for sounds that exhibit inharmonicity, because
intervals between harmonics remain more stable than the places for the par-
tials.

Time-domain algorithms Thesimplest time-domain technique is based
on counting the number of times the signal crosses the 0-level reference, the
zero-crossing rate (ZCR). This method is not very accurate when dealing with
noisy signals or harmonic signals where the partials are stronger than the
fundamental. Algorithms based on the time-domain autocorrelation function
(ACF) have been among the most frequently used fundamental frequency es-
timators. ACF-based fundamental frequency detectors have been reported to
be relatively noise immune but sensitive to formants and spectral peculiari-
ties of the analyzed sound (Klapuri, 2004). Envelope periodicity algorithms
find their roots in the observation that signals with more than one frequency
component exhibit periodic fluctuations in their time domain amplitude en-
velope. The rate of these fluctuations depends on the frequency difference
between the two frequency components. In the case of a harmonic sound,
the fundamental frequency is clearly visible in the amplitude envelope of the
signal. Recent models of human pitch perception tend to calculate envelope
periodicity separately in distinct frequency bands and then combine the results
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across channels (Meddis and Hewitt, 1991} [Terhardt et al.,[1981). These meth-
ods attempt to estimate the perceived pitch, not only the physical periodicity,
in acoustic signals of various kinds. A parallel processing approach (Gold
and Rabiner, [1969; Rabiner and Schafer, [1978), designed to deal with speech
signals, has been successfully used in a wide variety of applications. Instead
of designing one very complex algorithm, the basic idea is to tackle the same
problem with several, more simple processes in parallel and later combine
their outputs. As[Bregman|(1998) points out, human perception appears to be
redundant at many levels, several different processing principles seem to serve
the same purpose, and when one of them fails, another is likely to succeed.

Frequency-domain algorithms another transformation. Nolll (1967)
introduced the idea of Cepstrum analysis for pitch determination of speech
signals. The cepstrum is the inverse Fourier transform of the power spectrum
logarithm of the signal. The Cepstrum computation (see Section 3.2.1)) nicely
separates the transfer function (spectral envelope) from the source, hence the
pitch. Cepstrum fundamental frequency detection is closely similar to auto-
correlation systems (Klapuri, 2004). Spectrum autocorrelation methods were
inspired by the observation that a periodic but non-sinusoidal signal has a pe-
riodic magnitude spectrum, the period of which is the fundamental frequency.
This period can be estimated by ACF (Klapuri, 2004). Harmonic matching
methods extract a period from a set of spectral peaks of the magnitude spec-
trum of the signal. Once these peaks in the spectrum are identified, they are
compared to the predicted harmonics for each of the possible candidate note
frequencies, and a fitness measure can be developed. A particular fitness mea-
sure is described by Maher and Beauchamp) (1993) as a “Two Way Mismatch”
procedure. This method is used in the context of Spectral Modelling Syn-
thesis (SMS), with some improvements, as pitch-dependent analysis window,
enhanced peak selection, and optimisation of the search (Cano, [1998).

The idea behind Wavelet-based algorithms is to filter the signal using a
wavelet with derivative properties. The output of this filter will have maxima
where glottal-closure instants or zero crossings happen in the input signal.
After detection of these maxima, the fundamental frequency can be estimated
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as the distance between consecutive maxima.

Klapuri| (2004) proposes a band-wise processing algorithm that calcu-
lates independent fundamental frequency estimates in separate frequency
bands. Then, these values are combined to yield a global estimate. This
method presents several advantages: it solves the inharmonicity problem, it is
robust with respect to heavy signal distortions, where only a fragment of the
frequency range is reliable.

Preprocessing methods The main task of a preprocessor is to sup-
press noise prior to fundamental frequency estimation. Some preprocessing
methods used in speech processing are detailed in the book by [Hess| (1983).
Methods specifically defined for music signals are detailed in the already men-
tioned work by |[Klapuri| (2004).

Post-processing methods The estimated series of pitches may be noisy
and may presentisolated errors, different methods have been proposed for cor-
recting these. The first is low-pass filtering (linear smoothing) of the series.
This may remove much of the local jitter and noise, but does not remove local
gross measurement errors, and, in addition, it smears the intended disconti-
nuities at the voiced-unvoiced transitions (Hess| 1983). Non-linear smoothing
has been proposed to address these problems (Rabiner et al., 1975). Another
procedure consists in storing several possible values for the fundamental fre-
quency for each analysis frame (Laroche, 1995), assigning them a score (e.g. the
value of the normalised autocorrelation). Several tracks are then considered
and ranked (according to some continuity evaluation function) by for example
dynamic programming. This approach minimises the abrupt fundamental fre-
quency changes (e.g. octave errors) and gives good results in general. Its main
disadvantage is its estimation delay and non-causal behavior. Usually, itis also

useful to complement the forward estimation by a backward estimation (Cano)
1998).

Multi-pitch estimation Multi-pitch estimation is the simultaneous estima-
tion of the pitches making up a polyphonic sound (a polyphonic instrument or
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several instruments playing together). Some algorithms used for monophonic
pitch detection can be adapted to the simplest polyphonic situations (Maher
and Beauchamp, 1993). However, they are usually not directly applicable to
general cases, they require, among other differences, significantly longer time
frames (around 100 ms) (Klapuri, 2004). Relatively successful algorithms im-
plement principles of the perceptual mechanisms that enable a human listener
to fuse or fission concurrent auditory streams (see references to “Auditory
Scene Analysis” on page @2). For instance, Kashino et al. (1995) implement
such principles in a Bayesian probability network, where bottom-up signal
analysis can be integrated with temporal and musical predictions. An exam-
ple following the same principles is detailed by Walmsley et al.| (1999), where
a comparable network estimates the parameters of a harmonic model jointly
for a number of frames. (Godsmark and Brown (1999) have developed a model
that is able to resolve melodic lines from polyphonic music through the inte-
gration of diverse knowledge. Other methods are listed in the work by Klapuri
(2004). The state-of-the-art multi-pitch estimators operate reasonably well for
clean signals, frame-level error rates increasing progressively with the number
of concurrent voices. Also, the number of concurrent voices is often underesti-
mated and the performance usually decreases significantly in the presence of
noise (Klapuri, 2004).

Predominant pitch estimation Predominant pitch estimation also aims at
estimating pitches in polyphonic mixtures; however, contrarily to multi-pitch
estimation, it assumes that a specific instrument is predominant and defines
the melody. For instance, the system proposed by (Gotol (2000) detects melody
and bass lines in polyphonic recordings using a multi-agent architecture by as-
suming that they occupy different frequency regions. Other relevant methods
are reviewed by (Goémez et al. (2003c) and Klapuri (2004).

Melody

Extracting melody from note sequences We have presented above several
algorithms whose outputs are time sequences of pitches (or simultaneous
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combinations thereof). Now, we present some approaches that, building upon
those, aim at identifying the notes that are likely to correspond to the main
melody. We refer to the paper by Gémez et al. (2003c) for an exhaustive review
of the state-of-the-art in melodic description and transformation from audio
recordings. Melody extraction can be considered not only for polyphonic
sounds, but also for monophonic sounds as they may contain notes that do not
belong to the melody (for example, grace notes, passing notes or the case of
several interleaved voices in a monophonic stream). As discussed by Nettheim!
(1992) and Selfridge-Field (1998 Section 1.1.3.), the derivation of a melody from
a sequence of pitches faces the following issues:

e A single line played by a single instrument or voice may be formed by

movement between two or more melodic or accompaniment strands.
e Two or more contrapuntal lines may have equal claim as “the melody.”

e The melodic line may move from one voice to another, possibly with
overlap.

e There may be passages of figuration not properly considered as melody.

Some approaches try to detect note groupings. Experiments have been done on
the way listeners achieve melodic grouping (McAdams) [1994; |Scheirer, 2000,
p-131). These provide heuristics that can be taken as hypotheses in computa-
tional models. Other approaches make assumptions on the type of music to
be analyzed. For instance, methods can be different according to the complex-
ity of the music (monophonic or polyphonic music), the genre (classical with
melodic ornamentations, jazz with singing voice, etc.) or the representation
of the music (audio, MID], etc.). We refer to the works by |Uitdenbogerd and
Zobel (1998) and by Typke (2007) regarding melody extraction of MIDI data.

Melodic segmentation The goal of melodic segmentation is to establish a
temporal structure on a sequence of notes. It may involve different levels of
hierarchy, such as those defined by |Lerdahl and Jackendoff (1983), and may
include overlapping, as well as unclassified, segments. One relevant method
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proposed by (Cambouropoulos| (2001)) is the Local Boundary Detection Model
(LBDM). This model computes the transition strength of each interval of a
melodic surface according to local discontinuities. function are considered
as segment boundaries. This method is based on two rules: the Change Rule
(measuring the degree of change between two consecutive intervals) and the
Proximity Rule (each boundary is weighted according to the size of its absolute
interval, so that segment boundaries are located at larger intervals). In his
paper, Cambouropoulos| (2001)) uses not only pitch, but also temporal (inter-
onset intervals, IOIs) and rest intervals. He compares this algorithm with
the punctuation rules defined by Friberg and colleagues® getting coherent
results. The LBDM has been used by Melucci and Oriol (1999) for content-
based retrieval of melodies. Another approach can be found in the Grouper?
module of the Melisma music analyzer, implemented by Temperley and Sleator.
This module uses three criteria to select the note boundaries. The first one
considers the gap score for each pair of notes that is the sum of the IOIs and
the offset-to-onset interval (OOI). Phrases receive a weight proportional to the
gap score between the notes at the boundary. The second one considers an
optimal phrase length in number of notes. The third one is related to the
metrical position of the phrase beginning, relative to the metrical position of
the previous phrase beginning. Spevak et al.| (2002) have compared several
algorithms for melodic segmentation: LBDM, the Melisma Grouper, and a
memory-based approach, the Data-Oriented Parsing (DOP) by Bod! (2001).
They also describe other approaches to melodic segmentation. To explore this
issue, they have compared manual segmentation of different melodic excerpts.
However, according to them, “it is typically not possible to determine one
‘correct’ segmentation, because the process is influenced by a rich and varied
set of context.”

Miscellaneous melodic descriptors Other descriptors can be derived from
a numerical analysis of the pitches of a melody and used in diverse appli-
cations as comparative analysis (Toiviainen and Eerola, 2001), melody re-

bsee http://www.speech.kth.se/music/performance/performance_rules.html

see also Chapter[/
’seelhttp://www.link.cs.cmu.edu/music-analysis/grouper.html
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trieval (Kostek, 1998;Izanetakis| 2002), and algorithmic composition (Towsey
et al.,2001). Some of these descriptors are computed using features related to
structural, musical or perceptual aspects of sound. Some others are computed
from note descriptors (therefore they require algorithms for note segmentation,
see Section[3.2.2). Yet other descriptors can be computed as statistics of frame
or sample features. One example is the pitch histogram features proposed
by [I'zanetakis| (2002).

Pitch class distribution

Audio Frame
Preprocessing Transient location
Spectral Frf';\mes: .4096 samples (93 ms)
Analysis Windowing
+ FFT
Peak Loca maxima
Detection Amplitude threshold -100 dB
+ Spectral Peaks
HPCP Compute the HPCP vector
Computation size=12, 24, 36,...
+ HPCP vector
N Normalize with respect
Normalization . .
to its maximum vaue

‘N ormalized HPCP vector

Normalized HPCP
Figure 3.4: Block Diagram for HPCP Computation

Many efforts have been devoted to the analysis of chord sequences and
key in MIDI representations of classical music, but little work has dealt di-
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rectly with audio signals and other music genres. Adapting MIDI-oriented
methods would require a previous step of automatic transcription of poly-
phonic audio, which, as mentioned by [Scheirer/ (2000) and Klapuri| (2004), is
far from being solved. Some approaches extract information related to the
pitch class distribution of music without performing automatic transcription.
The pitch-class distribution is directly related to the chords and the tonality of
a piece. Chords can be recognised from the pitch class distribution without
requiring the detection of individual notes. Tonality can be also estimated
from the pitch class distribution without a previous procedure of chord esti-
mation. Fujishima|(1999) proposes a system for chord recognition based on the
pitch-class profile (PCP), a 12-dimensional low-level vector representing the
intensities of the twelve semitone pitch classes. His chord recognition system
compares this vector with a set of chord-type templates to estimate the played
chord. In a paper by Sheh and Ellis| (2003), chords are estimated from an audio
recordings by modelling sequences of PCPs with an HMM. In the context of a
key estimation system, (Gomez (2004) proposes the Harmonic PCPs (HPCPs)
as extension of the PCPs: only the spectral peaks in a certain frequency band
are used (100 — 5000 Hz), a weight is introduced into the feature computation
and a higher resolution is used in the HPCP bins (decreasing the quantisation
level to less than a semitone). The procedure for HPCP computation is illus-
trated in Figure[3.4l A transient detection algorithm (Bonadal 2000) is used as
preprocessing step in order to discard regions where the harmonic structure is
noisy; the areas located 50 ms before and after the transients are not analyzed.
As a post-processing step, HPCPs are normalised with respect to maximum
values for each analysis frame, in order to store the relative relevance of each
of the HPCP bins. In the context of beat estimation of drum-less audio signals,
Goto and Muraokal (1999) also introduced the computation of a histogram of
frequency components, used to detect chord changes. Note however that this
method does not identify chord names. Constant Q profiles have also been
used to characterise the tonal content of audio (Purwins et al.,2000). Constant
Q profiles are twelve-dimensional vectors, each component referring to a pitch
class, which are computed with the constant Q filter bank (Brown and Puck-
ette] [1992). Purwins et all (2003) present examples where constant Q profiles
are used to track tonal centers. Later on, Purwins| (2005) uses these features to
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Figure 3.5: Block Diagram for Key Computation using HPCP

analyze the interdependence of pitch classes and key as well as key and com-
poser. [Tzanetakis (2002) proposes a set of features related to audio harmonic
content in the context of music genre classification. These features are derived
from a pitch histogram that can be computed from MIDI or audio data: the
most common pitch class used in the piece, the frequency of occurrence of the
main pitch class and the pitch range of a song.

Tonality: From chord to key

Pitch class distributions can be compared (correlated) with a tonal model to
estimate the chords (when considering small time scales) or the key of a piece
(when considering alarger time scale). Thisis the approach followed by Gomez
(2004) to estimate the tonality of audio pieces at different temporal scales, as
shown on Figure[3.5 To construct the key-profile matrix, Gémez (2004) follows
the model for key estimation of MIDI files by Krumhansl (1990). This model
considers that tonal hierarchies may be acquired through internalisation of
the relative frequencies and durations of tones. The algorithm estimates the
key from a set of note duration values, measuring how long each of the 12
pitch classes of an octave (C, Cf, etc.) have been played in a melodic line.
In order to estimate the key of the melodic line, the vector of note durations
is correlated to a set of key profiles or probe-tone profiles. These profiles
represent the tonal hierarchies of the 24 major and minor keys, and each of
them contains 12 values, which are the ratings of the degree to which each of the
12 chromatic scale tones fit a particular key. They were obtained by analyzing
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human judgments with regard to the relationship between pitch classes and
keys (Krumhansl, 1990, pp. 78-81). (Gomez (2004) adapts this model to deal
with HPCPs (instead of note durations) and polyphonies (instead of melodic
lines); details of evaluations can be found in (Goémez, 2006), together with an
exhaustive review of computational models of tonality.

3.2.5 Rhythm
Representing rhythm

One way to represent the thythm of a musical sequence is to specify an ex-
haustive and accurate list of onset times, maybe together with some other
characterizing features such as durations, pitches or intensities (as it is done
in MIDI). However, the problem with this representation is the lack of abstrac-
tion. There is more to rhythm than the absolute timings of successive music
events, one must also consider tempo, meter and timing (Honing), 2001)).

Tempo Cooper and Meyer| (1960) define a pulse as “[...] one of a series of
regularly recurring, precisely equivalent stimuli. [...] Pulses mark off equal
units in the temporal continuum.” Commonly, “pulse” and “beat” are often
used indistinctly and refer both to one element in such a series and to the whole
series itself. The tempo is defined as the number of beats in a time unit (usually
the minute). There is usually a preferred pulse, which corresponds to the rate
at which most people would tap or clap in time with the music. However, the
perception of tempo exhibits a degree of variability. It is not always correct to
assume that the pulse indicated in a score (Maelzel Metronome) corresponds
to the “foot-tapping” rate, nor to the actual “physical tempo” that would be an
inherent property of audio streams (Drake et al),[1999). Differences in human
perception of tempo depend on age, musical training, music preferences and
general listening context (Lapidaki, 1996). They are nevertheless far from
random and most often correspond to a focus on a different metrical level and
are quantifiable as simple ratios (e.g. 2, 3, 1 or 3).
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Meter The metrical structure (or meter) of a music piece is based on the
coexistence of several pulses (or “metrical levels”), from low levels (small time
divisions) to high levels (longer time divisions). The segmentation of time by
a given low-level pulse provides the basic time span to measure music event
accentuation whose periodic recurrences define other, higher, metrical levels.
The duration-less points in time, the beats, that define this discrete time grid
obey a specific set of rules, formalised in the Generative Theory of Tonal Music
(Lerdahl and Jackendoff, 1983, GTTM). Beats must be equally spaced. A beat
at a high level must also be a beat at each lower level. At any metrical level,
a beat which is also a beat at the next higher level is called a downbeat, and
other beats are called upbeats. The notions of time signature, measure and bar
lines reflect a focus solely on two (or occasionally three) metrical levels. Bar
lines define the slower of the two levels (the measure) and the time signature
defines the number of faster pulses that make up one measure. For instance,
a 2 time signature indicates that the basic temporal unit is an eighth-note and
that between two bar lines there is room for six units. Two categories of meter
are generally distinguished: duple and triple. This notion is contained in the
numerator of the time signature: if the numerator is a multiple of two, then
the meter is duple, if it is not a multiple of two but a multiple of three, the
meter is triple. The GTTM specifies that there must be a beat of the metrical
structure for every note in a music sequence. Accordingly, given a list of
note onsets, the quantisation (or “rhythm-parsing”) task aims at making it fit
into Western music notation. Viable time points (metrical points) are those

defined by the different coexisting metrical levels. Quantised durations are

11

then rational numbers (e.g. 1, ;, ¢) relative to a chosen time interval: the time

signature denominator.

Timing A major weakness of the GTTM is that it does not deal with the
deviations from strict metrical timing which occur in almost all styles of music.
Thus it is only really suitable for representing the timing structures of music
scores, where the expressive timing is not represented. There are conceptually
two types of non-metrical timing: long-term tempo deviations (e.g. Rubato)
and short-term timing deviations (e.g. “Swing”). One of the greatest difficulties

in analyzing performance data is that the two dimensions of expressive timing
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are projected onto the single dimension of time. Mathematically, it is possible
to represent any tempo change as a series of timing changes and vice-versa,
but these descriptions are somewhat counterintuitive (Honing), 2001).

Challenges in automatic rhythm description

Automatic description of musical rhythm is not obvious. First of all because it
seems to entail two dichotomic processes: a bottom-up process enabling very
rapidly the percept of pulses from scratch, and a top-down process (a persis-
tent mental framework) that lets this induced percept guide the organisation
of incoming events (Desain and Honing), 1999). Implementing in a computer
program both reactivity to the environment and persistence of internal rep-
resentations is a challenge. Rhythm description does not solely call for the
handling of timing features (onsets and offsets of tones). The definition and
understanding of the relationships between rhythm perception and other mu-
sic features such as intensity or pitches are still open research topics. Rhythm
involves two dichotomic aspects that are readily perceived by humans: there
are both a strong and complex structuring of phenomena occurring at different
time scales and widespread departures from exact metrical timing. Indeed,
inexact timings always occur because of expressive performances, sloppy per-
formances and inaccurate collection of timing data (e.g. computational onset
detection may have poor time precision and may suffer from false alarms).
Furthermore, recent research indicates that even if perceived beats are stron-
gly correlated to onsets of tones, they do not necessarily line up exactly with
them, our perception rather favoring smooth tempo curves (Dixon et al.,2006).

Functional framework

The objective of automatic rhythm description is the parsing of acoustic events
that occur in time into the more abstract notions of tempo, timing and meter.
Algorithms described in the literature differ in their goals. Some of them derive
the beats and the tempo of a single metrical level, others try to derive complete
rhythmic transcriptions (i.e. musical scores), others aim at determining some

timing features from musical performances (such as tempo changes, event
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Figure 3.6: Functional units of rhythm description systems.

shifts or swing factors), others focus on the classification of music signals
by their overall rhythmic similarities and others look for rhythm patterns.
Nevertheless, these computer programs share some functional aspects that we
represent as functional blocks of a general diagram in Figure We briefly
explain each of these functional blocks in the following paragraphs; we refer
to the paper by (Gouyon and Dixon| (2005) for a more complete survey.

Feature list creation FEither starting from MID]I, or taking into consideration
other symbolic formats such as files containing solely onset times and du-
rations (Brown) [1993), or even raw audio data, the first analysis step is the
creation of a feature list, i.e. the parsing, or “filtering,” of the data at hand into
a sequence that is supposed to convey the predominant information relevant
to a rhythmic analysis. These feature lists are defined here broadly, to include
frame-based feature vectors as well as lists of symbolic events. The latter in-
clude onset times, durations (Brown) 1993), relative amplitude (Dixon), 2001),
pitch (Dixon and Cambouropoulos, 2000), chords (Goto), 2001) and percussive
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instrument classes (Goto, 2001). Some systems refer to a data granularity of a
lower level of abstraction, i.e. at the frame level. Section 3.2.1] describes usual
low-level features that can be computed on signal frames. In rhythm analy-
sis, common frame features are energy values and energy values in frequency
sub-bands. Some systems also measure energy variations between consec-
utive frames (Scheirer, 2000; Klapuri et al., 2006). Low-level features other
than energy (e.g. spectral flatness, temporal centroid) have also been recently
advocated (Gouyon et al., 2006b).

Pulse induction A metrical level (a pulse) is defined by the periodic recur-
rence of some music event. Therefore, computer programs generally seek
periodic behaviors in feature lists in order to select one (or some) pulse pe-
riod(s) and also sometimes phase(s). This is the process of pulse induction.
Concerning pulse induction, computer programs either proceed by pulse selec-
tion, i.e. evaluating the salience of a restricted number of possible periodici-
ties (Parncutt, [1994), or by computing a periodicity function. In the latter case,
a continuous function plots pulse salience versus pulse period (or frequency).
Diverse transforms can be used: the Fourier transform, Wavelet transforms,
the autocorrelation function, bank of comb filters, etc. In pulse induction, a
fundamental assumption is made: the pulse period (and phase) is stable over
the data used for its computation. That is, there is no speed variation in that
part of the musical performance used for inducing a pulse. In that part of
the data, remaining timing deviations (if any) are assumed to be short-time
ones (considered as either errors or expressiveness features). They are either
“smoothed out,” by considering tolerance intervals or smoothing windows, or
cautiously handled in order to derive patterns of systematic short-time timing
deviations as e.g. the swing. Another step is necessary to output a discrete
pulse period (and optionally its phase) rather than a continuous periodicity
function. This is usually achieved by a peak-picking algorithm.

Pulse tracking Pulse tracking and pulse induction often occur as comple-
mentary processes. Pulse induction models consider short term timing devi-
ations as noise, assuming a relatively stable tempo, whereas a pulse tracker
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handles the short term timing deviations and attempts to determine changes in
the pulse period and phase, without assuming that the tempo remains constant.
Another difference is that induction models work bottom-up, whereas tracking
models tend to follow top-down approaches, driven by the pulse period and
phase computed in a previous induction step. Pulse tracking is often a process
of reconciliation between predictions (driven by previous period and phase
computations) and the observed data. Diverse formalisms and techniques
have been used in the design of pulse trackers: rule-based (Desain and Honing),
1999), problem-solving (Allen and Dannenberg), [1990), agents (Dixon| 2001),
adaptive oscillators (Large and Kolen,1994), dynamical systems (Cemgil et al.,
2001)), Bayesian statistics (Raphael,2002) and particle filtering (Hainsworth and
Macleod,2004). A complete review can be found in the already mentioned pa-
per by Gouyon and Dixon/(2005). Some systems rather address pulse tracking
by “repeated induction” (Scheirer, 2000; Laroche, 2003} Klapuri et al., 2006). A
pulse is induced on a short analysis window (e.g. around 5 seconds of data),
then the window is shifted in time and another induction takes place. Deter-
mining the tempo evolution then amounts to connecting the observations at
each step. In addition to computational overload, one problem that arises with
this approach to pulse tracking is the lack of continuity between successive
observations and the difficulty of modelling sharp tempo changes.

Quantisation and time signature determination Few algorithms for time
signature determination exist. The simplest approach is based on parsing the
peaks of the periodicity function to find two significant peaks, which cor-
respond respectively to a fast pulse, the time signature denominator, and a
slower pulse, the numerator (Brown)| [1993). The ratio between the pulse pe-
riods defines the time signature. Another approach is to consider all pairs
of peaks as possible beat/measure combinations, and compute the fit of all
periodicity peaks to each hypothesis (Dixon et al., 2003). Another strategy
is to break the problem into several stages: determining the time signature
denominator (e.g. by tempo induction and tracking), segmenting the music
data with respect to this pulse and compute features at this temporal scope
and finally detecting periodicities in the created feature lists (Gouyon and Her-
rera, 2003). Quantisation (or “rhythm parsing”) can be seen as a by-product of
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the induction of several metrical levels, which together define a metrical grid.
The rhythm of a given onset sequence can be parsed by assigning each onset
(independently of its neighbors) to the closest element in this hierarchy. The
weaknesses of such an approach are that it fails to account for musical context
(e.g. a triplet note is usually followed by 2 more) and deviations from the
metrical structure. Improvements to this first approach are considered by De-
sain and Honing| (1989). Arguing that deviations from the metrical structure
would be easier to determine if the quantised durations were known (Allen
and Dannenberg), [1990), many researchers now consider thythm parsing si-
multaneously with tempo tracking (Raphael, 2002; Cemgil and Kappen,2003),
rather than subsequent to it (hence the bi-directional arrow between these two
modules in Figure [3.6).

Systematic deviation characterisation In the pulse induction process, short-
term timing deviations can be “smoothed out” or cautiously handled so as to
derive patterns of short-term timing deviations, such as swing: a “long-short”
timing pattern of consecutive eight-notes. For instance, [Larochel (2001) pro-
poses to estimate the swing jointly with tempo and beats at the half-note level,
assuming constant tempo: all pulse periods, phases and eight-note “long-
short” patterns are enumerated and a search procedure determines which one
best matches the onsets.

Rhythmic pattern determination Systematic short-term timing deviations
are important music features. In addition, repetitive rhythmic patterns cov-
ering a longer temporal scope can also be characteristic of some music styles.
For instance, many electronic musical devices feature templates of prototypi-
cal patterns such as Waltz, Cha Cha and the like. The length of such patterns
is typically one bar, or a couple or bars. Few algorithms have been proposed
for the automatic extraction of rhythmic patterns; they usually require the
knowledge (or previous extraction) of part of the metrical structure, typically
the beats and measure (Dixon et al., 2004).
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Periodicity features Other rhythmic features, with a musical meaning less
explicit than for example the tempo or the swing, have also been proposed,
in particular in the context of designing rhythm similarity distances. Most
of the time, these features are derived from a parametrisation of a periodicity
function, e.g. the salience of several prominent peaks (Gouyon et al.,[2004), their
positions (Izanetakis and Cook, 2002; Dixon et al., 2003), selected statistics
(high-order moments, flatness, etc.) of the periodicity function considered
as a probability density function (Gouyon et al., 2004) or simply the whole
periodicity function itself (Foote et al.,2002).

Future research directions

Current research in rhythm description addresses all of these aspects, with
varying degrees of success. For instance, determining the tempo of music with
minor speed variations is feasible for almost all music styles if we do not expect
that the system finds a specific metrical level (Gouyon et al., 2006a). Recent
pulse tracking systems also reach high levels of accuracy. On the other hand,
accurate quantisation, score transcription, determination of time signature and
characterisation of intentional timing deviations are still open question. Par-
ticularly, it remains to be investigated how general recently proposed models
are with respect to different music styles. New research directions include
the determination of highly abstract rhythmic features required for music con-
tent processing and music information retrieval applications, the definition
of the best rhythmic features and the most appropriate periodicity detection
method (Gouyon, 2005).

3.2.6 Genre

Most music can be described in terms of dimensions such as melody, harmony,
rhythm, etc. These high-level features characterise music and at least partially
determine its genre, but, as mentioned in previous sections, they are difficult
to compute automatically from raw audio signals. As a result, most audio-

related music information retrieval research has focused on low-level features
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and induction algorithms to perform genre classification tasks. This approach
has met with some success, but it is limited by the fact that the low level
of representation may conceal many of the truly relevant aspects of a piece
of music. See Chapter 4 and the works by [Pampalk| (2006), [Ahrendt (2006),
and |Aucouturier (2006) for reviews of the current state-of-the-art in genre

classification and more information on promising directions.

3.3 Audio content exploitation

We consider in this section a number of applications of content-based descrip-
tions of audio signals. Although audio retrieval (see Section 3.3.T) is the one
that has been addressed most often, others deserve a mention, e.g. content-
based transformations (see Section [3.3.2)).

3.3.1 Content-based search and retrieval

Searching a repository of music pieces can be greatly facilitated by automatic
description of audio and music content (Cano, 2007), e.g. fingerprints, melodic
features, tempo, etc. A content-based music retrieval system is a search en-
gine at the interface of a repository, or organised database, of music pieces.
Typically,

1. itreceives a query, defined by means of musical strategies (e.g. humming,
tapping, providing an audio excerpt or some measures of a score) or
textual strategies (e.g. using “words” and/or “numbers” that describe
some music feature like tempo, mood, etc.) referring to audio or music
descriptors;

2. it has access to the set of music features extracted from the music files in
the repository;

3. it returns a list of ranked files or excerpts that

(a) are all relevant to the query (i.e. with high precision) or
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(b) constitute the set of all relevant files in the database (i.e. high recall);

4. (optionally) it processes some user-feedback information in order to im-
prove its performance in the future.

Identification

With the help of fingerprinting systems it is possible to identify an unla-
belled piece of audio and therefore provide a link to corresponding metadata
(e.g. artist and song name). Depending on the application, different impor-
tance may be given to the following requirements:

Accuracy: The number of correct identifications, missed identifications, and
wrong identifications (false positives).

Reliability: This is of major importance for copyright enforcement organisa-

tions.

Robustness: Ability to accurately identify an item, regardless of the level
of compression and distortion or interference in the transmission chan-
nel. Other sources of degradation are pitching, equalisation, background
noise, D/A-A/D conversion, audio coders (such as GSM and MP3), etc.

Granularity: Ability to identify whole titles from excerpts a few seconds long.
It needs to deal with shifting, that is lack of synchronisation between
the extracted fingerprint and those stored in the database and it adds
complexity to the search (it needs to compare audio in all possible align-
ments).

Security: Vulnerability of the solution to cracking or tampering. In contrast
with the robustness requirement, the manipulations to deal with are
designed to fool the fingerprint identification algorithm.

Versatility: Ability to identify audio regardless of the audio format. Ability
to use the same database for different applications.
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Figure 3.7: Content-based audio identification framework

Scalability: Performance with very large databases of titles or a large number
of concurrentidentifications. This affects the accuracy and the complexity
of the system.

Complexity: It refers to the computational costs of the fingerprint extraction,
the size of the fingerprint, the complexity of the search, the complexity of
the fingerprint comparison, the cost of adding new items to the database,
etc.

Fragility: Some applications, such as content-integrity verification systems,
may require the detection of changes in the content. This is contrary
to the robustness requirement, as the fingerprint should be robust to
content-preserving transformations but not to other distortions.

The requirements of a complete fingerprinting system should be considered
together with the fingerprint requirements listed in Section Bear in mind
that improving a certain requirement often implies loosing performance in
some other. The overall identification process mimics the way humans perform
the task. As seen in Figure[3.7, a memory of the recordings to be recognised is
created off-line (top); in the identification mode (bottom), unlabelled audio is
presented to the system to look for a match.
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Audio Content Monitoring and Tracking One of the commercial usages of
audio identification is that of remotely controlling the times a piece of music
has been broadcasted, in order to ensure the broadcaster is doing the proper
clearance for the rights involved (Cano et al., 2002).

Monitoring at the distributor end Content distributors may need to
know whether they have the rights to broadcast certain content to consumers.
Fingerprinting helps identify unlabelled audio in TV and radio channels’
repositories. It can also identify unidentified audio content recovered from
CD plants and distributors in anti-piracy investigations (e.g. screening of mas-
ter recordings at CD manufacturing plants).

Monitoring at the transmission channel In many countries, radio
stations must pay royalties for the music they air. Rights holders are eager
to monitor radio transmissions in order to verify whether royalties are being
properly paid. Even in countries where radio stations can freely air music,
rights holders are interested in monitoring radio transmissions for statistical
purposes. Advertisers are also willing to monitor radio and TV transmissions
to verify whether commercials are being broadcast as agreed. The same is
true for web broadcasts. Other uses include chart compilations for statistical
analysis of program material or enforcement of cultural laws (e.g. in France, a
certain percentage of the aired recordings must be in French). Fingerprinting-
based monitoring systems can be used for this purpose. The system “listens”
to the radio and continuously updates a play list of songs or commercials
broadcast by each station. Of course, a database containing fingerprints of all
songs and commercials to be identified mustbe available to the system, and this
database must be updated as new songs come out. Examples of commercial
providers of such services are: http://www.musicreporter.net, http://www.
audiblemagic.com, http://www.yacast.fr, http://www.musicip.com/ and http:
//www.bmat.com/. Additionally, audio content can be found in web pages
and web-based peer-to-peer networks. Audio fingerprinting combined with a
web crawler can identify their content and report it to the corresponding rights
owners (e.g. http://www.baytsp. com).


http://www.musicreporter.net
http://www.audiblemagic.com
http://www.audiblemagic.com
http://www.yacast.fr
http://www.musicip.com/
http://www.bmat.com/
http://www.bmat.com/
http://www.baytsp.com
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Monitoring at the consumer end In usage-policy monitoring appli-
cations, the goal is to avoid misuse of audio signals by the consumer. We
can conceive a system where a piece of music is identified by means of a fin-
gerprint and a database is contacted to retrieve information about the rights.
This information dictates the behavior of compliant devices (e.g. CD and DVD
players and recorders, MP3 players or even computers) in accordance with the
usage policy. Compliant devices are required to be connected to a network in
order to access the database.

Added-value services Some systems store metadata related to audio files in
databases accessible through the Internet. Such metadata can be relevant to
a user for a given application and covers diverse types of information related
to an audio file (e.g. how it was composed and how it was recorded, the com-
poser, year of composition, the album cover image, album price, artist biogra-
phy, information on the next concerts, etc.). Fingerprinting can then be used
to identify a recording and retrieve the corresponding metadata. For example,
MusicBrainz (http://www.musicbrainz.org), Id3man (http://www.id3man.com)
or Moodlogic (http://www.moodlogic.com) automatically label collections of
audio files. The user can download a compatible player that extracts finger-
prints and submits them to a central server from which metadata associated
to the recordings is downloaded. Gracenote (http://www.gracenote.com) re-
cently enhanced their technology based on CDs’ tables of contents with audio
fingerprinting. Another application consists in finding or buying a song while
it is being broadcast, by means of mobile-phone transmitting its GPS-quality
received sound (e.g. http://www.shazam.com, http://www.bmat . com).

Summarisation

Summarisation, or thumbnailing, is essential for providing fast-browsing func-
tionalities to content processing systems. An audiovisual summary that can
be played, skipped upon, replayed or zoomed can save the user time and help
him/her to get a glimpse of “what the music is about,” especially when using

personal media devices. Music summarisation consists in determining the
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key elements of a music sound file and rendering them in the most efficient
way. There are two tasks here: first, extracting structure (Ong, 2007), and
then, creating aural and visual representations of this structure (Peeters et al.,
2002). Extracting a good summary from a sound file needs a comprehensive
description of its content, plus some perceptual and cognitive constraints to
be derived from users. An additional difficulty here is that different types of
summaries can coexist, and that different users will probably require different
summaries. Because of this amount of difficulty, the area of music summari-
sation is still under-developed. Reviews of recent promising approaches are
presented by Ong| (2007).

Play-list generation

This area concerns the design of lists of music pieces that satisfy some ordering
criteria with respect to content descriptors previously computed, indicated
(explicitly or implicitly) by the listener (Pampalk and Gasser, 2006). Play-
list generation is usually constrained by time-evolving conditions (e.g. “start
with slow-tempo pieces, then progressively increase tempo”) (Pachet et al.,
2000). Besides the play-list construction problem, we can also mention related
problems such as achieving seamless transitions (in user-defined terms such
as tempo, tonality, loudness) between the played pieces.

Music browsing and recommendation

Music browsing and recommendation are very much demanded, especially
among youngsters. Recommendation consists in suggesting, providing guid-
ance, or advising a potential consumer about interesting music files in on-line
music stores, for instance. Nowadays, this is mainly possible by querying
artist or song names (or other types of editorial data such as genre), or by
browsing recommendations generated by collaborative filtering, i.e. using rec-
ommender systems that exploit information of the type “users that bought this
album also bought this album.” An obvious drawback of the first approach
is that consumers need to know the name of the song or the artist before-
hand. The second approach is only suitable when a considerable number



128 Chapter 3. Content Processing of Music Audio Signals

of consumers has heard and rated the music. This situation makes it diffi-
cult for users to access and discover the vast amount of music composed and
performed by unknown artists which is available in an increasing number of
sites (e.g. http://www.magnatune.com) and which nobody has yet rated nor de-
scribed. Content-based methods represent an alternative to these approaches.
See the paper by ICano et al. (2005¢) for the description of a large-scale music
browsing and recommendation system based on automatic description of mu-
sic content® Other approaches to music recommendation are based on users’
profiles: users’ musical tastes and listening habits as well as complementary
contextual (e.g. geographical) information (Celmal, 2006a)? It is reasonable to
assume that these different approaches will merge in the near future and result
in improved music browsing and recommendation systems (Celma, 2006b).

Content visualisation

The last decade has witnessed great progress in the field of data visualisation.
Massive amounts of data can be represented in multidimensional graphs in
order to facilitate comparisons, grasp the patterns and relationships between
data, and improve our understanding of them. Four purposes of information
visualisation can be distinguished (Hearst, [1999):

Exploration, where visualinterfaces can alsobe used asnavigation and brows-
ing interfaces.

Computation, where images are used as tools for supporting the analysis and
reasoning about information. Data insight is usually facilitated by good
data visualisations.

Communication, where images are used to summarise what otherwise would
need many words and complex concepts to be understood. Music visu-
alisation tools can be used to present concise information about relation-
ships extracted from many interacting variables.

8See alsohttp://musicsurfer.iua.upf.edu
9seehttp://foafing-the-music.iua.upf.edu
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Decoration, where content data are used to create attractive pictures whose
primary objective is not the presentation of information but aesthetic
amusement.

It is likely that in the near future we will witness an increasing exploitation
of data visualisation techniques in order to enhance song retrieval, collection
navigation and music discovery (Pampalk and Goto| 2006).

3.3.2 Content-based audio transformations

Transformations of audio signals have a long tradition (Zolzer,2002). A recent
trend in this area of research is the editing and transformation of music audio
signals triggered by explicit musically-meaningful representational elements,
in contrast to low-level signal descriptors. These techniques are referred to as
content-based audio transformations, or “adaptive digital audio effects” (Ver-
faille et al., 2006), and are based on the type of description of audio signals
detailed above in Section 3.2l In this section, we give examples of such tech-
niques, following increasing levels of abstraction in the corresponding content
description.

Loudness modifications

The most commonly known effects related to loudness are the ones that mod-
ify the sound intensity level: volume change, tremolo, compressor, expander,
noise gate and limiter (Verfaille et al., 2006). However, when combined with
other low-level features, loudness is correlated to higher-level descriptions
of sounds, such as the timbre or the musical intentions of a performer. It
can therefore be used as a means to control musically-meaningful aspects of
sounds. The mechanisms that relate the actions of a player to the sound level
produced by a given instrument are usually so complex that this feature can
seldom be decorrelated from others, such as timbre. Thus, differences between
playing a soft and a loud note on an instrument do not reside only in loud-
ness levels. Spectral modifications must also be accounted for. In the case of
the singing voice, for instance, many studies have been carried out and are
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summarised by Sundberg| (1987). Using Sundberg’s nomenclature, it is possi-
ble, under certain conditions, to infer the source spectrum modifications from
uttering the same vowel at different loudness of phonation. Building upon
this assumption, Fabig and Janer (2004) propose a method for modifying the
loudness of the singing voice by detecting the excitation slope automatically.

Time-scaling

In a musical context, time-scaling can be understood as changing the pace
of a music signal, i.e. its tempo. If a musical performance is time-scaled to
a different tempo, we should expect to listen to the same notes starting at
a scaled time pattern, but with durations modified linearly according to the
tempo change. The pitch of the notes should however remain unchanged,
as well as the perceived expression. Thus, for example, vibratos should not
change their depth, tremolo or rate characteristics. And of course, the audio
quality should be preserved in such a way that if we had never listened to
that music piece, we would not be able to know if we were listening to the
original recording or to a transformed one. Time-scale modifications can be
implemented in different ways. Generally, algorithms are grouped in three
different categories: time domain techniques, phase-vocoder and variants,
and signal models. In the remainder of this section we explain the basics of
these approaches in turn.

Time domain techniques Time domain techniques are the simplest methods
for performing time-scale modification. The simplest (and historically first)
technique is the variable speed replay of analog audio tape recorders (McNally,
1984). A drawback of this technique is that during faster playback, the pitch
of the sound is raised while the duration is shortened. On the other hand,
during slower playback, the pitch of the sound is lowered while the duration
is lengthened. Many papers show good results without scaling frequency by
segmenting the input signal into several windowed sections and then placing
these sections in new time locations and overlapping them to get the time-
scaled version of the input signal. This set of algorithms is referred to as
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Overlap-Add (OLA). To avoid phase discontinuities between segments, the
synchronised OLA algorithm (SOLA) uses a cross-correlation approach to
determine where to place the segment boundaries (Wayman et al., [1989). In
TD-PSOLA (Moulines et al.,, [1989), the overlapping operation is performed
pitch-synchronously to achieve high quality time-scale modification. This
works well with signals having a prominent basic frequency and can be used
with all kinds of signals consisting of a single signal source. When it comes to a
mixture of signals, this method will produce satisfactory results only if the size
of the overlapping segments is increased to include a multiple of cycles, thus
averaging the phase error over a longer segment and making it less audible.
WSOLA (Verhelst and Roelands,[1993) uses the concept of waveform similarity
to ensure signal continuity at segment joints, providing high quality output
with high algorithmic and computational efficiency and robustness. All the
aforementioned techniques consider equally the transient and steady state
parts of the input signal, and thus time-scale them both in the same way. To
get better results, it is preferable to detect the transient regions and not time-
scale them, just translate them into a new time position, while time-scaling the
non-transient segments. The earliest mention of this technique can be found
in the Lexicon 2400 time compressor/expander from 1986. This system detects
transients, and time-scales only the remaining audio using a TD-PSOLA-like
algorithm. [Lee et al/ (1997) show that using time-scale modification on non-
transient parts of speech alone improves the intelligibility and quality of the
resulting time-scaled speech.

Phase vocoder and variants The phase-vocoder is a relatively old technique
that dates from the 70’s (Portnoff, 1976). It is a frequency domain algorithm
computationally quite more expensive than time domain algorithms. However
it can achieve high-quality results even with high time-scale factors. Basically,
the input signal is split into many frequency channels, uniformly spaced, usu-
ally using the FFT. Each frequency band (bin) is decomposed into magnitude
and phase parameters, which are modified and re-synthesised by the IFFT or
a bank of oscillators. With no transformations, the system allows a perfect
reconstruction of the original signal. In the case of time-scale modification,
the synthesis hop size is changed according to the desired time-scale factor.
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Magnitudes are linearly interpolated and phases are modified in such a way
that phase consistency are maintained across the new frame boundaries. The
phase-vocoder introduces signal smearing for impulsive signals due to the loss
of phase alignment of the partials. A typical drawback of the phase vocoder
is the loss of vertical phase coherence that produces reverberation or loss of
presence in the output. This effect is also referred to as “phasiness,” which
can be circumvented by phase-locking techniques (Laroche and Dolson, [1999)
among bins around spectral peaks. Note that adding peak tracking to the spec-
tral peaks, the phase-vocoder resembles the sinusoidal modelling algorithms,
which is introduced in the next paragraph. Another traditional drawback of
the phase vocoder is the bin resolution dilemma: the phase estimates are in-
correct if more than one sinusoidal peak resides within a single spectral bin.
Increasing the window may solve the phase estimation problem, but it implies
a poor time resolution and smooths the fast frequency changes. And the sit-
uation gets worse in the case of polyphonic music sources because then the
probability is higher that sinusoidal peaks from different sources will reside in
the same spectrum bin. Different temporal resolutions for different frequencies
can be obtained by convolution of the spectrum with a variable kernel func-
tion (Hoek, [1999). Thus, long windows are used to calculate low frequencies,
while short windows are used to calculate high frequencies. Other approaches
approximate a constant-Q phase-vocoder based on wavelet transforms or non-
uniform sampling.

Techniques based on signal models Signal models have the ability to split
the input signal into different components which can be parameterised and
processed independently giving a lot of flexibility for transformations. Typ-
ically these components are sinusoids, transients and noise. In sinusoidal
modelling (McAulay and Quatieri, [1986), the input signal is represented as
a sum of sinusoids with time-varying amplitude, phase and frequency. Pa-
rameter estimation can be improved by using interpolation methods, signal
derivatives and special windows. Time-scaling using sinusoidal modelling
achieves good results with harmonic signals, especially when keeping the ver-
tical phase coherence. However it fails to successfully represent and transform
noise and transient signals. Attacks are smoothed and noise sounds artificial.
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The idea of subtracting the estimated sinusoids from the original sound to
obtain a residual signal was proposed by Smith and Serra! (1987); this residual
can then be modelled as a stochastic signal. This method allows the splitting
of e.g. a flute sound into the air flow and the harmonics components, and to
transform both parts independently. This technique successfully improves the
quality of time-scale transformations but fails to handle transients, which are
explicitly handled in (Verma et al., 1997). Then, all three components (sinu-
soidal, noise and transient) can be modified independently and re-synthesised.
When time-scaling an input signal, transients can successfully be translated to
a new onset location, preserving their perceptual characteristics.

Timbre modifications

Timbre is defined as all those characteristics that distinguish two sounds hav-
ing the same pitch, duration and loudness. As a matter of fact, timbre percep-
tion depends on many characteristics of the signal such as its instantaneous
spectral shape and its evolution, the relation of its harmonics, and some other
features related to the attack, release and temporal structure. Timbre instru-
ment modification can be achieved by many different techniques. One of them
is to modify the input spectral shape by timbre mapping. Timbre mapping is a
general transformation performed by warping the spectral shape of a sound
by means of a mapping function g(f) that maps frequencies of the transformed
spectrum (f,) to frequencies of the initial spectrum (f,) via a simple equation
fy = 8(f2)- Linear scaling (compressing or expanding) is a particular case of tim-
bre mapping in which the mapping function pertains to the family f, = k* f,,
where k is the scale factor, usually between 0.5 and 2. The timbre scaling effect
resembles modifications of the size and shape of the instrument. The shifting
transformation is another particular case of the timbre mapping as well, in
which ¢(f) can be expressed as f, = f; + ¢, where c is an offset factor.

Morphing Another way of accomplishing timbre transformations is to mod-
ify the input spectral shape by means of a secondary spectral shape. This
is usually referred to as morphing or cross-synthesis. In fact, morphing is a
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technique with which, out of two or more elements, we can generate new
ones with hybrid properties. In the context of video processing, morphing
has been widely developed and enjoys great popularity in commercials, video
clips and films where faces of different people change one into another or
chairs mutate into for example elephants. Analogously, in the context of audio
processing, the goal of most of the developed morphing methods has been
the smooth transformation from one sound to another. Along this transfor-
mation, the properties of both sounds combine and merge into a resulting
hybrid sound. With different names, and using different signal processing
techniques, the idea of audio morphing is well known in the computer music
community (Serra, 1994; Slaney et al., 1996). In most algorithms, morph-
ing is based on the interpolation of sound parameterisations resulting from
analysis/synthesis techniques, such as the short-time Fourier transform, linear
predictive coding or sinusoidal models.

Voice timbre Whenever the morphing is performed by means of modifying
a reference voice signal in matching its individuality parameters to another,
we can refer to it as voice conversion (Loscos, 2007). Some applications for
the singing voice exist in the context of karaoke entertainment (Cano et al,
2000) and in the related topics of gender change (Cano et al.,2000) and unison
choir generation (Bonada et al., 2006). We refer to the paper by Bonada and
Serral (2007) regarding the general topic of singing voice synthesis. Still for the
particular case of voice, other finer-grained transformations exist to modify the
timbre character without resorting to a morphing between two spectral shapes:
e.g. rough, growl, breath and whisper transformations. Roughness in voice can
come from different pathologies such as biphonia, or diplophonia, and can
combine with many other voice tags such as “hoarse” or “creaky.” However,
here we will refer to a rough voice as the one due to cycle to cycle variations
of the fundamental frequency (jitter), and the period amplitude (shimmer).
The most common techniques used to synthesise rough voices work with
a source/filter model and reproduce the jitter and shimmer aperiodicities in
the time domain (Childers, 1990). These aperiodicities can be applied to the
voiced pulse-train excitation by taking real patterns that have been extracted
from rough voice recordings or by using statistical models (Schoentgen, 2001).
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Spectral domain techniques have also proved to be valid to emulate rough-
ness (Loscos and Bonada), 2004). Growl phonation is often used when singing
jazz, blues, pop and other music styles as an expressive accent. Perceptually,
growl voices are close to other dysphonic voices such as “hoarse” or “creaky,”
however, unlike these others, growl is always a vocal effect and not a per-
manent vocal disorder. According to Sakakibara et al. (2004), growl comes
from simultaneous vibrations of the vocal folds and supra-glottal structures
of the larynx. The vocal folds vibrate half periodically to the aryepiglottic
fold vibration generating sub-harmonics. Growl effect can be achieved by
adding these sub-harmonics in frequency domain to the original input voice
spectrum (Loscos and Bonada, 2004). These sub-harmonics follow certain
magnitude and phase patterns that can be modelled from spectral analyses of
real growl voice recordings. Breath can be achieved by different techniques.
One is to increase the amount of the noisy residual component in those sound
models in which there is a sinusoidal-noise decomposition. For sound models
based on the phase-locked vocoder (see Section 3.3.2) a more breathy timbre
can be achieved by filtering and distorting the harmonic peaks. The whisper
effect can be obtained by equalizing a previously recorded and analyzed tem-
plate of a whisper utterance. The time behavior of the template is preserved
by adding to the equalisation the difference between the spectral shape of the
frame of the template currently being used and an average spectral shape of
the template. An “anti-proximity” filter may be applied to achieve a more
natural and smoother effect (Fabig and Janer, 2004).

Rhythm transformations

In addition to tempo changes (see Section [3.3.2)), some existing music editing
softwares provide several rhythm transformation functionalities. For instance,
any sequencer provides the means to adjust MIDI note timings to a metrical
grid (“quantisation”) or a predefined rhythmic template. By doing an ap-
propriate mapping between MIDI notes and audio samples, it is therefore
possible to apply similar timing changes to audio mixes. But when dealing
with general polyphonic music excerpts, without corresponding MIDI scores,
these techniques cannot be applied. Few commercial applications implement
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techniques to transform the rhythm of general polyphonic music excerpts. A
review can be found in the paper by Gouyon et al.|(2003a). A technique for
swing transformation has also been proposed in the same paper by Gouyon
et al. (2003a), which consists of a description module and a transformation
module. The description module does onset detection and rhythmic analysis
(see Section 3.2.5)). Swing is relative to the length of consecutive eighth-notes,
it is therefore necessary to determine the beat indexes of eighth-notes. It is also
necessary to describe the excerpt at the next higher (slower) metrical level,
the quarter-note, and determine the eighth-note “phase,” that is, determine
in a group of two eighth-notes which is the first one™ The existing ratio be-
tween consecutive eighth-notes is also estimated. This ratio can be changed
by shortening or lengthening the first eighth-notes of each quarter-note, and
lengthening or shortening the second eighth-notes accordingly. This is done
by means of time-scaling techniques. In the papers by Gouyon et al.| (2003a)
and |Janer et al.|(2006), time-scaling is done in real-time and the user can contin-
uously adjust the swing ratio while playing back the audio file. Having found
evidence for the fact that deviations occurring within the scope of the smallest
metrical pulse are very important for musical expressiveness, Bilmes| (1993)
proposes additional rhythmic transformations based on a high-level descrip-
tion of the rhythmic content of audio signals. Interesting recent applications
of thythm transformations can be found in the works by Wright and Berdahl
(2006), Ramirez and Hazan! (2006), Janer et al. (2006)), Grachten et al.| (2006)),
and [Ravelli et al. (2007).

Melodic transformations

Melodic transformations such as pitch discretisation to temperate scale and in-
tonation apply direct modifications to the fundamental frequency envelope.
Arguably, these transformations may be considered low level transformations;
however, they do change the way a high-level descriptor, namely the melody, is
perceived by the listener. Intonation transformations are achieved by stretch-
ing or compressing the difference between the analysis pitch envelope and a

10Indeed, it is not at all the same to perform a “long-short” pattern as a “short-long” pattern.



3.3. Audio content exploitation 137

Pitch :
A 4

Original Pitch ——
Stretched Pitch —-—
Smoothed pitch ==+~

A4

Figure 3.8: Intonation transformation.

low pass filtered version of it. The goal of the transformation is to increase
or decrease the sharpness of the note attack, as illustrated in Figure[3.8] Pitch
discretisation to temperate scale can be accomplished by forcing the pitch to
take the nearest frequency value of the equal temperate scale. It is indeed
a very particular case of pitch transposition where the pitch is quantified to
one of the 12 semitones of an octave (Amatriain et al),2003) ™ Other melodic
transformations can be found in the software Melodynd2 and in the paper by
Gomez et all (2003d) as transposition (global change of pitch), horizontal sym-
metry, in which the user can choose a pitch value (arbitrary or some global
descriptor related to pitch distribution as minimum, maximum or mean pitch
value of the melody) and perform a symmetric transformation of the note
pitches with respect to this value on a horizontal axis, contour direction changes
in which the user can change the interval direction without changing the in-
terval depth (e.g. converting an ascending octave to a descending one), etc.
Although these transformations are conceptually simple, they correspond to
usual music composition procedures and can create dramatic changes that may
enhance the original material (if used in the right creative context). Finally,
melodies of monophonic instruments can also be transformed by applying
changes on other high-level descriptors in addition to the pitch, such as tempo
curves (Grachten et al., 2006) and note timing and loudness (Ramirez et al.,
2004). See Chapter B for more information on analysis and generation of
expressive musical performances.

HGee also Antares’ Autotune,http://www.antarestech.com/.
Zhttp://www.celemony.com/melodyne
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Harmony transformations

Harmonizing a sound can be defined as mixing a sound with several pitch-
shifted versions of it (Amatriain et al.,2002; Verfaille et al.,2006). This requires
two parameters: the number of voices and the pitch for each of these. Pitches of
the voices to generate are typically specified by the key and chord of harmon-
isation. Where the key and chord are estimated from the analysis of the input
pitch and the melodic context (Pachet and Roy,[1998), some refer to “intelligent
harmonizing.”& An application of harmonizing in real-time monophonic solo
voices is detailed in (Bonada et al., 2006).

3.4 Perspectives

All areas of high level description of music audio signals (as for instance those
addressed in this chapter — Tonality, Rhythm, etc. —) will, without doubt,
witness rapid improvements in the near future. We believe however that the
critical aspect to focus on for these improvements to happen is the systematic
use of large-scale evaluations.

Evaluations Developing technologies related to content processing of music
audio signals requires data (Cano et al., 2004). For instance, implementing
algorithms for automatic instrument classification requires annotated samples
of different instruments. Implementing a voice synthesis and transformation
software calls for repositories of voice excerpts sung by professional singers.
Testing a robust beat-tracking algorithm requires songs of different styles,
instrumentation and tempi. Building models of music content with a Ma-
chine Learning rationale calls for large amounts of data. Besides, running
an algorithm on big amounts of (diverse) data is a requirement to ensure the
algorithm’s quality and reliability. In other scientific disciplines long-term im-
provements have shown to be bounded to systematic evaluation of models. For
instance, text retrieval techniques significantly improved over the year thanks

13gee TC-Helicon’s Voice Pro,http://www.tc-helicon.com/VoiceProl
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to the TREC initiative (see http://trec.nist.gov). TREC evaluations proceed
by giving research teams access to a standardised, large-scale test collection of
text, a standardised set of test queries, and requesting a standardised way of
generating and presenting the results. Different TREC tracks have been created
over the years (text with moving images, web retrieval, speech retrieval, etc.)
and each track has developed its own special test collections, queries and eval-
uation requirements. The standardisation of databases and evaluation metrics
also greatly facilitated progress in the fields of Speech Recognition (Przybocki
and Martin, [1989; Pearce and Hirsch) 2000), Machine Learning (Guyon et al.,
2004) or Video Retrieval (see http://www-nlpir.nist.gov/projects/trecvid/).
In 1992, the visionary Marvin Minsky declared: “the most critical thing, in both
music research and general Al research, is to learn how to build a common
music database” (Minsky and Laske,1992). More than 10 years later, this is still
an open issue. In the last few years, the music content processing community
has recognised the necessity of conducting rigorous and comprehensive evalu-
ations (Downie} 2002, 2003b). However, we are still far from having set a clear
path to be followed for evaluating research progresses. Inspired by [Downie
(2003b), here follows a list of urgent methodological problems to be addressed
by the research community:

1. There are no standard collections of music against which to test content
description or exploitation techniques;

2. There are no standardised sets of performance tasks;

3. There are no standardised evaluation metrics.

As a first step, an audio description contest took place during the fifth edition
of the ISMIR, in Barcelona, in October 2004. The goal of this contest was to
compare state-of-the-art audio algorithms and systems relevant for some tasks
of music content description, namely genre recognition, artist identification,
tempo extraction, rhythm classification and melody extraction (Cano et al.,
2006b). It was the first large-scale evaluation of audio description algorithms,
and the first initiative to make data and legacy metadata publicly available (see
http://ismir2004.ismir.net/ and Cano et al, 2006b| for more details). How-
ever, this competition addressed a small part of the bulk of research going on
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in music content processing. Following editions of the ISMIR have contin-
ued this effort: public evaluations now take place on an annual basis, in the
Music Information Retrieval Evaluation eXchange (MIREX), organised during
ISMIR conferences mainly by the International Music Information Retrieval
Systems Evaluation Laboratory (IMIRSELY™ together with voluntary fellow
researchers. MIREXes have widened the scope of the competitions and cover
a broad range of tasks, including symbolic data description and retrieval. Fu-
ture editions of MIREX are likely to make a further step, from evaluation of
content description algorithms to evaluations of complete MIR systems.
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About this chapter

This chapter gives a broad overview of methods and approaches for automati-
cally extracting musically meaningful (semantic) descriptors for the character-
isation of music pieces. It is shown how high-level terms can be inferred via
a combination of bottom-up audio descriptor extraction and the application
of machine learning algorithms. Also, the chapter will briefly indicate that
meaningful descriptors can be extracted not just from an analysis of the music
(audio) itself, but also from extra-musical sources, such as the internet (via

web mining).
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4.1 Introduction

Research in intelligent music processing is experiencing an enormous boost
these days due to the emergence of the new application and research field
of Music Information Retrieval (MIR). The rapid growth of digital music
collections and the concomitant shift of the music market towards digital
music distribution urgently call for intelligent computational support in the
automated handling of large amounts of digital music. Ideas for a large variety
of content-based music services are currently being developed in the music
industry and in the research community. They range from content-based music
search engines to automatic music recommendation services, from intuitive
interfaces on portable music players to methods for the automatic structuring
and visualisation of large digital music collections, and from personalised
radio stations to tools that permit the listener to actively modify and “play
with” the music as it is being played.

What all of these content-based services have in common is that they
require the computer to be able to “make sense of” and “understand” the
actual content of the music, in the sense of being able to recognise and ex-
tract musically, perceptually and contextually mgful (semantic) patterns from
recordings, and to asto associate descriptors with the music that make sense

to human listeners.

There is a large variety of musical descriptors that are potentially of
interest. They range from low-level features of the sound, such as its bass
content or its harmonic richness, to high-concepts such as “hip hop” or “sad
music”. Also, semantic descriptors may come in the form of atomic, discrete
labels like “rhythmic” or “waltz”, or they may be complex, structured entities
such as harmony and rhythmic structure. As it is impossible to cover all of
these in one coherent chapter, we will have to limit ourselves to a particular
class of semantic descriptors.

This chapter, then, focuses on methods for automatically extracting
high-level atomic descriptors for the characterisation of music. It will be
shown how high-level terms can be inferred via a combination of bottom-up
audio descriptor extraction and the application of machine learning algo-
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rithms. Also, it will be shown that meaningful descriptors can be extracted not
just from an analysis of the music (audio) itself, but also from extra-musical
sources, such as the internet (via web mining).

Systems that learn to assign labels must be evaluated in systematic,
controlled experiments. The most obvious and direct way is via classifica-
tion experiments, where the labels to be assigned are interpreted as distinct
classes. In particular, genre classification, i.e. the automatic assignment of an
appropriate style label to a piece of music, has become a popular benchmark
task in the MIR community (for many reasons, not the least of them being
the fact that genre labels are generally much easier to obtain than other, more
intuitive or personal descriptors). Accordingly, the current chapter will very
much focus on genre classification as the kind of benchmark problem that
measures the efficacy of machine learning (and the underlying descriptors) in
assigning meaningful terms to music. However, in principle, one can try to
predict any other high-level labels from low-level features, as long as there is
a sufficient number of training examples with given labels. Some experiments
regarding non-genre concepts will be briefly described in section4.3.4] and in
section we will show how textual characterisations of music artists can
be automatically derived from the Web.

The chapter is structured as follows. Section4d.2]deals with the extraction
of music descriptors (both very basic ones like timbre and more abstract ones
like melody or rhythm) from recordings via audio analysis. It focuses in par-
ticular on features that have been used in recent genre classification research.
Section [4.3] shows how the gap between what can be extracted bottom-up
and more abstract, human-centered concepts can be partly closed with the
help of inductive machine learning. New approaches to inferring additional
high-level knowledge about music from extra-musical sources (the Internet)
are presented in section4.4l Section .5 finally, discusses current research and
application perspectives and identifies important questions that will have to
be addressed in the future.
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4.2 Bottom-up extraction of descriptors from audio

Extracting descriptors from audio recordings to characterise aspects of the
audio contents is not a new area of research. Much effort has been spent on
feature extraction in areas like speech processing or audio signal analysis. It
is impossible to give a comprehensive overview of all the audio descriptors
developed over the past decades. Instead, this chapter will focus solely on
descriptors that are useful for, or have been evaluated in, music classification
tasks, in the context of newer work in Music Information Retrieval. The real
focus of this chapter is on extracting or predicting higher-level descriptors
via machine learning. Besides, a more in-depth presentation of audio and
music descriptors is offered in another chapter of this book (Chapter 3)), so
the following sections only briefly recapitulate those audio features that have
played a major role in recent music classification work.

Connected to the concept of classification is the notion of music or
generally sound similarity. Obviously, operational similarity metrics can
be used directly for audio and music classification (e.g. via nearest-neighbour
algorithms), but also for a wide variety of other tasks. In fact, some of the music
description schemes presented in the following do not produce features or
descriptors atall, but directly compute similarities; they will also be mentioned,
where appropriate.

4.2.1 Simple audio descriptors for music classification

This section describes some common simple approaches to describe properties
of audio (music) signals. For all algorithms discussed here, the continuous
stream of audio information is cut into small, possibly overlapping fragments
of equal length, called frames. The typical length of a frame is about 20 ms.
Usually, for each frame one scalar value per descriptor is calculated, which can
be done either on the time-domain or the frequency-domain representation of
the signal. To obtain a (scalar) descriptor that pertains to an entire audio track,
the values of all frames can be combined by, for example, applying simple
statistics such as mean and standard deviation of all individual values.
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Time-domain descriptors

On the time-domain representation of the audio signal, several descriptors can
be calculated. An algorithm that mainly describes the power envelope of the
audio signal is Root Mean Square (RMS): the individual values appearing in
each frame are squared, and the root of the mean of these values is calculated.
These values might be combined as described above, or by calculating which
fraction of all RMS values is below, e.g. the average RMS value of a piece (Low
Energy Rate). Comparable to the RMS values are the Amplitude Envelope
values, which are the maximum absolute values of each frame. The amplitude
envelope and RMS descriptors are commonly used as a first step in algorithms
that detect rhythmic structure.

The time-domain representation might also be used to construct mea-
sures that model the concept of Loudness (i.e. the perceived volume). For
example, a simple and effective way is to take the 0.23th power of the RMS
values.

Another possibility is to approximately measure the perceived bright-
ness with the phZero Crossing Rate. This descriptor simply counts how often
the signal passes zero-level.

Also, the time-domain representation can be used to extract period-
icity information from it. Common methods are autocorrelation and comb
filterbanks. Autocorrelation gives for each given time lag the amount of self-
similarity of the time domain samples by multiplying the signal with a time-
lagged version of itself. In the comb filterbank approach, for each periodicity
of interest, there is a comb filter with the appropriate resonance frequency.

Frequency-domain descriptors

A number of simple measures are commonly applied to describe properties of
the frequency distribution of a frame:

e The Band Energy Ratio is the relation between the energy in the low
frequency bands and the energy of the high frequency bands. This de-
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scriptor is vulnerable to producing unexpectedly high values when the
energy in the low energy bands is close to zero.

e The Spectral Centroid is the center of gravity of the frequency distri-
bution. Like the zero crossing rate, it can be regarded as a measure of
perceived brightness or sharpness.

e The Spectral Rolloff frequency is the frequency below which a certain
amount (e.g. 95%) of the frequency power distribution is concentrated.

These descriptors are calculated individually for each frame. The Spec-
tral Flux is modelled to describe the temporal change of the spectrum. It is the
Euclidean distance between the (normalised) frequency distributions of two
consecutive frames, and can be regarded as a measure of the rate at which the
spectrum changes locally.

The descriptors mentioned so far represent rather simple concepts.
A more sophisticated approach is the Mel Frequency Cepstral Coefficients
(MFCCs), which models the shape of the spectrum in a compressed form.
They are calculated by representing the spectrum on the perceptually mo-
tivated Mel-Scale, and taking the logarithms of the amplitudes to simulate
loudness perception. Afterwards, the discrete cosine transformation is ap-
plied, which results in a number of coefficients (MFCCs). Lower coefficients
describe the coarse envelope of the frame’s spectrum, and higher coefficients
describe more detailed properties of the spectrum envelope. Usually, the
higher-order MFCCs are discarded, and only the lower MFCCs are used to
describe the music.

A popular way to compare two recorded pieces of music using MFCCs
is to discard the temporal order of the frames, and to summarise them by
clustering (e.g. Logan and Salomon, 2001} |Aucouturier and Pachet, 2002b).
In the case of the paper by |Aucouturier and Pachet (2002b), for instance,
the clustered MFCC representations of the frames are described by Gaussian
Mixture Models (GMMSs), which are the features for the piece of music. A way
to compare GMMs is sampling: one GMM is used to produce random points
with the distribution of this GMM, and the likelihood that the other GMM
produces these points is checked.
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It might seem that discarding the temporal order information altogether
ignores highly important information. But recent research (Elexer et al.,2005)
has shown that MFCC-based description models using Hidden Markov Mod-
els (which explicitly model the temporal structure of the data) do not improve
classification accuracy (as already noted by |Aucouturier and Pachet, 2004),
though they do seem to better capture details of the sound of musical record-
ings (at least in terms of statistical likelihoods). Whether this really makes a
difference in actual applications still remains to be shown.

The interested reader is referred to Chapter 3l of this book for a much
more comprehensive review of audio descriptors and music description schemes.

4.2.2 Extracting higher-level musical patterns

The basic intuition behind research on classification by higher-level descrip-
tors is that many musical categories can be defined in terms of high-level
musical concepts. To some extent it is possible to define musical genre, for
example, in terms of the melody, rhythm, harmony and instrumentation that
are typical of each genre. Thus genre classification can be reduced to a set of
sub-problems: recognising particular types of melodies, rhythms, harmonies
and instruments. Each of these sub-problems is interesting in itself, and has
attracted considerable research interest, which we review here.

Early work on music signal analysis is reviewed by [Roads| (1996). The
problems that received the most attention were pitch detection, rhythm recog-
nition and spectral analysis, corresponding respectively to the most important
features of music: melody, rhythm and timbre (harmony and instrumentation).

Pitch detection is the estimation of the fundamental frequency of a sig-
nal, usually assuming it to be monophonic. Common methods include: time
domain algorithms such as counting of zero-crossings and autocorrelation;
frequency domain methods such as Fourier analysis and the phase vocoder;
and auditory models that combine time and frequency domain information
based on an understanding of human auditory processing. Recent work ex-
tends these methods to find the predominant pitch (usually the melody note)
in polyphonic mixtures (Goto and Hayamizu [1999;/Gémez et al., 2003).
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The problem of extracting rhythmic contents from a musical perfor-
mance, and in particular finding the rate and temporal location of musical
beats, has attracted considerable interest. A review of this work is found in
the work of Gouyon and Dixon| (2005). Initial attempts focussed on rhythmic
parsing of musical scores, that is without the tempo and timing variations
that characterise performed music, but recent tempo and beat tracking sys-
tems work quite successfully on a wide range of performed music. The use of
rhythm for classification of dance music was explored by IDixon et al.| (2003}
2004).

Spectral analysis examines the time-frequency contents of a signal,
which is essential for extracting information about instruments and harmony.
Short-time Fourier analysis is the most widely used technique, but many oth-
ers are available for analysing specific types of signals, most of which are built
upon the Fourier transform. MFCCs, already mentioned in section4.2.1labove,
model the spectral contour rather than examining spectral contents in detail,
and thus can be seen as implicitly capturing the instruments playing (rather
than the notes that were played). Specific work on instrument identification
can be found in a paper by [Herrera et al. (2003).

Regarding harmony, extensive research has been performed on the ex-
traction of multiple simultaneous notes in the context of automatic transcrip-
tion systems, which are reviewed by Klapuri (2004). Transcription typically
involves the following steps: producing a time-frequency representation of the
signal, finding peaks in the frequency dimension, tracking these peaks over
the time dimension to produce a set of partials, and combining the partials to
produce a set of notes. The differences between systems are usually related
to the assumptions made about the input signal (for example the number of
simultaneous notes, types of instruments, fastest notes, or musical style), and
the means of decision making (for example using heuristics, neural nets or

probabilistic reasoning).

Despite considerable successes, the research described above makes it
increasingly clear that precise, correct, and general solutions to problems like
automatic rhythm identification or harmonic structure analysis are not to be
expected in the near future — the problems are simply too hard and would
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require the computer to possess the kind of broad musical experience and
knowledge that human listeners seem to apply so effortlessly when listening
to music. Recent work in the field of Music Information Retrieval has thus
started to focus more on approximate solutions to problems like melody
extraction (Eggink and Brown, 2004) or chord transcription (Yoshioka et al.,
2004), or on more specialised problems, like the estimation of global tempo
(Alonso et al.,2004) or tonality (Gomez and Herrera) 2004), or the identification
of drum patterns (Yoshii et al., 2004).

Each of these areas provides a limited high-level musical description of
an audio signal. Systems have yet to be defined which combine all of these
aspects, but this is likely to be seen in the near future.

4.3 Closing the gap: Prediction of high-level de-

scriptors via machine learning

While the bottom-up extraction of features and patterns from audio continues
to be a very active research area, it is also clear that there are strict limits as to
the kinds of music descriptions that can be directly extracted from the audio
signal. When it comes to intuitive, human-centered characterisations such as
“peaceful” or “aggressive music” or highly personal categorisations such as
“music I like to listen to while working”, there is little hope of analytically
defining audio features that unequivocally and universally define these con-
cepts. Yet such concepts play a central role in the way people organise, interact
with and use their music.

That is where automatic learning comes in. The only way one can hope
to build a machine that can associate such high-level concepts with music
items is by having the machine learning the correct associations between low-
level audio features and high-level concepts, from examples of music items
that have been labelled with the appropriate concepts. In this section, we
give a very brief introduction to the basic concepts of machine learning and
pattern classification, and review some typical results with machine learning
algorithms in musical classification tasks. In particular, the automatic labelling
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of music pieces with genres has received a lot of interest lately, and section
focuses specifically on genre classification. Section 4.3.4 then reports on
recent experiments with more subjective concepts, which clearly show that a
lot of improvement is still needed. One possible avenue towards achieving
this improvement will then be discussed in section 4.4l

4.3.1 Classification via machine learning

Inductivelearning as the automatic construction of classifiers from pre-classified
training examples has a long tradition in several sub-fields of computer sci-
ence. The field of statistical pattern classification (Duda et al., 2001} Hastie
etal.,2001) has developed a multitude of methods for deriving classifiers from
examples, where a classifier, for the purposes of this chapter, can be regarded
as a black box that takes as input a new object to be classified (described via
a set of features) and outputs a prediction regarding the most likely class the
object belongs to. Classifiers are automatically constructed via learning algo-
rithms that take as input a set of example objects labelled with the correct class,
and construct a classifier from these that is (more or less) consistent with the
given training examples, but also makes predictions on new, unseen objects —

that is the classifier is a generalisation of the training examples.

In the context of this chapter, training examples would be music items
(e.g. songs) characterised by a list of audio features and labelled with the
appropriate high-level concept (e.g. “this is a piece I like to listen to while
working”), and the task of the learning algorithm is to produce a classifier
that can predict the appropriate high-level concept for new songs (again rep-
resented by their audio features).

Common training and classification algorithms in statistical pattern
classification (Duda et al., 2001) include nearest neighbour classifiers (k-NN),
Gaussian Mixture Models, neural networks (mostly multi-layer feed-forward
perceptrons), and support vector machines (Cristianini and Shawe-Taylor,
2000).

The field of Machine Learning (Mitchell,[1997) is particularly concerned
with algorithms that induce classifiers that are interpretable, i.e. that ex-
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plicitly describe the criteria that are associated with or define a given class.
Typical examples of machine learning algorithms that are also used in music
classification are decision trees (Quinlan, 1986) and rule learning algorithms
(Firnkranz, [1999).

Learned classifiers must be evaluated empirically, in order to assess the
kind of prediction accuracy that may be expected on new, unseen cases. This
is essentially done by testing the classifier on new (labelled) examples which
have not been used in any way in learning, and recording the rate of prediction
errors made by the classifier. There is a multitude of procedures for doing this,
and a lot of scientific literature on advantages and shortcomings of the various
methods. The basic idea is to set aside a part of the available examples for
testing (the test set), then inducing the classifier from the remaining data (the
training set), and then testing the classifier on the test set. A systematic method
most commonly used is known as n-fold cross-validation, where the available
data set is randomly split into n subsets (folds), and the above procedure is
carried out n times, each time using one of the n folds for testing, and the
remaining n — 1 folds for training. The error (or, conversely, accuracy) rates
reported in most learning papers are based on experiments of this type.

A central issue that deserves some discussion is the training data re-
quired for learning. Attractive as the machine learning approach may be, it
does require (large) collections of representative labelled training examples,
e.g. music recordings with the correct categorisation attached. Manually la-
belling music examples is a very laborious and time-consuming process, espe-
cially when it involves listening to the pieces before deciding on the category.
Additionally, there is the copyright issue. Ideally, the research community
would like to be able to share common training corpora. If a researcher wants
to test her own features in a classification experiment, she/he needs access to
the actual audio files.

There are some efforts currently being undertaken in the Music Informa-
tion Retrieval community to compile large repositories of labelled music that
can be made available to all interested researchers without copyright problems.
Noteworthy examples of this are Masataka Goto’s RWC Music Database T, the

Thttp://staff.aist.go.jp/m.goto/RWC-MDB
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IMIRSEL (International Music Information Retrieval System Evaluation Lab-
oratory) project at the University of Illinois at Urbana-Champaign? (Downie
et al,2004), and the new FreeSound Initiative E.

4.3.2 Learning algorithms commonly used in music classifica-

tion

In this section, we briefly review some of the most common learning algorithms

that are used in music classification and learning tasks.

Decision trees (Quinlan, [1986)) are probably the most popular class of
classification models in machine learning. Essentially, a decision tree corre-
sponds to a set of classification rules (represented in the form of a tree) that
predict the class of an object from a combination (conjunction) of specific
characteristic feature values, which are determined via simple information-
theoretic measures. Decision trees are widely used also in Music Information
Retrieval. In a paper by West and Cox| (2004), for instance, decision tree learn-
ing algorithms have been used to build a model of the distribution of frame
values.

Because of its known merits, nearest-neighbour (NN) classification is
widely used, also in MIR. Here, the idea is to compare a new (test) object, to
be classified, with all the training instances and predict the class of the most
similar training instance(s) for the new object. In order to obtain a measure
of similarity, the feature values — possibly after feature selection — of each
piece are regarded as a vector, and the euclidean distance from the test object
to all training instances (e.g. (Costa et al., 2004; (Gouyon et al,, 2004) or to
representative reference vectors (e.g. Hellmuth et al.,2004; Kastner et al.,2004)
is used as a (dis)similarity metric for classification.

Support Vector Machines (SVMs) are also applied to music classification.
In essence, an SVM learns an optimal linear classification boundary between
the classes in a high-dimensional space, which is implicitly computed from the

http://www.music-ir.org/evaluation
Shttp://freesound.iua.upf.edu
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original features via a so-called kernel function. Xu et al. (2003), for instance,
use SVMs for genre classification, and Li and Ogihara (2003) train several
SVMs to recognise mood labels, where each SVM decides if one specific label
is present in the music.

Gaussian Mixture Models (GMMs) are useful for estimating the distri-
bution of feature values. A GMM models a multivariate probability density
as a weighted combination of Gaussians. GMMSs can be used for classification
by modelling each class as a GMM; an instance is then classified by calcu-
lating, for each class (GMM), the probability that the instance was produced
by the respective GMM (i.e. the likelihood of the GMM, given the observed
instance), and predicting the class with the maximum likelihood. In a paper by
Liu et al. (2003), mood detection in classical music is performed based on this
approach. GMM classifiers have also been used by Burred and Lerch (2003)
and [I'zanetakis and Cook! (2002) for genre classification.

Neural Networks have also been applied to music classification —
in particular, the so-called multi-layer perceptron or feed-forward network.
Costa et al. (2004) use a multilayer perceptron to determine the class of a piece
given its feature vector. [Hellmuth et al. (2004) use a more elaborate approach
by training a separate neural network for each class, and an additional one
that combines the outputs of these networks.

4.3.3 Genre classification: Typical experimental results

The experimental results found in the literature on genre classification are
not easy to compare, as researchers use many different music collections to
evaluate their methods. Also, the ways of annotating the collections vary:
some researchers label the pieces according to their own judgment, while
others use online databases for the assignment of genre labels. Additionally,
different authors often tackle slightly different problems (such as categorical
vs. probabilistic classification), which makes a comparison of the results even
more difficult. These facts should be keptin mind when assessing the examples

given in this section.

Generally, when trying to separate the classes Pop and Classical, very
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high accuracies are reached, suggesting that this task is not too difficult. For
example, Costa et al.l (2004) achieve up to 90.3% classification accuracy, and
Mierswa and Morik! (2005) report even 100% on 200 pieces. In both cases, the
baseline is one half. Although Xu et al.|(2003) report a classification accuracy
of 93% for four genres, in general the classification accuracy decreases when
the number of genres grows.

For classification into dance music genres, (Gouyon et al.| (2004) obtain
up to 78.9% accuracy (15.9% baseline) when classifying 698 pieces of music into
eight classes. This classification is based on a number of rhythmic descriptors
and a rule-based classifier whose rules were designed manually. For a wider
range of musical contents, divided into eleven genres,Uhle and Dittmar (2004)
report a classification accuracy of 67.6%, also based on rhythm features.

At the ISMIR 2004 conference, a comparison of different audio descrip-
tion algorithms was conducted in the form of a contest?. For the section of
genre classification, the winning algorithm achieved a classification accuracy
of 84.07% correct answers. The test collection consisted of 729 pieces, divided
into six classes, with a baseline of 43.9%.

4.3.4 Trying to predict labels other than genre

Genre or style is a descriptor that is useful for many applications, especially in
commercial settings. Even though the concept of “genre” is not well defined
(see e.g. |Aucouturier and Pachet, 2003), it is still much more objective than
the kinds of personal characterisations human listeners attach to their music.
But it is precisely these personal, subjective categorisations (“happy music”,
“aggressive music”, “music I like when I am sad”, “music that one can dance
to”) that, if learnable by computers, would open new possibilities for intelligent

and rewarding musical interactions between humans and machines.

A small preliminary experiment on the learnability of subjective, non-
genre categorisations is reported in this section. As will be seen, the results
are rather poor, and a lot of improvement is still needed. Web-based learning

‘http://ismir2004.ismir.net/ISMIR Contest.html
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about music is a promising alternative that might help to overcome the current
limitations; that is the topic of the next section (Section 4.4).

The experiment presented here aimed to investigate the learnability of
the categorisations mood (happy / neutral / sad), perceived tempo (very slow
/ slow / medium / fast / very fast / varying), complexity (low / medium / high),
emotion (soft / neutral / aggressive), focus (vocal / both / instruments), and
genre (blues / classical / electronica / folk / jazz / new age / noise / rock / world).
To this end, each piece in a music collection of 729 pieces was labelled with the
according value.

This data basis was used to examine the discriminative power of several
descriptor sets in combination with a number of machine learning algorithms.
The descriptor sets consisted mainly of descriptors that are widely used for
music classification tasks (see section 4.2.T] above). Three different descriptor
sets were tested: the set that was also used by [Izanetakis and Cook! (2002), a
set made from some Mpeg7 Low Level Descriptors, and a set that contained all
descriptors of the above sets, together with some additional ones for rhythm
and melody description.

To train the machine learning algorithms, mean and variance of the
descriptors” values for a 30-second excerpt of the piece of music were taken
as attributes. Table .1l shows the highest classification accuracies that were
achieved with different learning algorithms; accuracy was estimated via strat-
ified tenfold cross-validation. The evaluated learning algorithms were J48 (a
decision tree learner, available — like all the other learning algorithms men-
tioned here — in the machine learning toolkit WEKAZ, SMO (a support vector
machine), Naive Bayes, Naive Bayes with Kernel Estimation, Boosting, Boost-
ing with J48, Regression with MP5, Linear Regression, and k-NN with k =1,
3,5, 10. The table also lists the results obtained when applying the algorithm
from |Aucouturier and Pachetl (2004) to the same categorisations. For this al-
gorithm, the best values obtained for k-NN classification with k =1, 3, 5, 10
are shown. The other learning algorithms were not applicable to its feature
data. Also, the baseline is given (i.e. the classification accuracy achieved when
always guessing the most frequent class).

5Software freely available from http://www.cs.waikato.ac.nz/ml/
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mood | perceived tempo | complexity | emotion | focus | genre
Baseline 50.00 % 42.53 % 75.66 % | 44.46 % | 68.92 % | 60.48 %
Set from TC02 50.00 % 42.53 % 76.63 % | 45.06 % | 71.08 % | 65.66 %
Some Mpeg7 LLDs | 50.00 % 43.13 % 76.14% | 46.75% | 70.00 % | 64.94 %
“Large” Set 51.08 % 44.70 % 76.87 % | 47.47 % | 71.20 % | 69.52 %
Best from AP04 50.24 % 48.67 % 78.55% | 57.95% | 75.18 % | 70.84 %

Table 4.1: Best classification accuracies for the different categorisations in the
small preliminary experiment. TC02 = (Tzanetakis and Cook, 2002); AP04 =
(Aucouturier and Pachet, 2004).

These results show that, with the examined techniques, in some cases it
is even not possible to get classification accuracies higher than the baseline. For
all categorisations except mood, the algorithm from [Aucouturier and Pachet
(2004) performed better than the other approaches. There is a number of
ways in which this experiment could be improved, e.g., by the application of
feature selection algorithms or the development of dedicated descriptors for
each different task. Still, the results point to some fundamental limitations of
the feature-based learning approach; concepts like the emotional quality of a
piece of music seem to elude a purely audio-based approach.

4.4 A new direction: Inferring high-level descrip-

tors from extra-musical information

Listening to and making sense of music is much more than decoding and
parsing an incoming stream of sound waves into higher-level objects such as
onsets, notes, melodies, harmonies, etc. Music is embedded in a rich web of
cultural, historical, cultural, and social (and marketing) contexts that influence
how music is heard, interpreted, and categorised. That is, many qualities
or categorisations attributed to a piece of music by listeners cannot solely be
explained by the content of the audio signal itself.

Also, recent research on genre classification clearly shows that purely
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audio-based approaches to music classification may be hitting a kind of “glass
ceiling” (Aucouturier and Pachet, 2004): there seem to be strict limits to the
level of classification accuracy that can be obtained with purely audio-based
features, no matter how sophisticated the audio descriptors. From a pragmatic
point of view, then, it is clear that, if at all, high-quality automatic music
annotation and classification can only be achieved by also taking into account
and exploiting information sources that are external to the music itself.

The Internet is a rich, albeit unstructured, source of potential infor-
mation, where millions of music lovers and experts discuss, describe, and
exchange music. Possible information sources include personal web pages,
music and concert reviews published on the Web, newspaper articles, discus-
sion forums, chat rooms, playlists exchanged through peer-to-peer networks,
and many more. A common term for denoting all the musically relevant infor-
mation that is potentially “out there” is community metadata (Whitman and
Lawrence) 2002). Recent approaches to high-level music characterisation try
to automatically extract relevant descriptors from the Internet — mostly from
general, unstructured web pages —, via the use of information retrieval, text
mining, and information extraction techniques (e.g. Baumann and Hummel,
2003} Whitman and Ellis|, 2004 Whitman and Lawrence, 2002, Whitman and
Smaragdis| 2002). In a sense, this is like learning about music without ever
listening to it, by analysing the way people talk about and describe music,
rather than what the music actually sounds like.

In the following, two research projects are briefly presented that show in
a prototypical way how the Internet can be exploited as a source of information
about — in this case — music artists. Section K.4.1] shows how artists can be
probabilistically related to genres via web mining, and section 4.4.2] presents
an approach to the hierarchical clustering of music artists, and the automatic
labelling of the individual clusters with descriptive terms gleaned from the
Web.
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4.4.1 Assigning artists to genres via web mining

In this section we will explain how to extract features (words) related to artists
from web pages and how to use these features to construct a probabilistic
genre classifier. This permits the computer to classify new artists present on
the web using the Internet community’s collective knowledge. To learn the
concept of a genre the method requires a set of typical artists for each genre
in advance. Based on these artists and a set of web pages that talk about
these artists, a characteristic profile is created for each genre. Using this profile
(i.e. a weighted list of typical keywords) any artist can be classified by simple
evaluation of word occurrences on related web pages. The following is a
simplified account of the basic method; the details can be found in a paper by
Knees et al.| (2004).

To obtain useful data for genre profile generation, Internet search en-
gines like Google are queried with artist names, along with some constraints
(e.g. +music +review) that should filter out non-musical pages, and the top
ranked pages are retrieved (without these constraints, a search for groups
such as Kiss would result in many unrelated pages). The retrieved pages tend
to be common web pages such as fan pages, reviews from online music mag-
azines, or music retailers. The first N available top-ranked webpages for each
query are retrieved, all HTML markup tags are removed, so that only the plain
text content is left, and common English stop word lists are used to remove
frequent terms (e.g. a, and, or, the).

The features by which artists are characterised are the individual words
that occur in any of the pages. In order to identify those words that may
indicate what genre an artist belongs to, the next important step is feature
weighting. A common method for this comes from the field of Information
Retrieval and is known as term frequency X inverse document frequency
(tf xidf) (Salton and Buckley,1988). For each artist 2 and each term t appearing
in the retrieved pages, we count the number of occurrences tf,, (term frequency)
of term t in documents related to 4, and df;, the number of pages the term
occurred in (document frequency). These are combined by multiplying the
term frequency with the inverse document frequency. Basically, the intention
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of the #f X idf function is to assign a high score to terms that occur frequently,
but also to reduce the score if these terms occur on many different pages and

thus do not contain useful information.

In the approach described in the paper by Knees et al.l(2004), an addi-
tional step is performed to find those terms that are most discriminative for
each genre: a x? test is used to select those terms that are least independent
of (i.e. are likely to be predictive of) the classes. Selecting the top N terms for
each category and scaling all x? values per category so that the score for the top
ranked term equals 1.0, gives a list of terms that seem to be typical of a given
genre. An example of such a list for the genre heavy metal/hard rock is shown
in Table 4.2l Note that neither of the constraint words (music and review) are
included (they occur in all the pages, but they do not help in discriminating
the genres).

The top 4 words are all (part of) artist names which were queried. How-
ever, many artists which are not part of the queries are also in the list, such as
Phil Anselmo (Pantera), Hetfield, Hammett, Trujillo (Metallica), and Ozzy Os-
bourne. Furthermore, related groups such as Slayer, Megadeth, Iron Maiden,
and Judas Priest are found as well as album names (Hysteria, Pyromania, ...)
and song names (Paranoid, Unforgiven, Snowblind, St. Anger, ...) and other
descriptive words such as evil, loud, hard, aggression, and heavy metal.

To classify previously unseen artists, we simply query Google with
the artist name, count the occurrences of the characteristic genre terms on the
retrieved web pages, and multiply these numbers with their respective scores
for each genre. The scores in each genre are summed up, and the probability
of membership of an artist to a genre is then computed as the fraction of the
achieved score of each genre over the sum of scores over all genres.

In Knees et al.|(2004), this procedure was tested using a genre taxonomy
of 14 genres, and it was shown that correct genre recognition rates of 80% and
better are achievable with this purely web-based approach, which compares
very favourably with audio-based classification (see section above).

On top of this classification system, an interactive demo applet (the
GenreCrawler) was implemented that permits the user to experiment with the
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1.00 *sabbath [0.26 heavy 0.17 riff 0.12 butler
0.97 *pantera |0.26 ulrich 0.17 leaf 0.12 blackened
0.89 *metallica |0.26 vulgar 0.17 superjoint |0.12 bringin
0.72 *leppard |0.25 megadeth |0.17 maiden 0.12 purple
0.58 metal 0.25 pigs 0.17 armageddon |0.12 foolin
0.56 hetfield |0.24 halford 0.17 gillan 0.12 headless
0.55 hysteria |0.24 dio 0.17 ozzfest 0.12 intensity
0.53 ozzy 0.23 reinventing |0.17 leps 0.12 mob
0.52 iommi 0.23 lange 0.16 slayer 0.12 excitable
0.42 puppets |0.23 newsted  |0.15 purify 0.12 ward
0.40 dimebag (0.21 leppards |0.15 judas 0.11 zeppelin
0.40 anselmo |0.21 adrenalize [0.15 hell 0.11 sandman
0.40 pyromania|0.21 mutt 0.15 fairies 0.11 demolition
0.40 paranoid |0.20 kirk 0.15 bands 0.11 sanitarium
0.39 osbourne [0.20 riffs 0.15 iron 0.11 *black
0.37 *def 0.20 s&m 0.14 band 0.11 appice
0.34 euphoria |0.20 trendkill [0.14 reload 0.11 jovi
0.32 geezer 0.20 snowblind [0.14 bassist 0.11 anger
0.29 vinnie 0.19 cowboys |0.14 slang 0.11 rocked
0.28 collen 0.18 darrell 0.13 wizard 0.10 drummer
0.28 hammett |0.18 screams 0.13 vivian 0.10 bass
0.27 bloody 0.18 bites 0.13 elektra 0.09 rocket
0.27 thrash 0.18 unforgiven |0.13 shreds 0.09 evil
0.27 phil 0.18 lars 0.13 aggression |0.09 loud
0.26 lep 0.17 trujillo 0.13 scar 0.09 hard

Table4.2: The top 100 terms with highest x7. values for genre “heavy metal/hard
rock” defined by 4 artists (Black Sabbath, Pantera, Metallica, Def Leppard).
Words marked with * are part of the search queries. The values are normalised
so that the highest score equals 1.0.

system by typing in arbitrary new artists. In fact, the words to be typed in
need not be artist names at all — they could be anything. The learned classifier
can relate arbitrary words to genres, if that makes sense at all. For example, a
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< GenreCrawler Q@@

artist: |elvis presley |
found 317 keyword occurences =3 result of genre keyword search
o- ] Rockn'Roll (183.2)
o= (] Blues (25.0)
RocknRoll (57,8%) &= (=] Pop (20.7)

o [ R'n'B/Soul (13.2)

o= [ Country (11.8)

e ] Rap/HipHop (11.3)

o m Heawy MetaliHard Rock (11.2)
- Jaz (9.7)

o= [ Punk (7.8)

e~ [ Folk (7.1)

o= (] Electronic/Dance (6.2)
o= [ Classical (5.7)

o= [ Alternativeiindie (2.4)
o ] Reggae (1.4)

Blues (7,9%)

Other (34,2%)

finished.

Figure 4.1: The GenreCrawler Knees et al/(2004) trying to classify Elvis Presley.

query for “Pathétique” results in an unambiguous answer: Classical Music.
A screenshot of the GenreCrawler at work can be seen in Figure 4.1

4.4.2 Learning textual characterisations

It is easy to convert the linguistic features (words) identified with the above
method into a similarity measure, again using standard methods from infor-
mation retrieval. Similarity measures have a wide range of applications, and
one is presented in this section: learning to group music artists into mean-
ingful categories, and describing these categories with characteristic words.
Again, this is exploiting the Internet as an information source and could not
be achieved on an audio basis alone.

More precisely, the goal is to find words to describe what a group of
artists has in common, or what distinguishes it from other groups. Such infor-
mation can be used for hierarchical user interfaces to explore music collections

at the artist level (Pampalk et al.,2005). A simple text-based interface is shown
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in Figure 4.2l below.

As a first step, artists must be clustered hierarchically, and then appro-
priate terms (words) must be selected to describe these clusters. The basis of
clustering is a similarity measure, which in our case is based on the linguistic
features (characteristic words) extracted from Web pages by the GenreCrawler.
There is a multitude of methods for hierarchical clustering. In the system de-
scribed here (Pampalk et al.,2005), basically, a one-dimensional self organising
map (SOM) (Kohonen) 2001)) is used, with extensions for hierarchical structur-
ing (Miikkulainen), [1990; Koikkalainen and Oja} [1990). Overlaps between the
clusters are permitted, so that an artist may belong to more than one cluster.
To obtain a multi-level hierarchical clustering, for each cluster found another
one-dimensional SOM is trained (on all artists assigned to the cluster) until the
cluster size falls below a certain limit.

The second step is the selection of characteristic terms to describe the
individual clusters. The goal is to select those words that best summarise a
group of artists. The assumption underlying this application is that the artists
are mostly unknown to the user (otherwise we could just label the clusters
with the artists” names).

There are a number of approaches to select characteristic words (Pam-
palk et al., 2005). One of these was developed by Lagus and Kaski (1999) for
labelling large document collections organised by SOMs. Lagus and Kaski
use only the term frequency tf;, for each term t and artist a. The heuristically
motivated ranking formula (higher values are better) is,

_ . (tftc/ Zt/ tﬁ’c)
ﬁc - (tftC/ Z‘ tft’C) Zc’(tfl‘ﬂ’/ Zt’ tft’c’)l (41)

where tf,. is the average term frequency in cluster c. The left side of the product

is the importance of t in ¢ defined through the frequency of ¢ relative to the
frequency of other terms in c. The right side is the importance of ¢ in c relative
to the importance of t in all other clusters.

Figure.2lshows a simple HTML interface that permits a user to explore
the cluster structure learned by the system. There are two main parts to it: the
hierarchy of clusters visualised as a grid of boxed texts and, just to the right
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of it, a display of a list of artists mapped to the currently selected cluster. The
clusters of the first level in the hierarchy are visualised using the five boxes
in the first (top) row. After the user selects a cluster, a second row appears
which displays the children of the selected cluster. The selected clusters are
highlighted in a different color. The hierarchy is displayed in such a way that
the user can always see every previously made decision on a higher level. The
number of artists mapped to a cluster is visualised by a bar next to the cluster.
Inside a text box, at most the top 10 terms are displayed. The value of the
ranking function for each term is coded through the color in which the term is
displayed. The best term is always black and as the values decrease the color
fades out. In the screenshot, at the first level the second node was selected,
on the second level the fifth node, and on the third level, the first node. More
details about method and experimental results can be found in the paper by
Pampalk et al.| (2005).

To summarise, the last two sections were meant to illustrate how the
Internet can be used as a rich source of information about music. These are
just simple first steps, and a lot of research on extracting richer music-related
information from the Web can be expected.

A general problem with web-based approaches is that many new and
not so well-known artists or music pieces do not appear on web pages. That
limits the approach to yesterday’s mainstream western culture. Another issue
is the dynamics of web contents (e.gLawrence and Giles|,[1999). This has been
studied by Knees et al/ (2004) and the study was continued in a following
paper (Knees, 2004). The experiments reported there indicate that, while the
web may indeed be unstable, simple approaches like the ones described here
may be highly robust to such fluctuations in web contents. Thus, the web
mining approach may turn out to be an important pillar in research on music

categorisation, if not music understanding.
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dance, electronic,

reggae,

song, ambient,

band, rap, pop,

band, song, pop,

U Artist Browser - Mozilla Firefox uw
File Edit Wew Go Bookmarks Tools Help
-- WORDS -- - ARTISTS --

piano, symphony, song, rap, band, punk, country, song, blues, jazz, - aphex twin
classical, hip-hop. pop, metal, song, pop. band, guitar, pop, country, soul, - armand van helden
orchestra, opera, dance, beats, uk, guitar, world, country music, reggae, guitar, - basement jaxx
violin, musical, cool, band, world, || punk rock, hard, folk, world, young, || song, ... - carl cox
jazz, quartet, pretty, ... group, ... - chemical brothers
chamber, ... - daft punk

- fatboy slim
rap, hip-hop, cool, || pop. song, coal, band, punk, song, || band, song, pop, || dance, electronic, - Jimi tenor
gangsta, song, uk, girl, world, guitar, country, guitar, musical, house, song, - kraftwerk
hip hop, hot, concert, voice, american, soul, world, punk, tenor, techno, - mouse on mars
world, beats, american, dance, world, pop, punk group, uk, salo, ... || reggae, ... - paul_oakenfold
group, ... rock, ... - prodigy

- underworld

house, tenor, dancehall, ragga, electronic, dance, song, german, guitar, world,
techno, uk, punk, stage, caribbean, band, uk, techno, electronic, musical, uk, ...
beats, trance, soca, ghetto, dub, beats, pop, hot, ... hip-hop, jive,
club, ... world, dancehall guitar, world, ...

reggae, ...
house, dance, dance, heats, dance, band, ambient, uk, tenor, punk,
punk, club, salon, uk, song, song, techno, song, piano, electronic, jazz,
trance, song, party, rave, symphony, electronic, pop, german,
world, funk, party, || psychedelic, big real, beats, bass, festival, beats, song, ...
disco, ... beat, guitar, electronic, ... metal, alternative,

electronic, ... experimental, ...

Dane

Figure 4.2: Screen shot of the HTML user interface to a system that auto-

matically infers textual characterisations of artist clusters (cf. Pampalk et al.|

2005).
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4.5 Research and application perspectives

Building computers that can make sense of music has long been a goal topic
that inspired scientists, especially in the field of Artificial Intelligence (AI). For
the past 20 or so years, research in AI and Music has been aiming at creating
systems that could in some way mimic human music perception, or to put it
in more technical terms, that could recognise musical structures like melodies,
harmonic structure, rhythm, etc. at the same level of competence as human
experts. While there has been some success in specialised problems such as
beat tracking, most of the truly complex musical capabilities are still outside
of the range of computers. For example, no machine is currently capable
of correctly transcribing an audio recording of even modest complexity, or
of understanding the high-level form of music (e.g. recognising whether a
classical piece is in sonata form, identifying a motif and its variations in a
Mozart sonata, or unambiguously segmenting a popular piece into verse and
chorus and bridge).

The new application field of Music Information Retrieval has led to, or
at least contributed to, a shift of expectations: from a practical point of view,
the real goal is not so much for a computer to understand music in a human-
like way, but simply to have enough intelligence to support intelligent musical
services and applications. Perfect musical understanding may not be required
here. For instance, genre classification need not reach 100% accuracy to be
useful in music recommendation systems. Likewise, a system for quick music
browsing (e.g. Goto} 2003) need not perform a perfect segmentation of the mu-
sic —if it finds roughly those parts in a recording where some of the interesting
things are going on, that may be perfectly sufficient. Also, relatively simple
capabilities like classifying music recordings into broad categories (genres) or
assigning other high-level semantic labels to pieces can be immensely useful.

As has been indicated in this chapter, some of these capabilities are
within reach, and indeed, some highly interesting real-world applications of
this technology are currently emerging in the music market. From the research
point of view, it is quite clear that there is still ample room for improvement,
even within the relatively narrow domain of learning to assign high-level
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descriptors and labels to music recordings, which was the topic of this chapter.
For instance, recent work on musical web mining has shown the promise
of using extra-musical information for music classification, but little research
has so far been performed on integrating different information sources —
low-level audio features, higher-level structures automatically extracted from
audio, web-based features, and possibly lyrics (which can also be recovered
automatically from the Internet as discussed by [Knees et al.) — in non-trivial
ways.

A concept of central importance to MIR is music similarity measures.
These are useful not only for classification, but for a wide variety of practi-
cal application scenarios, e.g., the automatic structuring and visualisation of
large digital music collections (Pampalk et al., 2002, 2004), automatic playlist
generation (e.g.|/Aucouturier and Pachet, 2002a)), automatic music recommen-
dation, and many more. Current music similarity measures are usually based
on lower-level descriptors which are somehow averaged over a whole piece,
so that a Euclidean distance metric can be applied to them. More complex ap-
proaches like clustering and distribution modelling via mixtures give a slightly
more detailed account of the contents of a piece, but still ignore the temporal
aspect of music. While preliminary experiments with Hidden Markov Models
(Aucouturier and Pachet, 2004; Flexer et al., 2005), which do model temporal
dependencies, do not seem to lead to improvements when based on low-level
timbral features (like MFCCs), there is no reason to assume that the integration
of higher-level descriptors (like melody, harmony, etc.) and temporal mod-
elling will not permit substantial improvement. A lot of research on these
issues is to be expected in the near future, driven by the sheer practical po-
tential of music similarity measures. To put it simply: computers equipped
with good music similarity measures may not be able to make sense of music
in any human-like way, but they will be able to do more and more sensible
things with music.
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About this Chapter

This chapter gives an introduction to basic directions of current research in
expressive music performance. A special focus is given on the various meth-
ods to acquire performance data either during a performance (e.g. through
computer-monitored instruments) or from audio recordings. We then sur-
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vey computational approaches to formalise and model the various aspects
in expressive music performance. Future challenges and open problems are
discussed briefly at the end of the chapter.

5.1 Introduction

Millions of people are regularly attending live music events or listening to
recordings of music performances. What drives them to do so is hard to pin
down with certainty, and the reasons for it might be manifold. But while
enjoying the music, they are all listening to (mostly) human-made music that
contains a specific human expression, whatever kind it might be — what they
hear makes intuitive sense to them. Without this expressivity the music would
not attract people; it is an integral part of the music.

Given the central importance of expressivity (not only in music, but in
all communication modes and interaction contexts), it is not surprising that
human expression and expressive behaviour have become a domain of intense
scientific study. In the domain of music, much research has focused on the
act of expressive music performance, as it is commonly and most typically found
in classical music: the deliberate shaping of the music by the performer, the
imposing of expressive qualities onto an otherwise “dead” musical score via
controlled variation of parameters such as intensity, tempo, timing, articula-
tion, etc. Early attempts at quantifying this phenomenon date back to the
beginning of the 20th century, and even earlier than that.

If we wish to precisely measure and analyse every detail of an expres-
sive music performance (onset timing, timbre and intensity, duration, etc.), we
end up with huge amounts of data that quickly become unmanageable. Since
the first large-scale, systematic investigations into expression in music perfor-
mance (usually of classical music) in the 1930s, this has always been a main
problem, which was controlled either by reducing the amount of music inves-
tigated to some seconds of music, or by limiting the number of performances
studied to one or two. Recent approaches try to overcome this problem by us-
ing modern computational methods in order to study, model, and understand
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musical performance in its full complexity.

In the past ten years, some very comprehensive overview papers have
been published on the various aspects of music performance research. The
probably most cited is Alf Gabrielsson’s chapter in Diana Deutsch’s book
“Psychology of Music” (Gabrielsson,[1999), in which he reviewed over 600 pa-
pers in this field published until approximately 1995. In a follow-up paper, he
added and discussed another 200 peer-reviewed contributions that appeared
until 2002 (Gabrielsson, 2003). A cognitive-psychological review has been
contributed by Palmer| (1997) summarising empirical research that focuses on
cognitive aspects of music performance such as memory retrieval, anticipatory
planning, or motor control. The musicologist’s perspective is represented by
two major edited books devoted exclusively to music performance research
(Rink|, 1995| 2002). Lately, more introductory chapters highlight the vari-
ous methodological issues of systematic musicological performance research
(Rinkl,2003;/Clarke,2004; Cook, 2004, Windsor, 2004). Two recent contributions
surveyed the diversity of computational approaches to modelling expressive
music performance (De Poli, 2004; Widmer and Goebl, 2004). Parncutt and
McPhersonl (2002) attempted to bridge the gap between research on music
performance and music practice by bringing together two authors from each
of the two sides for each chapter of their book.

Considering this variety of overview papers, we aim in this chapter to
give a systematic overview on the more technological side of accessing, mea-
suring, analysing, studying, and modelling expressive music performances.
As a start, we survey the current literature of the past century on various
ways of obtaining expression-related data from music performances. Then,
we review current computational models of expressive music performance. In
a final section we briefly sketch possible future directions and open problems
that might be tackled by future research in this field.
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5.2 Data acquisition and preparation

This section is devoted to very practical issues of obtaining precise empirical
data on expressive performance. We can distinguish basically two different
strategies for obtaining information on music performance. The first is to mon-
itor performances during the production process with various measurement
devices (MIDI pianos, accelerometers, movement sensors, video systems, etc.).
Specific performance parameters can be accessed directly (hammer velocity of
each played tone, bow speed, fingering, etc.). The other way is to extract
all these relevant data from the recorded audio signal. This method has the
disadvantage that some information, easy to extract during performance, is
almost impossible to gain from the audio domain (consider, for instance, the
sustain pedal on the piano). The advantage, however, is that we now have
more than a century of recorded music at our disposal that could serve as a
valuable resource for various kinds of scientific investigation. In the following
sub-sections, we discuss the various approaches for monitoring and measur-
ing music performance, and survey the major empirical performance studies
that used them. As will be seen, by far the largest part of research has been
done on piano performances.

5.2.1 Using specially equipped instruments

Before computers and digital measurement devices were invented and readily
available for everyone, researchers employed a vast variety of mechanical and
electrical measurement apparati to capture all sorts of human or mechanical
movements during performance. We will review the most important of them,

in chronological order, from rather old to state-of-the-art.

Mechanical and electro-mechanical setups

Among the first to record the movement of piano keys were Binet and Courtier
(1895), who used a 6-mm caoutchouc rubber tube placed under the keys that
was connected to a cylindric graphical recorder that captured continuous air
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pressure resulting from striking different keys on the piano. They investigated
some basic pianistic tasks such as playing trills, connecting tones, or passing-
under of the thumb in scales with exemplary material. In the first of the two
contributions of this study, [Ebhardt (1898) mounted metal springs on a bar
above the strings that closed an electrical shutter when the hammer was about
to touch the strings. The electric signal was recorded with a kymograph and
timed with a 100-Hz oscillator. He studied the timing precision of simple
finger tapping and playing scales. Further tasks with binary and ternary
metrum revealed some characteristic timing patterns (e.g. a lengthening of
the time interval before an accentuated onset). Onset and offset timing of
church hymn performances were investigated by Sears (1902). He equipped a
reed organ with mercury contacts that registered key depression of 10 selected
keys. This information was recorded on four tracks on the surface of a smoked
kymograph drum. He studied several temporal aspects of performances by
four organ players, such as duration of the excerpts, bars, and individual note
values, accent behavior, or note overlap (articulation).

A multitude of mechanical measurement devices were introduced by
Ortmann (1925] 1929) in studies on physiological determinants of piano play-
ing. To investigate the different behaviors of the key, he mounted a tuning
fork to the side of one piano key that wrote wave traces into smoked paper
which varied with the speed of the key. With this setup, he was one of the
tirst to study the response of the key in different pianistic playing techniques.
For assessing finger movements, (Ortmannl (1929, p. 230) used a custom-built
mechanical apparatus with non-flexible aluminum strips that, on one side,
were connected to either the finger (proximal phalanx) or the key surface and,
on the other side, wrote onto a revolving drum. With this apparatus, continu-
ous displacement of finger and key could be recorded and analysed. Another
mechanical system was the “Pantograph” (Ortmann, 1929, p. 164), a parallel-
ogram lever construction to record lateral arm movement. For other types of
movement, he used active optical systems. The motion of a tiny light bulb
attached to the wrist or the finger left a trace on a photo plate (the room was
kept in very subdued light) when the shutter of the photo camera remained
open for the entire duration of the movement.
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Similar active markers mounted on head, shoulder, elbow, and wrist
were used by Bernstein and Popova in their important study in 1930 (reported
by Kay et al.,2003) to study the complex interaction and coupling of the limbs
in piano playing. They used their “kymocyclographic camera” to record the
movements of the active markers. A rotating shutter allowed the light of the
markers to impinge on the constantly moving photographic film. With this
device they could record up to 600 instances of the movement per second.

Piano rolls as a data source

A special source of expression data are piano rolls for reproducing pianos
by different manufacturers (e.g. Welte-Mignon, Hupfeld, Aeolian Duo-Art,
Ampico). A number of renowned pianists made recordings on these devices
in the early part of the 20th century (Bowers, 1972 Hagmann), [1984). Such
pianos were the first means to record and store artistic music performances
before the gramophone was invented. Starting in the late 1920s, scientists took
advantage of this source of data and investigated various aspects of perfor-
mance. Heinlein' (1929a)b, 1930) used Duo-Art rolls by the Aeolian company
to study pedal use of four pianists playing Schumann’s Triumerei. Rolls of
the same company were the basis of [Vernon's 1936 study. He investigated
vertical synchronisation of the tones in a chord (see (Goebl, 2001). [Hartmann
(1932) used Hupfeld “Animatic Rolls” and provided a very detailed study on
tone and bar durations as well as note onset asynchronies in two recordings
(by Josef Pembaur and Harold Bauer) of the first movement of Beethoven's
“"Moonlight Sonata” Op. 27 No. 2. Since the precise recording procedures used
by these companies are still unknown (they were deliberately held back for
commercial reasons), the authenticity of these rolls is sometimes questionable
(Hagmann), 1984; iGottschewski, 1996). For example, the Welte-Mignon sys-
tem was able to simultaneously control dynamics only for keyboard halves.
Hence, emphasising the melody note and playing the rest of the chord tones
more softly was only possible when the melody tone was played at a different
point in time than the others (Gottschewski, 1996, pp. 26-42). Although we
know today that pianists anticipate melody notes (Palmer, 1996b; Repp) 1996}
Goebl, 2001), the Welte-Mignon rolls cannot be taken literally as a source for
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studying note asynchronies (as done by [Vernon, 1936). The interpretation of
piano rolls must be done with care, keeping in mind the conditions of their
production. There are currently some private attempts to systematically scan
piano rolls and transform them into standard symbolic format (e.g. MIDI).
However, we are not aware of any scientific project concerned with this.

The Iowa piano camera

During the 1930s, Carl E. Seashore guided a research group that focused on
different aspects of music performance, namely the singing voice, violin play-
ing, and piano performance (Seashore,1932,[1936bja). They developed various
measurement setups for scientific investigation, among them the “Iowa Piano
Camera” (Henderson et al.,1936)) that optically captured onset and offset times
and hammer velocity of each key and additionally the movement of the two
pedals. It was therefore a complete and rather precise device that was not
topped until the advent of modern computer-controlled pianos (such as the
Disklavier or the Bosendorfer SE, see |Goebl and Bresin, 2003). Each hammer
is equipped with a shutter that controls light exposure of a moving film. The
hammer shutter interrupts the light exposure on the film twice: a first time
from 24 to 12 mm before the hammer touches the strings, and a second time at
hammer-string contact. The average hammer speed of the last 12 mm of the
hammer’s travel can be inferred from the distance on the film between these
two interrupts (today’s computer-controlled pianos take the average speed
of the final 5 mm). According to Skinner and Seashorel (1936), the tempo-
ral resolution is around 10 ms. The hammer velocity is quantised into 17
dynamics categories (Henderson, 1936). With this system, the IOWA group
performed several studies with professional pianists. [Henderson! (1936) had
two professionals play the middle section of Chopin’s Nocturne Op. 15 No. 3.
In this very comprehensive study, they examined temporal behavior, phras-
ing, accentuation, pedalling, and chord asynchronies. [Skinner and Seashore
(1936) analysed repeated performances of pieces by Beethoven and Chopin
and found high timing consistency among the pianists.
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Henry Shaffer’s photocell Bechstein

After the efforts of Seashore’s research group at Iowa, it took over 40 years
before a new group of researchers used modern technology to capture piano
performance. It was L. Henry Shaffer at Exeter who equipped each of the
88 keys of a Bechstein grand piano with pairs of photocells to capture the
essential expressive parameters of piano performance (Shaffer, 1980, 1981
1984; [Shaffer et al., 1985} Shaffer and Todd| 1987; Shatfer, [1992). The optical
registration of the action’s movements had the advantage of not affecting the
playability of the piano. The photocells were mounted in the piano action in
pairs, each capturing the moment of the hammer’s transit. One was placed
to register the instant of hammer-string contact, the other one the resting
position of the hammer. The position of the two pedals were monitored by
micro switches and stored as 12-bit words on the computer. Each such event
was assigned a time stamp rounded to the nearest microsecond. The sensor at
the strings yielded the note onset time, the one at the hammer’s resting position
(when the hammer returns) the note offset time. The time difference between
the two sensors was an inverse estimate of the force at which the key was
depressed. This technology is in principle identical to the computer-monitored
pianos that are commercially available now (e.g. the Yamaha Disklavier series
or the Bosendorfer SE).

Studies with synthesiser keyboards or digital pianos

Before computer-monitored acoustic pianos became widely available, simple
synthesiser keyboards or digital pianos were used to capture expressive data
from music performances. These devices provide timing and loudness data
for each performed event through the standardised digital communications
protocol MIDI (Musical Instrument Digital Interface) (Huber,1999). However,
such keyboards do not provide a realistic performance setting for advanced
pianists, because the response of the keys is very different from an acoustic
piano and the synthesised sound (especially with extensive use of the right
pedal) does not satisfy the trained ears of highly skilled pianists.

Still, such electronic devices were used for various general expression
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studies (e.g. Palmer, 1989, 1992; Repp, 1994alb, 1995¢; Desain and Honing,
1994). Bruno Repp later repeated two of his studies that were first performed
with data from a digital piano (Repp| 1995¢, concerned with legato articula-
tion; Repp) 1996b, concerned with the use of the right pedal) on a computer-
controlled grand piano (Repp) 1997cb, respectively). Interestingly, the results
of both pairs of studies were similar to each other, even though the acous-
tic properties of the digital piano were considerably different from the grand
piano.

The Yamaha Disklavier system

Present performance studies dealing with piano performances generally make
use of commercially available computer-controlled acoustic pianos. Apart
from systems that can be built into a piano (e.g. Autoklav, Pianocorder, see
Coenen _and Schiéfer, 1992), the most common is the Disklavier system by
Yamaha. The first computer-controlled grand pianos were available from
1989 onwards. The Mark IV series that is currently available includes also a
computer with screen and several high-level functions such as an automatic
accompaniment system. From 1998, Yamaha introduced their high-end PRO
series of Disklaviers that involves an extended MIDI format to store more
than 7-bit velocity information (values from 0 to 127) and information on key

release.

There were few attempts to assess the Disklavier’s accuracy in recording
and reproducing performances. [Coenen and Schaferl (1992) compared various
reproducing systems (among them a Disklavier DG2RE and a SE225) with
respect to their usability for reproducing compositions for mechanical instru-
ments. More systematic tests on recording and reproduction accuracy were
performed by (Goebl and Bresin! (2001}, 2003) using accelerometer registration
to inspect key and hammer movements during recording and reproduction.

Yamaha delivers both upright and grand piano versions of its Disklavier
system. The upright model was used for several performance studies (Palmer
and van de Sande, [1993; Palmer and Holleran), [1994; Repp, 1995a)b} 1996¢/ad,
1997dja). The Yamaha Disklavier grand piano was even more widely used.



204 Chapter 5. Sense in Expressive Music Performance

Moorel (1992) combined data from a Disklavier grand piano with electromyo-
graphic recordings of the muscular activity of four performers playing trills.
Behne and Wetekam! (1994) recorded student performances of the theme from
Mozart’s K.331 sonata on a Disklavier grand piano and studied systematic
timing variations of the Siciliano rhythm. As mentioned above, Repp repeated
his work on legato and pedalling on a Disklavier grand piano (Repp, 1997c/b).
Juslin and Madison| (1999) used a Disklavier grand piano to record and play
back different (manipulated) performances of two melodies to assess listeners’
ability to recognise simple emotional categories. Bresin and Battel (2000) anal-
ysed multiple performances recorded on a Disklavier grand piano of Mozart’s
K.545 sonata in terms of articulation strategies. (Clarke and Windsor (2000)
used recordings made on a Disklavier grand piano for perceptual evaluation
of real and artificially created performances. A short piece by Beethoven was
recorded on a Disklavier grand piano played by one (Windsor et al., 2001)
and by 16 professional pianists (Iimmers et al., 2002} Timmers, 2002) in dif-
ferent tempi. Timing characteristics of different types of grace notes were
investigated. Riley-Butler (2002) used a Disklavier grand piano in educational
settings. She presented students with piano roll representations of their per-
formances and observed considerable increase of learning efficiency with this
method.

Bosendorfer’s SE system

The SE (“Stahnke Electronics”) System dates back to the early 1980s when
the engineer Wayne Stahnke developed a reproducing system in cooperation
with the MIT Artificial Intelligence Laboratory. It was built into a Bosendorfer
Imperial grand piano (Roads, 1986; Moog and Rhea, 1990). A first prototype
was ready in 1985; the system was officially sold by Kimball (at that time
owner of Bosendorfer) starting from summer 1986. This system was very
expensive and only few academic institutions could afford it. Until the end of
its production, only about three dozen of these systems have been built and
sold. In principle, the SE works like the Disklavier system (optical sensors
register hammershank speed and key release, and linear motors reproduce
tinal hammer velocity). However, its recording and reproducing capabilities
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are superior even compared with other much younger systems (Goebl and
Bresin), 2003). Despite its rare occurrence in academic institutions, it was used

for performance research in some cases.

Palmer and Brown! (1991) performed basic tests on the relationship be-
tween hammer velocity and peak amplitude of the resulting sound. Repp
(1993) tried to estimate peak sound level of piano tones from the two low-
est partials as measured in the spectrogram and compared a digital piano, a
Disklavier MX100A upright piano, with the Bosendorfer SE. Studies in music
performance were performed at Ohio State University (Palmer and van de
Sande), 1995} Palmer, 1996bja), at the Musikhochschule Karlsruhe (e.g. Maz-
zola and Beran, 1998; Mazzola, 2002, p. 833), and on the grand piano located at
the Bosendorfer company in Vienna (Goebl, 2001} Widmer, 2001}, 2002b)}, 2003}
Goebl and Bresin, 2003} Widmer, 2005).

Very recently (2006), the Bosendorfer company in Vienna has finished
development of a new computer-controlled reproducing piano called “CEUS”
that includes, among other features, sensors that register the continuous mo-
tion of each key. These data might be extremely valuable for studies regarding
pianists” touch and tone control.

5.2.2 Measuring audio by hand

An alternative to measuring music expression during performance through
sensors placed in or around the performer or the instrument is to analyse
the recorded sound of music performances. This has the essential advan-
tage that any type of recording may serve as a basis for investigation, e.g.
commercially available CDs, historic recordings, or recordings from ethnomu-
sicological research. One could just simply go into a record store and buy all
the performances by the great pianists of the past century®

However, extracting precise performance information from audio is dif-

ficult and sometimes impossible. The straight-forward method is to inspect

!In analysing recordings the researcher has to be aware that almost all records are glued
together from several takes so the analysed performance might never have taken place in this
particular rendition (see also|Clarke} 2004) p. 88).
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the waveform of the audio signal with computer software and mark manu-
ally with a cursor the onset times of selected musical events. Though this
method is time-consuming, it delivers timing information with a reasonable
precision. Dynamics is a more difficult issue. Overall dynamics (loudness) can
be measured (e.g. by reading peak energy values from the root-mean-square
of the signal averaged over a certain time window), but we are not aware of
a successful procedure to extract individual dynamics of simultaneous tones
(for an attempt, see Repp|[1993)). Many other signal processing problems have
not been solved either (e.g. extracting pedal information, tone length and
articulation, etc., see also McAdams et al., 2004).

First studies that extracted timing information directly from sound used
oscillogram filming (e.g. Bengtsson and Gabrielsson,[1977; for more references
see |(Gabrielsson, 1999, p. 533). Povel (1977) analysed gramophone records
of three performances of Johann Sebastian Bach’s first prelude of The Well-
Tempered Clavier, Vol. 1. He determined the note onsets “by eye” from two
differently obtained oscillograms of the recordings (which were transferred
onto analog tape). He reported a temporal precision of 1-2 ms (!). Recordings
of the same piece were investigated by |Cookl (1987), who obtained timing (and
intensity) data with a computational method. Onset detection was automated
by a threshold procedure applied to the digitised sound signal (8 bit, 4 kHz)
and post-corrected by hand. He reported a timing resolution of 10 ms. He also
stored intensity values, but did not specify in more detail what exactly was
measured there.

Gabrielsson et al.| (1983) analysed timing patterns of performances from
28 different monophonic melodies played by 5 performers. The timing data
were measured from the audio recordings with a precision of £5 ms (p. 196). In
a later study, Gabrielsson! (1987) extracted both timing and (overall) intensity
data from the theme of Mozart’s sonata K.331. In this study, a digital sampling
system was used that allowed a temporal precision of 1-10 ms. The dynamics
was estimated by reading peak amplitudes of each score event (in voltages).
Nakamura (1987) used a Briiel & Kjeer level recorder to register dynamics of
solo performances played on a violin, oboe, and recorder. He analysed the
produced dynamics in relation to the perceived intensity of the music.
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The first larger corpus of recordings was measured by Repp| (1990) who
fed 19 recordings of the third movement of Beethoven’s piano sonata Op. 31
No. 3 into a VAX 11/780 computer and read off the note onsets from waveform
displays. In cases of doubt, he played the sound up to the onset and moved the
cursor stepwise back in time, until the following note was no longer audible
(Repp) 1990, p. 625). He measured the performances at the quarter-note level?
and reported an absolute mean error of 6.5 ms for repeated measurements
(equivalent to 1% of the inter-onset intervals, p. 626). In a further study, Repp
(1992) collected 28 recordings of Schumann’s “Traumerei” by 24 renowned
pianists. He used a standard waveform editing program to hand-measure the
10-kHz sampled audio files. The rest of the procedure was identical (aural
control of ambiguous onsets). He reported an average absolute measurement
error of 4.3 ms (or less than 1%). In his later troika on the “microcosm of
musical expression” (Repp, 1998 1999a,b), he applied the same measurement
procedure on 115 performances of the first five bars of Chopin’s Etude Op. 10
No. 3 collected from libraries and record stores. He also extracted overall
intensity information (Repp, 1999a) by taking the peak sound levels (pSPL in
dB) extracted from the root-mean-square (RMS) integrated sound signal (over
a rectangular window of 30 ms).

Nettheim! (2001) measured parts of recordings of four historical perfor-
mances of Chopin’s e-minor Nocturne Op. 72 No. 1 (Pachmann, Godowsky,
Rubinstein, Horowitz). He used a time-stretching software to reduce the play-
back speed by a factor of 7 (without changing the pitch of the music). He
then simply took the onset times from a time display during playback. Tone
onsets of all individual tones were measured with this method® In repeated
measurements, he reported an accuracy of around 14 ms. In addition to note
onset timing, he assigned arbitrary intensity values to each tone ranging from
1 to 100 by ear.

In recent contributions on timing and synchronisation in jazz perfor-
mances, the timing of the various instruments of jazz ensembles was inves-

?In the second part of this paper, he measured and analysed eight-note and sixteenth-note

values as well.
3Obviously, the chosen excerpts were slow pieces with a comparatively low note density.
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tigated. [Friberg and Sundstrom| (2002) measured cymbal onsets from spec-
trogram displays with a reported precision of +£3 ms. |Ashley| (2002) studied
the synchronisation of the melody instruments with the double bass line. He
repeatedly measured onsets of both lines from waveform plots of the digitised
signal with usual differences between the measurements of 3-5 ms. About
the same level of consistency (typically 2 ms) was achieved by (Collier and
Collier (2002) through a similar measurement procedure (manual annotation
of physical onsets in trumpet solos). [Lisboa et al. (2005) used a wave editor to
extract onset timing in solo cello performances; Moelants (2004) made use of a
speech transcription software (“Praat”) to assess trill and ornament timing in

solo string performances.

In a recent commercial enterprise, John Q. Walker and colleagues have
been trying to extract the complete performance information out of histori-
cal (audio) recordings in order to play them back on a modern Disklavier®
Their commercial aim is to re-sell old recordings with modern sound quality
or live performance feel. They computationally extract as much performance
information as possible and add the missing information (e.g. tone length,
pedalling) to an artificially-created MIDI file. They use it to control a modern
Disklavier grand piano and compare this performance to the original record-
ing. Then they modify the added information in the MIDI files and play it
back again and repeat this process iteratively until the Disklavier’s reproduc-
tion sounds “identical” to the original recording (see also |[Midgette, 2005).

Another way of assessing temporal content of recordings is by tapping
along with the music recording e.g. on a MIDI drum pad or a keyboard, and
recording this information (Cook) 1995; Bowen) 1996; Bachmann, 1999). This
is a comparably fast method to gain rough timing data at a tappable beat level.
However, perceptual studies on tapping along with expressive music showed
that tappers — even after repeatedly tapping along with the same short piece
of music — still underestimate abrupt tempo changes or systematic variations
(Dixon et al., 2005).

‘http://www.zenph.com
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5.2.3 Computational extraction of expression from audio

The most general approach to extracting performance-related data directly
from audio recordings would be fully automatic transcription, but such sys-
tems are currently not robust enough to provide the level of precision required
for analysis of expression (Klapuri, 2004). However, more specialised systems
were developed with the specific goal of expression extraction, in an attempt to
support the painstaking effort of manual annotation (e.g. Dixon) 2000). Since
the score is often available for the performances being analysed, Scheirer (1997)
recognised that much better performance could be obtained by incorporating
score information into the audio analysis algorithms, but his system was never
developed to be sufficiently general or robust to be used in practice. One thing
that was lacking from music analysis software was an interface for interactive
editing of partially correct automatic annotations, without which the use of

the software was not significantly more efficient than manual annotation.

The first system with such an interface was BeatRoot (Dixon|2001alb), an
automatic beat tracking system with a graphical user interface which visualised
(and auralised) the audio and derived beat times, allowing the user to edit the
output and retrack the audio data based on the corrections. BeatRoot produces
a list of beat times, from which tempo curves and other representations can
be computed. Although it has its drawbacks, this system has been used
extensively in studies of musical expression (Goebl and Dixon, 2001; Dixon
et al., 2002; Widmer, 2002a; Widmer et al., 2003} |Goebl et al., 2004). Recently,
Gouyon et al.| (2004) implemented a subset of BeatRoot as a plug-in for the
audio editor WaveSurfer (Sjolander and Beskow, 2000).

A similar methodology was applied in the development of JTranscriber
(Dixon), 2004), which was written as a front end for an existing transcription
system (Dixon, 2000). The graphical interface shows a spectrogram scaled to
a semitone frequency scale, with the transcribed notes superimposed over the
spectrogram in piano roll notation. The automatically generated output can
be edited with simple mouse-based operations, with audio playback of the
original and the transcription, together or separately.

These tools provide a better approach than manual annotation, but
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since they have no access to score information, they still require a significant
amount of interactive correction, so that they are not suitable for very large
scale studies. An alternative approach is to use existing knowledge, such as
from previous annotations of other performances of the same piece of music,
and to transfer the metadata after aligning the audio files. The audio alignment
system MATCH (Dixon and Widmer, 2005) finds optimal alignments between
pairs of recordings, and is then able to transfer annotations from one recording
to the corresponding time points in the second. This proves to be a much
more efficient method of annotating multiple performances of the same piece,
since manual annotation needs to be performed only once. Further, audio
alignment algorithms are generally much more accurate than techniques for
direct extraction of expressive information from audio data, so the amount of
subsequent correction for each matched file is much less.

Taking this idea one step further, the initial annotation phase can be
avoided entirely if the musical score is available in a symbolic format, by syn-
thesising a mechanical performance from the score and matching the audio
recordings to the synthetic performance. For analysis of expression in au-
dio, e.g. tempo measurements, the performance data must be matched to the
score, so that the relationship between actual and nominal durations can be
computed. Several score-performance alignment systems have been devel-
oped for various types of music (Cano et al., 1999} Soulez et al., 2003} [Turetsky
and Ellis|, 2003} Shalev-Shwartz et al., 2004).

Other relevant work is the on-line version of the MATCH algorithm,
which can be used for tracking live performances with high accuracy (Dixon),
2005alb). This system is being developed for real time visualisation of per-
formance expression. The technical issues are similar to those faced by score-
following systems, such as those used for automatic accompaniment (Dan-
nenberg, 1984} (Orio and Déchelle, 2001; Raphael, 2004), although the goals
are somewhat different. Matching involving purely symbolic data has also
been explored. Cambouropoulos developed a system for extracting score files
from expressive performances in MIDI format (Cambouropoulos,2000). After
manual correction, the matched MIDI and score files were used in detailed
studies of musical expression. Various other approaches to symbolic score-



5.2. Data acquisition and preparation 211

performance matching are reviewed by Heijink et al.| (2000bja).

5.2.4 Extracting expression from performers’ movements

While the previous sections dealt with the extraction of expression contained
in music performances, this section is devoted to expression as represented
in all kinds of movements that occur when performers interact with their
instruments during performance (for an overview, see Davidson and Correia),
2002 Clarke, 2004). Performers” movements are a powerful communication
channel of expression to the audience, sometimes even overriding the acoustic
information (Behne, 1990; IDavidson, [1994)).

There are several ways to monitor performers” movements. One pos-
sibility is to connect mechanical devices to the playing apparatus of the per-
former (Ortmann, 1929), but that has the disadvantage of inhibiting the free
execution of the movements. More common are optical tracking systems that
either simply video-tape a performer’s movements or record special passive or
active markers placed on particular joints of the performer’s body. We already
mentioned an early study by Berstein and Poppova (1930), who introduced
an active photographical tracking system (Kay et al) 2003). Such systems
use light-emitting markers placed on the various limbs and body parts of the
performer. They are recorded by video cameras and tracked by software that
extracts the position of the markers (e.g. the Selspot System, as used by |Dahl,
2004, 2005). The disadvantage of these systems is that the participants need to
be cabled, which is a time-consuming process. Also, the cables might inhibit
the participants to move as they would normally move. Passive systems use
reflective markers that are illuminated by external lamps. In order to create
a three-dimensional picture of movement, the data from several cameras are
coupled by software (Palmer and Dalla Bella, 2004).

Even less intrusive are video systems that simply record performance
movements without any particular marking of the performer’s limbs. Elabo-
rated software systems (e.g. EyesWeb?, see/Camurri et al., 2004} 2005) are able
to track defined body joints directly from the plain video signal (see Camurri

°http://www.megaproject.org
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and Volpe, 2004, for an overview on gesture-related research). Perception stud-
ies on communication of expression through performers’” gestures use simpler
point-light video recordings (reflective markers on body joints recorded in a
darkened room) to present them to participants for ratings (Davidson), 1993).

5.2.5 Extraction of emotional content from MIDI and audio

For listeners and musicians, an important aspect of music is its ability to ex-
press emotions (Juslin and Laukka,2004). An important research question has
been to investigate the coupling between emotional expression and the under-
lying musical parameters. Two important distinctions have to be made. The
first distinction is between perceived emotional expression (“what is commu-
nicated”) and induced emotion (“what you feel”). Here, we will concentrate
on the perceived emotion which has been the focus of most of the research in
the past. The second distinction is between compositional parameters (pitch,
melody, harmony, rthythm) and performance parameters (tempo, phrasing,
articulation, accents). The influence of compositional parameters has been in-
vestigated for a long time starting with the important work of [Hevner! (1937).
A comprehensive summary is given in|Gabrielsson and Lindstréml/(2001). The
influence of performance parameters has recently been investigated in a num-
ber of studies (for overviews see [Juslin and Sloboda), 2001} Juslin, 2003)). These
studies indicate that for basic emotions such as happy, sad or angry, there is a
simple and consistent relationship between the emotional description and the
parameter values. For example, a sad expression is generally characterised by
slow tempo, low sound level, legato articulation, and a happy expression is
often characterised by fast tempo, moderate sound level and staccato articula-

tion.

Predicting the emotional expression is usually done in a two-step pro-
cess (Lindstrom et al., 2005). The first step extracts the basic parameters from
the incoming signal. The selection of parameters is a trade-off between what
is needed in terms of emotion-mapping and what is possible. MIDI perfor-
mances are the simplest case in which the basic information in terms of notes,
dynamics and articulation is already available. From this data it is possible
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to deduce for example the tempo using beat-tracking methods as described
above. Audio from monophonic music performances can also be analyzed at
the note level, which gives similar parameters as in the MIDI case (with some
errors). In addition, using audio, a few extra parameters are available such as
the spectral content and the attack velocity. The CUEX algorithm by [Friberg
et al. (2005) was specifically designed for prediction of emotional expression;
it determines eight different parameters for each recognised note. Polyphonic
audio is the most difficult case which has only recently been considered. One
possibility is to first perform note extraction using polyphonic transcription
(e.g. Klapuri, 2004) and then extract the parameters. Due to the lack of pre-
cision of polyphonic transcription there will be many errors. However, this
may not be too problematic for the prediction of the emotion if the mapping is
redundant and insensitive to small errors in the parameters. A more straight-
forward approach is to extract overall parameters directly from audio, such
as using auditory-based measures for pitch, rhythm and timbre (Leman et al.,
2004; Liu et al., 2003).

The second step is the mapping from the extracted parameters to the
emotion character. A typical data-driven method is to use listener ratings
(the “right” answer) for a set of performances to train a model. Common
statistical/mathematical models are used such as regression (Leman et al., 2004}
Juslin) 2000), Bayesian networks (Canazza et al) 2003), or Hidden Markov
Models (Dillon, 2003).

5.3 Computational models of music performance

As the preceding sections have demonstrated, a large amount of empirical
data about expressive performance has been gathered and analysed (mostly
using statistical methods). The ultimate goal of this research is to arrive at
an understanding of the relationships between the various factors involved in
performance that can be formulated in a general model. Models describe rela-
tions among different kinds of observable (and often measurable) information
about a phenomenon, discarding details that are felt to be irrelevant. They
serve to generalise empirical findings and have both a descriptive and predic-
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tive value. Often the information is quantitative and we can distinguish input
data, supposedly known, and output data, which are inferred by the model.
In this case, inputs can be considered as the causes, and outputs the effects
of the phenomenon. Computational models — models that are implemented
on a computer — can compute the values of output data corresponding to the
provided values of inputs. This process is called simulation and is widely used
to predict the behaviour of the phenomenon in different circumstances. This
can be used to validate the model, by comparing the predicted results with
actual observations.

5.3.1 Modelling strategies

We can distinguish several strategies for developing the structure of the model
and finding its parameters. The most prevalent ones are analysis-by-measurement
and analysis-by-synthesis. Recently also methods from artificial intelligence
have been employed: machine learning and case based reasoning. One can
distinguish local models, which operate at the note level and try to explain the
observed facts in a local context, and global models that take into account the
higher level of the musical structure or more abstract expression patterns. The
two approaches often require different modelling strategies and structures. In
certain cases, it is possible to devise a combination of both approaches. The
composed models are built by several components, each one aiming to explain
different sources of expression. However, a good combination of the different
parts is still quite a challenging research problem.

Analysis by measurement

The first strategy, analysis-by-measurement, is based on the analysis of devi-
ations from the musical notation measured in recorded human performances.
The goal is to recognise regularities in the deviation patterns and to describe
them by means of a mathematical model, relating score to expressive values
(see Gabrielsson![1999 and (Gabrielsson/2003, for an overview of the main re-
sults). The method starts by selecting the performances to be analyzed. Often
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rather small sets of carefully selected performances are used. The physical
properties of every note are measured using the methods seen in section
and the data so obtained are checked for reliability and consistency. The
most relevant variables are selected and analysed. The analysis assumes an
interpretation model that can be confirmed or modified by the results of the
measurements. Often the assumption is made that patterns deriving from
different sources or hierarchical levels can be separated and then added. This
assumption helps the modelling phase, but may be overly simplistic. The
whole repertoire of statistical data analysis techniques is then available to fit
descriptive or predictive models onto the empirical data — from regression
analysis to linear vector space theory to neural networks or fuzzy logic.

Many models address very specific aspects of expressive performance,
for example, the final ritard and its relation to human motion (Kronman and
Sundberg, 1987; [Todd, 1995; [Friberg and Sundberg, 1999; Sundberg, 2000;
Friberg et al., 2000b); the timing of grace notes (Iimmers et al., 2002); vi-
brato (Desain and Honing), [1996; Schoonderwaldt and Friberg, 2001); melody
lead (Goebl, 2001, 2003); legato (Bresin and Battel, 2000); or staccato and its
relation to local musical context (Bresin and Widmer, 2000} Bresin|, 2001).

A global approach was pursued by Todd in his phrasing model (Todd,
1992, 1995). This model assumes that the structure of a musical piece can be
decomposed into a hierarchy of meaningful segments (phrases), where each
phase is in turn composed of a sequence of sub-phrases. The fundamental as-
sumption of the model is that performers emphasise the hierarchical structure
by an accelerando-ritardando pattern and a crescendo-decrescendo pattern for
each phrase, and that these patterns are superimposed (summed) onto each
other to give the actually observed complex performance. It has recently been
shown empirically on a substantial corpus of Mozart performances (Tobudic
and Widmer, 2006) that this model may be appropriate to explain (in part,
at least) the shaping of dynamics by a performer, but less so as a model of
expressive timing and tempo.
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Analysis by synthesis

While analysis by measurement develops models that best fit quantitative
data, the analysis-by-synthesis paradigm takes into account the human per-
ception and subjective factors. First, the analysis of real performances and the
intuition of expert musicians suggest hypotheses that are formalised as rules.
The rules are tested by producing synthetic performances of many pieces and
then evaluated by listeners. As a result the hypotheses are refined, accepted
or rejected. This method avoids the difficult problem of objective comparison
of performances, including subjective and perceptual elements in the devel-
opment loop. On the other hand, it depends very much on the personal
competence and taste of a few experts.

The mostimportant model developed in this way is the KTH rule system
(Friberg, 1991), 1995} Friberg et al., 1998| 2000a; Sundberg et al., 1983, 1989,
1991)). In the KTH system, a set of rules describe quantitatively the deviations
to be applied to a musical score, in order to produce a more attractive and
human-like performance than the mechanical one that results from a literal
playing of the score. Every rule tries to predict (and to explain with musical or
psychoacoustic principles) some deviations that a human performer is likely to
apply. Many rules are based on a low-level structural analysis of the musical
score. The KTH rules can be grouped according to the purposes that they
apparently have in music communication. For instance, differentiation rules
appear to facilitate categorisation of pitch and duration, whereas grouping
rules appear to facilitate grouping of notes, both at micro and macro levels.

Machine learning

In the “traditional” way of developing models, the researcher normally makes
some hypothesis on the performance aspects s/he wishes to model and then
tries to establish the empirical validity of the model by testing it on real data or
on synthetic performances. An alternative approach, pursued by Widmer and
coworkers (Widmer, [1995alb, 1996, 2000, 2002b; Widmer and Tobudig, 2003}
Widmer, 2003, Widmer et al., 2003; Widmer, 2005; Tobudic and Widmer, 2006),
tries to extract new and potentially interesting regularities and performance
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principles from many performance examples, by using machine learning and
data mining algorithms (see also Chapter M in this book). The aim of these
methods is to search for and discover complex dependencies on very large
data sets, without a specific preliminary hypothesis. A possible advantage is
that machine learning algorithms may discover new (and possibly interesting)
knowledge, avoiding any musical expectation or assumption. Moreover, some
algorithms induce models in the form of rules that are directly intelligible and
can be analysed and discussed with musicologists. This was demonstrated in
a large-scale experiment (Widmer, 2002b), where a machine learning system
analysed a large corpus of performance data (recordings of 13 complete Mozart
piano sonatas by a concert pianist), and autonomously discovered a concise
set of predictive rules for note-level timing, dynamics, and articulation. Some
of these rules turned out to describe regularities similar to those incorporated
in the KTH performance rule set (see above), but a few discovered rules ac-
tually contradicted some common hypotheses and thus pointed to potential
shortcomings of existing theories.

The note-level model represented by these learned rules was later com-
bined with a machine learning system thatlearned to expressively shape timing
and dynamics at various higher levels of the phrase hierarchy (in a similar way
as described in Todd’s[1989;[1992/structure-level models), to yield a multi-level
model of expressive phrasing and articulation (Widmer and Tobudic, 2003).
A computer performance of a (part of a) Mozart piano sonata generated by
this model was submitted to the International Performance Rendering Contest
(RENCON) in Tokyo, 2002, where it won the Second Prize behind a rule-based
rendering system that had been carefully tuned by hand. The rating was
done by a jury of human listeners. This can be taken as a piece of evidence
of the musical adequacy of the model. However, as an explanatory model,
this system has a serious shortcoming: in contrast to the note-level rules, the
phrase-level performance model is not interpretable, as it is based on a kind of
case-based learning (see also below). More research into learning structured,
interpretable models from empirical data will be required.
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Case-based reasoning

An alternative approach, closer to the observation-imitation-experimentation
process observed in humans, is that of directly using the knowledge implicit in
human performances. Case-based reasoning (CBR) is based on the idea of solv-
ing new problems by using (often with some kind of adaptation) similar pre-
viously solved problems. An example in this direction is the SaxEx system for
expressive performance of jazz ballads (Arcos et al., 1998 Lopez de Mantaras
and Arcos, 2002),which predicts expressive transformations to recordings of
saxophone phrases by looking at how other, similar phrases were played by
a human musician. The success of this approach greatly depends on the
availability of a large amount of well-distributed previously solved problems,
which are not easy to collect.

Mathematical theory approach

A rather different model, based mainly on mathematical considerations, is the
Mazzola model (Mazzola, 1990; Mazzola and Zahorka, 1994 Mazzola et al.,
1995; Mazzola, 2002; Mazzola and Goller, 2002). This model basically consists
of a musical structure analysis part and a performance part. The analysis
part involves computer-aided analysis tools, for various aspects of the music
structure, that assign particular weights to each note in a symbolic score. The
performance part, that transforms structural features into an artificial perfor-
mance, is theoretically anchored in the so-called Stemma Theory and Operator
Theory (a sort of additive rule-based structure-to-performance mapping). It
iteratively modifies the performance vector fields, each of which controls a
single expressive parameter of a synthesised performance.

The Mazzola model has found a number of followers who studied and
used the model to generate artificial performances of various pieces. Un-
fortunately, there has been little interaction or critical exchange between this
“school” and other parts of the performance research community, so that the
relation between this model and other performance theories, and also the
empirical validity of the model, are still rather unclear.
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5.3.2 Perspectives

Computer-based modelling of expressive performance has shown its promise
over the past years and has established itself as an accepted methodology.
However, there are still numerous open questions related both to the technol-
ogy, and to the questions that could be studied with it. Two prototypical ones
are briefly discussed here.

Comparing performances and models

A problem that naturally arises in quantitative performance research is how
performances can be compared. In subjective comparison often a supposed
“ideal” performance is used as a reference by the evaluator. In other cases, an
actual reference performance can be assumed. Of course subjects with different
background may have dissimilar preferences that are not easily made explicit.

When we consider computational models, objective numerical compar-
isons would be desirable. In this case, performances are represented by sets of
values. Various similarity or distance measures (e.g. absolute difference, Eu-
clidean distance, etc.) can be defined over these, and it is not at all clear which
of these is most appropriate musically. Likewise, it is not clear how to weight
individual components or aspects (e.g. timing vs. dynamics), or how these
“objective” differences relate to subjectively perceived differences. Agreed-
upon methods for performance comparison would be highly important for
turther fruitful research in this field.

Common principles vs. differences

The models discussed in the previous sections aim at explaining and sim-
ulating general principles that seem to govern expressive performance, that
is, those aspects of the relation between score and performance that seem
predictable and more or less common to different performances and artists.
Recently research has also started to pay attention to aspects that differentiate
performances and performers’ styles (Repp| [1992; Widmer, 2003). The same
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piece of music can be performed trying to convey different expressive inten-
tions (Gabrielsson and Lindstrom), 2001), sometimes changing the character
of the performance drastically. The CARO model (Canazza et al,, 2004) is
able to modify a neutral performance (i.e. played without any specific expres-
sive intention) in order to convey different expressive intentions. Bresin and
Friberg (2000) developed some macro rules for selecting appropriate values
for the parameters of the KTH rule system in order to convey different emo-
tions. The question of the boundary between predictability and individuality
in performance remains a challenging one.

5.4 Conclusions

Quantitative research on expressive human performance has been developing
quickly during the past decade, and our knowledge of this complex phe-
nomenon has improved considerably. There is ample room for further inves-
tigations, and the field of computational performance research continues to
be active. As the present survey shows, the computer has become a central
player in this kind of research, both in the context of measuring and extract-
ing expression-related information from performances, and in analysing and
modelling the empirical data so obtained. Intelligent computational meth-
ods are thus helping us advance our understanding of a complex and deeply
human ability and phenomenon. In addition, operational computer models
of music performance will also find many applications in music education
and entertainment — think, for instance, of expressive music generation or
interactive expressive music control in multimedia applications or games, of
quasi-autonomous systems for interactive music performance, of new types of
musical instruments or interfaces that provide novel means of conveying ex-
pressive intentions or emotions, or of intelligent tutoring or teaching support
systems in music education.

Still, there are fundamental limits that will probably be very hard to
overcome for music performance research, whether computer-based or not.
The very idea of a creative activity being predictable and, more specifically,
the notion of a direct quasi-causal relation between the content of the music
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and the performance has obvious limitations. The person and personality of
the artist as a mediator between music and listener is totally neglected in ba-
sically all models discussed above. There are some severe general limits to
what any predictive model can describe. For instance, very often performers
intentionally play the repetition of the same phrase or section totally differently
the second time around. Being able to model and predict this would presup-
pose models of aspects that are outside the music itself, such as performance
context, artistic intentions, personal experiences, listeners” expectations, etc.

Although it may sound quaint, there are concrete attempts at elaborat-
ing computational models of expressive performance to a level of complexity
where they are able to compete with human performers. Since 2002, a scientific
initiative brings together scientists from all over the world for a competition of
artificially created performances (RENCON, contest for performance render-
ing systems?). Their aim is to construct computational systems that are able
to pass a kind of expressive performance Turing Test (that is, an artificial per-
formance sounds indistinguishable from a human performance, Hiraga et al.|
2004). The very ambitious goal proclaimed by the RENCON initiative is for
a computer to win the Chopin competition by 2050 (Hiraga et al., 2004). It is
hard to imagine that this will ever be possible, not only because the organis-
ers of such a competition will probably not permit a computer to participate,
but also because a computational model would have to take into account the
complex social and cognitive contexts in which, like any human intellectual
and artistic activity, a music performance is situated. But even if complete
predictive models of such phenomena are strictly impossible, they advance
our understanding and appreciation of the complexity of artistic behaviour,
and it remains an intellectual and scientific challenge to probe the limits of
formal modelling and rational characterisation.

%http://shouchan.ei.tuat.ac.jp/~rencon/
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About this chapter

This chapter briefly surveys some relevant aspects of current research into
control of interactive (music) systems, putting into evidence research issues,
achieved results, and problems that are still open for the future. A particular
focus is on multimodal and cross-modal techniques for expressive control
of sound and music processing and synthesis. The chapter will discuss a
conceptual framework, the methodological aspects, the research perspectives.



244 Chapter 6. Controlling Sound with Senses

It will also present concrete examples and tools such as the EyesWeb XMI
platform and the EyesWeb Expressive Gesture Processing Library.

6.1 Introduction

The problem of effectively controlling sound generation and processing has
always been relevant for music research in general and for Sound and Music
Computing in particular. Research into control concerns perceptual, cognitive,
affective aspects. It ranges from the study of the mechanisms involved in
playing traditional acoustic instruments to the novel opportunities offered by
modern Digital Music Instruments. More recently, the problem of defining
effective strategies for real-time control of multimodal interactive systems,
with particular reference to music but not limited to it, is attracting growing
interest from the scientific community because of its relevance also for future
research and applications in broader fields of human-computer interaction.

In this framework, research into control extends its scope to include
for example analysis of human movement and gesture (not only gestures of
musicians playing an instrument but also gestures of subjects interacting with
computer systems), analysis of the perceptual and cognitive mechanisms of
gesture interpretation, analysis of the communication of non-verbal expressive
and emotional content through gesture, multimodality and cross-modality,
identification of strategies for mapping the information obtained from gesture
analysis onto real-time control of sound and music output including high-level
information (e.g. real-time control of expressive sound and music output).

A key issue in this research is its cross-disciplinary nature. Research can
highly benefit from cross-fertilisation between scientific and technical knowl-
edge on the one side, and art and humanities on the other side. Such need
of cross-fertilisation opens new perspectives to research in both fields: if from
the one side scientific and technological research can benefit from models and
theories borrowed from psychology, social science, art and humanities, on the
other side these disciplines can take advantage of the tools that technology can
provide for their own research, i.e. for investigating the hidden subtleties of
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human beings at a depth that was hard to reach before. The convergence of dif-
ferent research communities such as musicology, computer science, computer
engineering, mathematics, psychology, neuroscience, arts and humanities as
well as of theoretical and empirical approaches bears witness to the need and
the importance of such cross-fertilisation.

This chapter briefly surveys some relevant aspects of current research on
control, putting into evidence research issues, achieved results, and problems
that are still open for the future.

A particular focus is on multimodal and cross-modal techniques for
expressive control. Multimodal analysis enables the integrated analysis of
information coming from different multimedia streams (audio, video) and
affecting different sensorial modalities (auditory, visual). Cross-modal analysis
enables exploiting potential similarities in the approach for analyzing different
multimedia streams: so, for example techniques developed for analysis in a
given modality (e.g. audio) can also be used for analysis in another modality
(e.g. video); further, commonalities at mid- and high-level in representations of
different sensory channels are an important perspective for developing models
for control and mapping based on a-modal, converging representations.

A first aspect concerns the definition of a conceptual framework envisag-
ing control at differentlevels, from low-level analysis of audio signals to feature
extraction, to identification and analysis of significant musical structures (note
groups, phrases), up to high-level association of semantic descriptions includ-
ing affective, emotional content (see also Chapters Bland ). Such conceptual
framework is not limited to the music domain. It can be fruitfully applied to
other modalities (e.g. movement and gesture) too, enabling multimodal and
cross-modal processing. This includes a level of abstraction such that features
at that level do not belong to a given modality, rather they emerge as shared,
a-modal representations from the different modalities and can contribute to
model and explain the mapping strategies between modalities. A comprehen-
sive definition of such a high-level framework embedding cross-modality and
multimodality is still an open research issue deserving particular attention in
the future. Section [6.2] presents a conceptual framework worked out in the
EU-IST Project MEGA (Multisensory Expressive Gesture Applications) that
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can be considered as a starting point for research on this direction.

A second aspect is related to the definition of suitable scientific method-
ologies for investigating — within the conceptual framework — the subtleties
involved in sound and music control under a multimodal and cross-modal
perspective. For example, an important topic for control research is gesture
analysis of both performers and interacting subjects. Such analysis can be
performed at different layers, from the tracking of the positions of given body
parts, to the interpretation and classification of gestures in term of expressive,
emotional content. Section[6.3]provides an overview of some consolidated sci-
entific methodologies for gesture analysis with particular focus on performing
arts (dance and music performers) in a multimodal framework.

Moving from these foundational issues, in Section [6.4/ we present some
concrete examples of multimodal and cross-modal processing of sound and
movement information. Availability of such information enables the develop-
ment of suitable strategies for controlling and/or generating sound and music
output in real-time. Further examples are reported in chapter [/l and Ap-
pendix[Al Chapter[ZIfocuses on control of music performance with a particular
emphasis on the role of the affective, emotional information. Appendix[Aldeals
with control issues related with sound production involving control of both
traditional acoustic and digital musical instruments and control of sounding
objects.

In Section [6.5] the new version of the EyesWeb XMI open platform for
multimodal interaction is briefly introduced as an example of software tool
for the design and development of multimodal control strategies. Finally, in
Section [6.6] some future research perspectives are discussed.

As a final remark, it is worth noticing that the control of sound gener-
ation and processing directly involves artistic choices by the designer of the
performance. How many degrees of freedom a designer wishes to leave to
an automatic system? In other words, control issues are often intrinsically
connected to the role of technology in the artwork and, in a certain way, to the
concept of artwork itself.
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6.2 A conceptual framework

A relevant foundational aspect for research in sound and music control con-
cerns the definition of a conceptual framework envisaging control at differ-
ent levels under a multimodal and cross-modal perspective: from low-level
analysis of audio signals, toward high-level semantic descriptions including

affective, emotional content.

This Section presents a conceptual framework worked out in the EU-
IST Project MEGA (2000-2003) that can be considered as a starting point for
research on this direction.

Research in the MEGA project moved from the assumption that the
physical stimuli that make up an artistic environment contain information
about expressiveness that can, to some extent, be extracted and communicated.
With multiple modalities (music, video, computer animation) this allows the
transmission of expressiveness parameters from one domain to another do-
main, for example from music to computer animation, or from dance to music.
That is, expressive parameters are an example of parameters emerging from
modalities and independent from them. In other words, expressive parame-
ters define a cross-modal control space that is at a higher level with respect to
the single modalities.

A main question in MEGA research thus relates to the nature of the
physical cues that carry expressiveness, and a second question is how to
set up cross-modal interchanges (as well as person/machine interchanges)
of expressiveness. These questions necessitated the development of a lay-
ered conceptual framework for affect processing that splits up the problem
into different sub-problems. The conceptual framework aims at clarifying the
possible links between physical properties of a particular modality, and the
affective/emotive/expressive (AEE) meaning that is typically associated with
these properties. Figure sketches the conceptual framework in terms of
(i) a syntactical layer that stands for the analysis and synthesis of physical
properties (bottom), (ii) a semantic layer that contains descriptions of affects,
emotions, and expressiveness (top), and (iii) a layer of AEE mappings and
spaces that link the syntactical layer with the semantic layer (middle).
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The syntactical layer contains different modalities, in particular audio,
movement, and animation and arrows point to flows of information. Commu-
nication of expressiveness in the cross-modal sense could work in the following
way. First, (in the upward direction) physical properties of the musical audio
are extracted and the mapping onto an AEE-space allows the description of the
affective content in the semantic layer. Starting from this description (in the
downward direction), a particular AEE-mapping may be selected that is then
used to synthesise physical properties of that affect in another modality, such
as animation. This path is followed, for example, when sadness is expressed
in a piece of music, and correspondingly an avatar is displaying this sadness
in his posture.

6.2.1 Syntactic layer

The syntactic layer is about the extraction of the physical features that are
relevant for affect, emotion and expressiveness processing. In the domain of
musical audio processing, Lesaffre and colleagues worked out a useful taxon-
omy of concepts that gives a structured understanding of this layer in terms of
a number of justified distinctions (Lesaffre et al., 2003). A distinction is made
between low-level, mid-level, and high-level descriptors of musical signals. In
this viewpoint, the low-level features are related to very local temporal and
spatial characteristics of sound. They deal with the physical categories of fre-
quency, duration, spectrum, intensity, and with the perceptual categories of
pitch, time, timbre, and perceived loudness. Low-level features are extracted
and processed (in the statistical sense) in order to carry out a subsequent anal-
ysis related to expression. For example, in the audio domain, these low-level
features are related to tempo (i.e. number of beats per minute), tempo vari-
ability, sound level, sound level variability, spectral shape (which is related to
the timbre characteristics of the sound), articulation (features such as legato,
staccato), articulation variability, attack velocity (which is related to the onset
characteristics which can be fast or slow), pitch, pitch density, degree of accent
on structural important notes, periodicity, dynamics (intensity), roughness (or
sensory dissonance), tonal tension (or the correlation between local pitch pat-
terns and global or contextual pitch patterns), and so on (see also Chapter
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High-level expressive information: e.g., recognized éomst (e.g., anger, fear, grief, jo
prediction of spectators’ intensity of emotionaperience

=

Semantic and narrative descriptions

Modelling techniques (for example, classification ferms of basic emotions,

prediction of intense emotional experience in specs): e.g., based on multi
regression, neural networks, support vector mashishecision trees, Bayesian netwc

=

Segmented gestures and related parameters (esgpjuiEb andrelative durations
trajectories representing gestures in semantices

=

Gesture-based representations

Techniques for gesture segmentation: motion sedtient(e.g., in pause and mot
phases), segmentation of musical excerpts in musitases. Rapsentation of gestut
as trajectories in semantic spaces (e.g., LabdfostEpace, energy-articulation space)

=

Motion and audio descriptors: e.g., amount of eyerg loudness, amount
contraction/expansion - spectral width and melagictour, low fluency - roughness etc.

=

Signal level representation

Analysis of video and audio signaltechniques for background subtraction, mc
detection, motion tracking (e.g., techniques fdoaotracking, optical flow based feat
tracking), techniques for audio pre-processingfidtating, signal conditioning.

Data from several kinds of sensors, e.g., imagem fvideocameras, positions fr
localization systems, data from accelerometerspkairaudio, MIDI message

Figure 6.1: The layered conceptual framework makes a distinction between
syntax and semantics, and in between, a connection layer that consists of affect
/ emotion / expressiveness (AEE) spaces and mappings.
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3)).

When more context information is involved (typically in musical se-
quences that are longer than 3 seconds), then other categories emerge, in par-
ticular, categories related to melody, harmony, rhythm, source, and dynamics.
Each of these categories has several distinct specifications, related to an increas-
ing complexity, increasing use of contextual information, and increasing use of
top-down knowledge. The highest category is called the expressive category.
This layer can in fact be developed into a separate layer because it involves
affective, emotive and expressive meanings that cannot be directly extracted
from audio structures. Figurel6.Ilintroduced this layer as a separate layer that
is connected with the syntactical cues using a middle layer of mappings and
spaces. Examples of mappings and spaces will be given below. Whether all
these features are relevant in a context of affect processing and communication
of expressiveness is another matter. The experiments discussed in the next
sections tried to shed some light on this issue.

In the domain of movement (dance) analysis, a similar approach can be
envisaged that leans on a distinction between features calculated on different
time scales. In this context also, it makes sense to distinguish between (i) low-
level features, calculated on a time interval of a few milliseconds (e.g. one or a
few frames coming from a video camera), (ii) mid-level features, calculated on
a movement stroke (in the following also referred as “motion phase”), i.e. on
time durations of a few seconds, and (iii) high-level features that are related to
the conveyed expressive content (but also to cognitive aspects) and referring to
sequences of movement strokes or motion (and pause) phases. Anexample of a
low-level feature is the amount of contraction/expansion that can be calculated
on just one frame |Camurri et al. (2003), i.e. on 40 ms with the common sample
rate of 25 fps. Other examples of low-level features are the detected amount
of movement, kinematical measures (e.g. velocity and acceleration of body
parts), measures related to the occupation of the space surrounding the body:.
Examples of mid-level descriptors are the overall direction of the movement
in the stroke (e.g. upward or downward) or its directness (i.e. how much the
movement followed direct paths), motion impulsiveness, and fluency. At this
level itis possible to obtain a first segmentation of movement in strokes that can
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be employed for developing an event-based representation of movement. In
fact, strokes or motion phases can be characterised by a beginning, an end, and
a collection of descriptors including both mid-level features calculated on the
stroke and statistical summaries (e.g. average, standard deviation), performed
on the stroke, of low-level features (e.g. average body contraction/expansion
during the stroke).

The distinction between low-level, mid-level, and high-level descriptors
will be further discussed in Section [6.3] as a possible perspective for gesture
analysis.

6.2.2 Semantic layer

The semantic layer is about the experienced meaning of affective, emotive,
expressive processing. Apart from aesthetic theories of affect processing in
music and in dance, experimental studies were set up that aim at depicting
the underlying structure of affect attribution in performing arts (see next sec-
tions). Affect semantics in music has been studied by allowing a large number
of listeners to use adjectives (either on a completely free basis, or taken from
an elaborate list) to specify the affective content of musical excerpts. After-
wards, the data are analyzed and clustered into categories. The early results
(Hevner) 1936)) showed that listeners tend to use eight different categories of
affect attribution. For a recent overview, see the work by Sloboda and Juslin
(2001). There seems to be a considerable agreement about two fundamental
dimensions of musical affect processing, namely Valence and Activity. Va-
lence is about positively or negatively valued affects, while Activity is about
the force of these affects. A third dimension is often noticed, but its meaning
is less clearly specified. These results provided the basis for the experiments
performed along the project.

6.2.3 Connecting syntax and semantics: Maps and spaces

Different types of maps and spaces can be considered for connecting syntax
and semantics. One type is called the semantic map because it relates the
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meaning of affective/emotive/expressive concepts with physical cues of a cer-
tain modality. In the domain of music, for example, several cues have been
identified and related to affect processing. For example, tempo is considered
to be the most important factor affecting emotional expression in music. Fast
tempo is associated with various expressions of activity/excitement, happi-
ness, potency, anger and fear while slow tempo with various expressions of
sadness, calmness, solemnity, dignity. Loud music may be determinant for the
perception of expressions of intensity, power, anger and joy whereas soft music
may be associated with tenderness, sadness, solemnity, and fear. High pitch
may be associated with expressions such as happy, graceful, exciting, angry,
tearful and active, and low pitch may suggest sadness, dignity, excitement as
well as boredom and pleasantness, and so on (see the overviews by Juslin and
Laukka) 2003} Gabrielsson and Lindstrom), 2001). Leman and colleagues show
that certain automatically extracted low-level features can be determinants of
affect attribution and that maps can be designed that connect audio features
with affect/emotion/expression descriptors (Leman et al., 2005). Bresin and
Friberg| (2000) synthesised music performances starting from a semantic map
representing basic emotions. Using qualitative cue descriptions from previous
experiments, as listed above, each emotional expression was modelled in terms
of a set of rule parameters in a performance rule system. This yielded a fine
control of performance parameters relating to performance principles used by
musicians such as phrasing and microtiming. A listening experiment was car-
ried out confirming the ability of the synthesised performances to convey the
different emotional expressions. Kinaesthetic spaces or energy-velocity spaces
are another important type of space. They have been successfully used for
the analysis and synthesis of the musical performance (Canazza et al., 2003).
This space is derived from factor analysis of perceptual evaluation of different
expressive music performances. Listeners tend to use these coordinates as
mid level evaluation criteria. The most evident correlation of energy-velocity
dimensions with syntactical features is legato-staccato versus tempo. The ro-
bustness of this space is confirmed in the synthesis of different and varying
expressive intentions in a musical performance. The MIDI parameters typ-
ically control tempo and key velocity. The audio-parameters control legato,
loudness, brightness, attack time, vibrato, and envelope shape.
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In human movement and dance the relationship between syntactical
features and affect semantics has been investigated in several studies. For
example, in the tradition of the work by Johansson| (1973), it has been shown
that it is possible for human observers to perceive emotions in dance from
point light displays (Walk and Homan), [1984; Dittrich et al., 1996). Pollick et al.
(2001) analyzed recognition of emotion in everyday movements (e.g. drinking,
knocking) and found significant correlations between motion kinematics (in
particular speed) and the activation axis in the two-dimensional space having
as axes activation and valence as described by Russell/ (1980) with respect to his
circumplex structure of affect. Wallbott (2001) in his paper dealing with mea-
surement of human expression, after reviewing a collection of works concern-
ing movement features related with expressiveness and techniques to extract
them (either manually or automatically), classified these features by consid-
ering six different aspects: spatial aspects, temporal aspects, spatio-temporal
aspects, aspects related to “force” of a movement, “gestalt” aspects, categorical
approaches. Boone and Cunningham| (1998), starting from previous studies
by Meijer| (1989), identified six expressive cues involved in the recognition of
the four basic emotions anger, fear, grief, and happiness, and further tested
the ability of children in recognizing emotions in expressive body movement
through these cues. Such six cues are “frequency of upward arm movement,
the duration of time arms were kept close to the body, the amount of muscle
tension, the duration of time an individual leaned forward, the number of
directional changes in face and torso, and the number of tempo changes an
individual made in a given action sequence” (Boone and Cunningham), [1998).

6.3 Methodologies of analysis

The definition of suitable scientific methodologies for investigating — within
the conceptual framework and under a multimodal perspective — the subtleties
involved in sound and music control is a key issue. An important topic for
control research is gesture analysis of both performers and interacting sub-
jects. Gestures are an easy and natural way for controlling sound generation
and processing. For these reasons, this section discusses methodologies and
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approaches focusing on full-body movement and gesture. Nevertheless, the
concepts here discussed can be easily generalised to include other modalities.
Discovering the key factors that characterise gesture, and in particular expres-
sive gesture, in a general framework is a challenging task. When considering
such an unstructured scenario one often has to face the problem of the poor
or noisy characterisation of most movements in terms of expressive content.
Thus, a common approach consists in starting research from a constrained
framework where expressiveness in movement can be exploited to its max-
imum extent. One such scenario is dance (Camurri et al. 2004c). Another
scenario is music performance (Dahl and Friberg, 2004).

6.3.1 Bottom-up approach

Let us consider the dance scenario (consider, however, that what we are go-
ing to say also applies to music performance). A possible methodology for
designing repeatable experiments is to have a dancer performing a series of
dance movements (choreographies) that are distinguished by their expressive
content. We use the term “micro-dance” for a short fragment of choreog-
raphy having a typical duration in the range of 1590 s. A microdance is
conceived as a potential carrier of expressive information, and it is not stron-
gly related to a given emotion (i.e. the choreography has no explicit gestures
denoting emotional states). Therefore, different performances of the same
micro-dance can convey different expressive or emotional content to spec-
tators: e.g. light/heavy, fluent/rigid, happy/sad, emotional engagement, or
evoked emotional strength. Human testers/spectators judge each micro-dance
performance. Spectators’ ratings are used for evaluation and compared with
the output of developed computational models (e.g. for the analysis of ex-
pressiveness). Moreover, micro-dances can also be used for testing feature
extraction algorithms by comparing the outputs of the algorithms with specta-
tors’ ratings of the same micro-dance performance (see for example the work
by Camurri et al.| (2004b) on spectators” expectation with respect to the motion
of the body center of gravity). In case of music performances, we have musical
phrases (corresponding to micro-dances above) and the same approach can be
applied.
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6.3.2 Subtractive approach

Micro-dances can be useful to isolate factors related to expressiveness and to
help in providing experimental evidence with respect to the cues that chore-
ographers and psychologists identified. This is obtained by the analysis of
differences and invariants in the same micro-dance performed with different
expressive intentions. With the same goal, another approach is based on the
live observation of genuinely artistic performances, and their corresponding
audiovisual recordings. A reference archive of artistic performances has to
be carefully defined for this method, chosen after a strict intensive interaction
with composers and performers. Image (audio) processing techniques are
utilised to gradually subtract information from the recordings. For example,
parts of the dancer’s body could be progressively hidden until only a set of
moving points remain, deforming filters could be applied (e.g. blur), the frame
rate could be slowed down, etc. Each time information is reduced, spectators
are asked to rate the intensity of their emotional engagement in a scale rang-
ing from negative to positive values (a negative value meaning that the video
fragment would rise some negative feeling in the spectator). The transitions
between positive and negatives ratings and a zero-rating (i.e. no expressive-
ness was found by the spectator in the analyzed video sequence) would help
to identify what are the movement features carrying expressive information.
An intensive interaction is needed between the image processing phase (i.e.
the decisions on which information has to be subtracted) and the rating phase.
This subtractive approach is different from the already mentioned studies by
Johansson! (1973) and from more recent results (Cowie et al., 2001) where it is
demonstrated that a limited number of visible points on human joints allow an
observer to recognise information on movement, including certain emotional

content.
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6.4 Examples of multimodal and cross-modal anal-

ysis

Here we provide some concrete examples of multimodal and cross-modal
analysis with reference to the above mentioned conceptual framework. Multi-
modal and cross-modal analysis can be applied both in a bottom-up approach
and in a subtractive approach. In the latter, they are used for extracting and
comparing features among subsequent subtraction steps.

6.4.1 Analysis of human full-body movement

A major step in multimodal analysis of human full-body movement is the
extraction of a collection of motion descriptors. With respect to the approaches
discussed above, such descriptors can be used in the bottom-up approach for
characterizing motion (e.g. micro-dances). The top-down approach can be
used for validating the descriptors with respect to their role and contribute in
conveying expressive content.

With respect to the conceptual framework, at Layer 1 consolidated com-
puter vision techniques (e.g. background subtraction, motion detection, mo-
tion tracking) are applied to the incoming video frames. Two kinds of outputs
are usually generated: trajectories of points on the dancers’ bodies (motion tra-
jectories) and processed images. As an example Figurel6.2lshows the extraction
of a Silhouette Motion Image (SMI). A SMI is an image carrying information
about variations of the shape and position of the dancer’s silhouette in the
last few frames. SMIs are inspired by MEI and MHI (Bobick and Davis| 2001).
We also use an extension of SMIs taking into account the internal motion in
silhouettes.

From such outputs a collection of motion descriptors are extracted in-
cluding:

e Cues related to the amount of movement (energy) and in particular what
we call Quantity of Motion (QoM). QoM is computed as the area (i.e.
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Figure 6.2: The SMI is represented as the red area in the picture.

number of pixels) of a SMI. It can be considered as an overall measure of
the amount of detected motion, involving velocity and force.

e Cues related to body contraction/expansion and in particular the Con-
traction Index (CI), conceived as a measure, ranging from 0 to 1, of how
the dancer’s body uses the space surrounding it. The algorithm to com-
pute the CI (Camurri et al., 2003) combines two different techniques:

the individuation of an ellipse approximating the body silhouette and

computations based on the bounding region.

e Cuesderived from psychological studies (Boone and Cunningham)[1998)

such as amount of upward movement, dynamics of the Contraction Index
(i.e. how much CI was over a given threshold along a time unit);

e Cues related to the use of space, such as length and overall direction of
motion trajectories.

e Kinematical cues, such as velocity and acceleration of motion trajectories.
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Arelevant task for Layer 2 is motion segmentation. A possible technique
for motion segmentation is based on the measured QoM. The evolution in time
of the QoM resembles the evolution of velocity of biological motion, which can
be roughly described as a sequence of bell-shaped curves (motion bells, see
Figurel6.3). In order to segment motion by identifying the component gestures,
a list of these motion bells and their features (e.g. peak value and duration)
is extracted. An empirical threshold is defined to perform segmentation: the
dancer is considered to be moving if the QoM is greater than 2.5% of the total
area of the silhouette. It is interesting to notice that the motion bell approach
can also be applied to sound signal analysis.

4000 5000 70 5000 10000
Time [ms)

Figure 6.3: Motion bells and motion segmentation (Time on the x axis, QoM
on the y axis).

Segmentation allows extracting further higher-level cues at Level 2. A
concrete example is the Directness Index (DI), calculated as the ratio between
the length of the straight trajectory connecting the first and the last point of a
motion trajectory and the sum of the lengths of each segment constituting the
trajectory. Furthermore, motion fluency and impulsiveness can be evaluated.
Fluency can be estimated from an analysis of the temporal sequence of motion
bells. A dance fragment performed with frequent stops and restarts will result
less fluent than the same movement performed in a continuous, “harmonic”
way. The hesitating, bounded performance will be characterised by a higher
percentage of acceleration and deceleration in the time unit (due to the frequent
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stops and restarts). A first measure of impulsiveness can be obtained from the
shape of a motion bell. In fact, since QoM is directly related to the amount
of detected movement, a short motion bell having a high pick value will be
the result of an impulsive movement (i.e. a movement in which speed rapidly
moves from a value near or equal to zero, to a peak and back to zero). On
the other hand, a sustained, continuous movement will show a motion bell
characterised by a relatively long time period in which the QoM values have
little fluctuations around the average value (i.e. the speed is more or less
constant during the movement).

One of the tasks of Layer 4 is to classify dances with respect to their
emotional/expressive content. For example, in a study carried in the frame-
work of the EU-IST Project MEGA results were obtained on the classification of
expressive gestures with respect to their four basic emotions (anger, fear, grief,
joy). In an experiment on analysis of dance performances carried out in collab-
oration with the Department of Psychology of Uppsala University (Sweden),
a collection of 20 micro-dances (5 dancers per 4 basic emotions) was rated by
subjects and classified by an automatic system based on decision trees. Five
decision tree models were trained for classification on five training sets (85% of
the available data) and tested on five test sets (15% of the available data). The
samples for the training and test sets were randomly extracted from the data
set and were uniformly distributed along the four classes and the five dancers.
The data set included 18 variables extracted from the dance performances.
The outcomes of the experiment show a rate of correct classification for the
automatic system (35.6%) in between chance level (25%) and spectators’ rate
of correct classification (56%) (Camurri et al., 2004c).

6.4.2 Cross-modal analysis of acoustic patterns

An example of cross-modal processing consists in the analysis by means of
computer vision techniques of acoustic patterns extracted from an audio signal.

Analysis is performed in EyesWeb (see section [6.5) by means of a li-
brary providing the whole auditory processing chain, i.e. cochlear filter
banks, hair cell models, and auditory representations including excitation
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pattern, cochleogram, and correlogram (Camurri et al., 2005). The design of
the cochlear filter banks relies on the Matlab Auditory Toolbox (Slaney, 1994).
To date, a filter bank configuration can be exported in XML format and loaded
into the EyesWeb plugin (see Figure [6.4). For example the cochleogram of a
voice sound is depicted in Figure

The cochleogram images can be analyzed by image processing tech-
niques to extract information that is not so easily accessible through audio
analysis (e.g. activation of particular regions in the image, pattern matching
with template images).

filter design i ;' Lo,

YR
Tatlab AN
(h ) wfiﬁﬁ w“ \

XML N-channel
config file v Audio Buffer

Figure 6.4: Design of the auditory filter bank through the Matlab Auditory
Toolbox

In this first example of cross-modal techniques the cochleogram images
are analyzed by applying to them the techniques for motion analysis included
in the EyesWeb Gesture Processing Library (Camurri et al)). For example,
in order to quantify the variation of the cochleogram, i.e. the variance over
time of the spectral components in the audio signal, Silhouette Motion Images
(SMIs) and Quantity of Motion (QoM) (Camurri et al., 2003) are used. Figure
shows the SMI of a cochleogram (red shadow). It represents the combined
variation of the audio signal over time and frequency in the last 200 ms. The
area (i.e. number of pixels) of the SMI (that in motion analysis is usually
referred to as Quantity of Motion, i.e. the amount of detected overall motion)
summarises such variation of the audio signal. It can be considered as the
detected amount of variation of the audio signal both along time and along
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Figure 6.5: Cochleogram of a voice sound obtained through the auditory model
blocks

frequency in the time interval over which the corresponding SMI is computed
(200 ms in this example).

From a first analysis of the data obtained with this approach it seems
that the QoM obtained from the SMIs of the cochleograms can be employed for
onset detection especially at the phrase level, i.e. it can be used for detection
of phrase boundaries. In speech analysis the same technique can be used
for segmenting words. Current research includes performance analysis and
comparison with state-of-the-art standard techniques.

6.4.3 Cross-modal processing: auditory-based algorithms for
motion analysis

Cross-modal processing applications can also be designed in which the anal-
ysis of movement and gestures is inspired by audio analysis algorithms. An
example is the patch shown in Figure [6.7, in which a pitch detector is used
to measure the frequency of periodic patterns in human gestures: the vertical
displacement of a moving hand, measured from the video input signal and
rescaled, is converted into the audio domain through an interpolation block,
and then analyzed through a pitch detector based on the autocorrelation func-
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Figure 6.6: SMI of a cochleogram (red shadow) and graph of the corresponding
QoM

tion.

Motion-derived signals and audio signals differ in terms of sampling
rate and band characteristics. The conversion from a motion-derived signal
to one in the audio domain can be performed in principle by upsampling and
interpolating the input signal, and a dedicated conversion block is available
to perform this operation. If m;_; and m; are the previous and present input
values respectively, and t; is the initial time of the audio frame in seconds, the
audio-rate samples are computed by linear interpolation as

(m; —m;_q) _

n
s(ti+ =)=mi_1+n ,n=1...N;

F; N;
where Nj; is a selected audio frame length at a given audio sampling rate
F,;. However, often sound analysis algorithms are designed to operate in fre-
quency ranges that are much higher if compared to those related to the velocity
of body movements. For this reason, the conversion block also provides am-
plitude modulation (AM) and frequency modulation (FM) functions to shift
the original signal band along the frequency axis.

If c(t) = A. cos(2m f.t) is a sinusoidal carrier wave with carrier amplitude
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Figure 6.7: An example of EyesWeb application for cross-modal analysis of
movement: the hand vertical displacement, measured from the video signal,
is converted into the audio domain and analyzed through a pitch detector.

A; and carrier frequency f., an AM audio-rate signal can be computed as
5u(t) = Acs(t) cos(2nfit),

and an FM signal as

sm(t) = Accos(2m fct + 21 f s(t)dt).
0

The approach to motion analysis by algorithms inspired by acoustic and/or
musical cues extraction can be explored further. A possible application is, for
example, the control of a digital score reproduction (e.g. a MIDI file) through
the detection of tempo, onset, IOI, and other similar musical parameters from
the arm and hand movements.
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6.4.4 Multimodal analysis of touch gestures

As an example of multimodal analysis of gestural information let us consider
an experimental application for the analysis of touch gesture based on Tangible
Acoustic Interfaces (TAIs).

Designing and developing TAls consists of exploring how physical
objects, augmented surfaces, and spaces can be transformed into tangible-
acoustic embodiments of natural seamless unrestricted interfaces. TAls can
employ physical objects and space as media to bridge the gap between the
virtual and physical worlds and to make information accessible through large
size touchable objects as well as through ambient media. Research on TAI
is carried out for example in the framework of the EU-IST project TAI-CHI
(Tangible Acoustic Interfaces for Computer-Human Interaction).

The aim of the sample application here described is twofold: (i) locate
where on a TAI the touch gesture takes place, and (ii) analyze how touching is
performed (i.e. individuating the expressive qualities of the touching action,
such as for example whether the touching action is light and delicate, or heavy
and impulsive).

The approach to analysis is multimodal since both the information ex-
tracted from the acoustic signal generated by the touching action on the TAI
and the information extracted from a video-camera toward the touching posi-
tion are used.

Localisation is based on two algorithms for in-solid localisation of touch-
ing positions developed by the partners in the TAI-CHI project. The first algo-
rithm, developed by the Image and Sound Processing Group at Politecnico di
Milano employs 4 sensors and is based on the computation of the Time Delay
of Arrival (TDOA) of the acoustical waves to the sensors (Polotti et al., 2005).
The second algorithm developed by the Laboratoire Ondes et Acoustique at
the Institut pour le Developement de la Science, I’'Education et la Technologie,
Paris, France, employs just one sensor and is based on pattern matching of
the sound patterns generated by the touching action against a collection of
stored patterns. In order to increase the reliability of the detected touching
position we developed an EyesWeb application integrating the two methods
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and compensating the possible weakness of one method with the outcomes of
the other one.

The position and time of contact information obtained from audio anal-
ysis can be employed to trigger and control in a more precise way the video-
based gesture analysis process: we are testing hi-speed and hi-res videocam-
eras in EyesWeb XMI in which it is also possible to select the portion of the
active ccd area using (x,y) information from a TAI interface.

Video-based analysis (possibly combined with information extracted
from the sound generated by the touching action, e.g. the sound level) is then
used for extraction of expressive qualities. Gesture analysis is based on hand
detection and tracking and builds upon the extraction of information concern-
ing both static and dynamic aspects. As for the static aspects, we developed
a collection of EyesWeb modules for real-time classification of hand postures.
Classification employs machine learning techniques (namely, Support Vector
Machines). As for the dynamic aspects, we used the expressive features cur-
rently available in the EyesWeb Expressive Gesture Processing Library (e.g.
Quantity of Motion, Contraction/Expansion, Directness Index etc.). Figure
shows for example the output of an EyesWeb module for the extraction of the
hand skeleton.

In other words, while the contact position is detected through an acoustic
based localisation system, visual information is employed to get information
on how the hand approaches and touches the interface (e.g. with a fluent
movement, or in a hesitating way, or in a direct and quick way etc.).

6.5 Tools

6.5.1 The EyesWeb open platform

The EyesWeb open platform has been designed at DIST-InfoMus Lab with a
special focus on the multimodal analysis and processing of non-verbal expres-
sive gesture in human movement and music signals (Camurri et al., 2000).
Since the starting of the EyesWeb project in 1997, the focus has been on the
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Skeleton

This patch extracts the skeleton of a body silhouette (or of a segmented blob) and
shows it as output. The 2D coordinates of the points belonging to the extracted
skeleton are also available as a collection of MoCap 2D Points (second output of
the skeletonization block). Points’ coordinates are measured in pixels and referto a
coordinate system whose origin is placed at the top-left corner of the input image

Figure 6.8: An EyesWeb 4 patch extracting the skeleton of a hand touching a
TAI

development of a system supporting on the one hand multimodal processing
both inits conceptual and technical aspects, and allowing on the other hand fast
development of robust application prototypes for use in artistic performances
and interactive multimedia installations. In 2001 the platform has been made
freely available on the Internetl’and the number of users has rapidly grown. In
recent years, EyesWeb has been satisfactorily used by the DIST-InfoMus Lab
both for research purposes and for several kinds of applications, e.g. in mu-
seum exhibits and in the field of performing arts. It has also been adopted as
standard in several EU funded research projects (in the IST Program: projects
MEGA, CARE-HERE, MEDIATE, TAI-CHI) and thousands of users currently
employ it in universities, public and private research centers, and companies.
Recently, the EyesWeb platform has been reconceived in order to fulfill new
requirements coming from the continuously enlarging EyesWeb community.
Such process led to the development of another platform (EyesWeb version
4.0) which is completely new with respect to its predecessors in the way it

Thttp://www.eyesweb.org
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deals with the conceptual issues involved in multimodal processing, in how it
supports and implements multimodality, in the additional features it provides
to users (Camurri et al., 2004a). The first beta version of EyesWeb 4.0 was
publicly released in September 2004.

The EyesWeb open platform consists of a number of integrated hard-
ware and software modules that can be easily interconnected and extended
in a visual environment. The EyesWeb software includes a development en-
vironment and a set of libraries of reusable software components that can be
assembled by the user in a visual language to build patches as in common com-
puter music languages inspired to analog synthesisers. EyesWeb supports the
user in experimenting computational models of non-verbal expressive commu-
nication and in mapping, at different levels, gestures from different modalities
(e.g. human full-body movement, music) onto real-time generation of mul-
timedia output (sound, music, visual media, mobile scenery). It allows fast
development and experiment cycles of interactive performance setups. Eye-
sWeb is a Win32 multi-thread application. At run-time, an original real-time
patch scheduler supports several modalities of activation for modules in order
to support and optimise management and integration of multimodal streams.
A patch is automatically splitted by the scheduler according to its topology
and possible synchronization needs. Asynchronous modules having an inter-
nal dynamics are also supported. They receive inputs as any other kind of
modules but their outputs are asynchronous with respect to their inputs. For
example, an “emotional resonator” able to react to the perceived expressive
content of a dance performance, embedding an internal dynamics, may have
a delay in activating its outputs due to its actual internal state, memory of
past events. This is one of the mechanisms explicitly supported by the system
to implement interaction metaphors beyond the “musical instrument” and to
support interactive narrative structures. It should be noted that usually the
user does not have to care about activation mechanisms and scheduling of the
modules, since EyesWeb directly manages these aspects. The user is therefore
free to take care of higher-level tasks, such as the interactive narrative structure
and dynamic evolution of patches in timelines or execution graphs. EyesWeb
supports the integrated processing of different streams of (expressive) data,

such as music audio, video, and, in general, gestural information.
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A set of open libraries of basic modules is available including the fol-

lowing:

e Input and output modules: support for frame grabbers (from web-
cams to professional frame grabbers), wireless on-body sensors (e.g.
accelerometers), live audio input, video and audio players (several dif-
tferent video and audio format supported), OSC (OpenSoundControl),
Steinberg ASIO, MID], input devices (mouse, keyboard, joystick, data
gloves, etc.), audio, video, and numeric output both live and recorded
on files (avi, wayv, text, etc.).

e Math and filters: modules for basic mathematical operations (both on
scalars and matrices), pre-processing, signal conditioning, signal pro-
cessing in the time and frequency domains.

e Imaging: processing and conversions of images, computer vision tech-
niques, blob extraction and analysis, graphic primitives, support to
FreeFrame plug-ins.

e Sound and MIDI libraries: audio processing, extraction of audio features
in the time and frequency domains, extraction of features from MIDI,
support to VST plug-ins.

e Communication: TCP/IP, serial, OSC, MIDI, Microsoft DCOM.

Users can also build new EyesWeb modules and use them in patches.
In order to help programmers in developing blocks, the EyesWeb Wizard
software tool has been developed and is available. Users can develop (possibly
independently from EyesWeb) the algorithms and the basic software skeletons
of their own modules. Then, the Wizard supports them in the process of
transforming algorithms in integrated EyesWeb modules. Multiple versions of
modules (versioning mechanism) are supported by the system, thus allowing
the use in patches of different versions of the same data-type or module. The
compatibility with future versions of the systems, in order to preserve the
existing work (i.e. modules and patches) in the future is supported.
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EyesWeb has been the basic platform of the MEGA EU IST project. In
the EU V Framework Program it has also been adopted in the IST CARE
HERE (Creating Aesthetically Resonant Environments for the Handicapped,
Elderly and Rehabilitation) and IST MEDIATE (A Multisensory Environment
Design for an Interface between Autistic and Typical Expressiveness) projects
on therapy and rehabilitation and by the MOSART (Music Orchestration
Systems in Algorithmic Research and Technology) network for training of
young researchers. In the EU VI Framework Program EyesWeb has been
adopted and extended to the new version 4.0 in the TAI-CHI project (Tangible
Acoustic Interfaces for Computer-Human Interaction). Some partners in the
EU Networks of Excellence ENACTIVE (Enactive Interfaces) and HUMAINE
(Human-Machine Interaction Network on Emotion) adopted EyesWeb for re-
search. EyesWeb is fully available at its website. Public newsgroups also exist
and are daily managed to support the EyesWeb community.

6.5.2 The EyesWeb expressive gesture processing library

Many of the algorithms for extracting the motion descriptors illustrated above
have been implemented as software modules for the EyesWeb open platform.
Such modules are included in the EyesWeb Expressive Gesture Processing
Library.

The EyesWeb Expressive Gesture Processing Library includes a collec-
tion of software modules and patches (interconnections of modules) contained
in three main sub-libraries:

e The EyesWeb Motion Analysis Library: a collection of modules for real-
time motion tracking and extraction of movement cues from human
tull-body movement. It is based on one or more video cameras and other

sensor systems.

e The EyesWeb Space Analysis Library: a collection of modules for analysis
of occupation of 2D (real as well as virtual) spaces. If from the one hand
this sub-library can be used to extract low-level motion cues (e.g. how
much time a given position in the space has been occupied), on the other
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hand it can also be used to carry out analyses of gesture in semantic,
abstract spaces.

e The EyesWeb Trajectory Analysis Library: a collection of modules for
extraction of features from trajectories in 2D (real as well as virtual)
spaces. These spaces may again be either physical spaces or semantic
and expressive spaces.

The EyesWeb Motion Analysis Library (some parts of this library can be
downloaded for research and educational purposes from the EyesWeb web-
site) applies computer vision, statistical, and signal processing techniques to
extract expressive motion features (expressive cues) from human full-body
movement. At the level of processing of incoming visual inputs the library
provides modules including background subtraction techniques for segment-
ing the body silhouette, techniques for individuating and tracking motion in
the images from one or more video cameras, algorithms based on searching
for body centroids and on optical flow techniques (e.g. the Lucas and Kanade
tracking algorithm), algorithms for segmenting the body silhouette in sub-
regions using spatio-temporal projection patterns, modules for extracting a
silhouette’s contour and computing its convex hull. At the level of extraction
of motion descriptors a collection of parameters is available. They include
the above mentioned Quantity of Motion, Contraction Index, Stability Index,
Asymmetry Index, Silhouette shape, and direction of body parts. The EyesWeb
Motion Analysis Library also includes blocks and patches extracting measures
related to the temporal dynamics of movement. A main issue is the segmenta-
tion of movement in pause and motion phases. Several movement descriptors
can be measured after segmenting motion: for example, blocks are available
for calculating durations of pause and motion phases and inter-onset intervals
as the time interval between the beginning of two subsequent motion phases.

The EyesWeb Space Analysis Library is based on a model considering a
collection of discrete potential functions defined on a 2D space. The space is
divided into active cells forming a grid. A point moving in the space is consid-
ered and tracked. Three main kinds of potential functions are considered: (i)
potential functions not depending on the current position of the tracked point,
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(ii) potential functions depending on the current position of the tracked point,
(iii) potential functions depending on the definition of regions inside the space.
Objects and subjects in the space can be modelled by time-varying potentials.
Regions in the space can also be defined. A certain number of “meaningful”
regions (i.e. regions on which a particular focus is placed) can be defined
and cues can be measured on them (e.g. how much time a tracked subject
occupied a given region). The metaphor can be applied both to real spaces
(e.g. scenery and actors on a stage, the dancer’s General Space as described
by Rudolf Laban) and to virtual, semantic, expressive spaces (e.g. a space of
parameters where gestures are represented as trajectories). For example, if,
from the one hand, the tracked point is a dancer on a stage, a measure of the
time duration along which the dancer was in the scope of a given light can
be obtained; on the other hand, if the tracked point represents a position in a
semantic, expressive space where regions corresponds to basic emotions, the
time duration along which a given emotion has been recognised can also be
obtained. The EyesWeb Space Analysis Library implements the model and
includes blocks allowing the definition of interacting discrete potentials on
2D spaces, the definition of regions, and the extraction of cues (such as, for
example, the occupation rates of regions in the space).

The EyesWeb Trajectory Analysis Library contains a collection of blocks
and patches for extraction of features from trajectories in 2D (real or virtual)
spaces. It complements the EyesWeb Space Analysis Library and it can be
used together with the EyesWeb Motion Analysis Library. Blocks can deal with
many trajectories at the same time, for example trajectories of body joints (head,
hands, and feet tracked by means of color tracking techniques — occlusions are
not dealt with at this stage) or trajectories of points tracked using the [Lucas
and Kanade! (1981) feature tracker available in the Motion Analysis Library.
Features that can be extracted include geometric and kinematics measures.
They include directness index, trajectory length, trajectory local and average
direction, velocity, acceleration, and curvature. Descriptive statistic measures
can also be computed both along time (for example, average and peak values
of features calculated either on running windows or on all of the samples
between two subsequent commands such as the average velocity of the hand
of a dancer during a given motion phase) and among trajectories (for example,
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average velocity of groups of trajectories available at the same time such as the
average instantaneous velocity of all of the tracked points located on the arm of
a dancer). Trajectories can be real trajectories coming from tracking algorithms
in the real world (e.g. the trajectory of the head of a dancer tracked using a
tracker included in the EyesWeb Motion Analysis Library) or trajectories in
virtual, semantic spaces (e.g. a trajectory representing a gesture in a semantic,
expressive space).

6.6 Perspectives

Multimodal and cross-modal approaches for integrated analysis of multime-
dia streams offers an interesting challenge and opens novel perspectives for
control of interactive music systems. Moreover, they can be exploited in the
broader fields of multimedia content analysis, multimodal interactive systems,
innovative natural and expressive interfaces.

This chapter presented a conceptual framework, research methodolo-
gies and concrete examples of cross-modal and multimodal techniques for
control of interactive music systems. Preliminary results indicate the poten-
tial of such approach: cross-modal techniques enable to adapt to the analysis
in a given modality approaches originally conceived for another modality,
allowing in this way the development of novel and original techniques. Multi-
modality allows integration of features and use of complementary information,
e.g. use of information in a given modality for supplementing lack of infor-
mation in another modality or for reinforcing the results obtained by analysis
in another modality.

While these preliminary results are encouraging, further research is
needed for fully exploiting cross-modality and multimodality. For example,
an open problem which is currently under investigation at DIST — InfoMus
Lab concerns the development of high-level models allowing the definition
of cross-modal features. That is, while the examples in this chapter concern
cross-modal algorithms, a research challenge consists of identifying a collec-
tion of features that, being at a higher-level of abstraction with respect to
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modal features, are in fact independent of modalities and can be considered
cross-modal since they can be extracted from and applied to data coming from
different modalities. Such cross-modal features are abstracted from the cur-
rently available modal features and define higher-level feature spaces allowing
for multimodal mapping of data from one modality to another.

Another, more general, open research issue is how to exploit the infor-
mation obtained from multimodal and cross-modal techniques for effective
control of future interactive music systems. That is, how to define suitable
strategies for mapping the information obtained from the analysis of users’
behavior (e.g. performer’s expressive gestures) onto real-time generation of
expressive outputs (e.g. expressive sound and music output). This issue in-
cludes the development of mapping strategies integrating both fast adaptive
and reactive behavior and more high-level decision-making processes. Current
state-of-the-art control strategies often consist of direct associations, without
any dynamics, of features of analyzed (expressive) gestures with parameters
of synthesised (expressive) gestures (e.g. the actual position of a dancer on
the stage may be mapped onto the reproduction of a given sound). Such
direct associations are usually employed for implementing statically reactive
behavior. The objective is to develop high-level indirect strategies, including
reasoning and decision-making processes, and related to rational and cogni-
tive processes. Indirect strategies implement adaptive and dynamic behavior
and are usually characterised by a state evolving over time and decisional pro-
cesses. Production systems and decision-making algorithms may be employed
to implement this kind of strategies. Multimodal interactive systems based on
a dialogical paradigm may employ indirect strategies only or a suitable mix of
direct and indirect strategies.

As a final remark, it should be noticed that control issues in the Sound
and Music Computing field are often related to aesthetic, artistic choices. To
which extent can a multimodal interactive (music) system make autonomous
decisions? That is, does the system have to follow the instructions given by the
director, the choreographer, the composer, (in general the creator of a perfor-
mance or of an installation) or is it allowed to have some degree of freedom in
its behavior? The expressive autonomy of a multimodal interactive system is
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defined as the amount of degrees of freedom that a director, a choreographer,
a composer (or in general the designer of an application involving communi-
cation of expressive content) leaves to the system in order to make decisions
about the most suitable expressive content to convey in a given moment and
about the way to convey it. In general, a multimodal interactive system can
have different degrees of expressive autonomy and the required degree of
expressive autonomy is crucial for the development of its multimodal and
cross-modal control strategies.
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|Chapter 7

Real-Time Control of Music

Performance

Anders Friberg and Roberto Bresin

Department of Speech, Music and Hearing, KTH, Stockholm

About this chapter

In this chapter we will look at the real-time control of music performance on a
higher level dealing with semantic/gestural descriptions rather than the con-
trol of each note as in a musical instrument. It is similar to the role of the
conductor in a traditional orchestra. The conductor controls the overall inter-
pretation of the piece but leaves the execution of the notes to the musicians. A
computer-based music performance system typically consists of a human con-
troller using gestures that are tracked and analysed by a computer generating
the performance. An alternative could be to use audio input. In this case the

system would follow a musician or even computer-generated music.
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7.1 Introduction

What do we mean by higher level control? The methods for controlling a music
performance can be divided in three different categories: (1) Tempo/dynamics.
A simple case is to control the instantaneous values of tempo and dynamics of a
performance. (2) Performance models. Using performance models for musical
structure, such as the KTH rule system (see also Section [Z.2.1)), it is possible
to control performance details such as how to perform phrasing, articulation,
accents and other aspect of a musical performance. (3) Semantic descriptions.
These descriptions can be an emotional expression such as aggressive, dreamy,
melancholic or typical performance instructions (often referring to motion)
such as andante or allegretto. The input gestures/audio can by analysed in
different ways roughly similar to the three control categories above. However,
the level of detail obtained by using the performance models cannot in the
general case be deduced from a gesture/audio input. Therefore, the analysis
has to be based on average performance parameters. A short overview of
audio analysis including emotion descriptions is found in Section [Z.3.1l The
analysis of gesture cues is described in Chapter

Several conductor systems using control of tempo and dynamics (thus
mostly category 1) have been constructed in the past. The Radio Baton system,
designed by Mathews| (1989), was one of the first systems and it is still used
both for conducting a score as well as a general controller. The Radio Baton
controller consists of two sticks (2 radio senders) and a rectangular plate (the
receiving antenna). The 3D position of each stick above the plate is measured.
Typically one stick is used for beating the time and the other stick is used
for controlling dynamics. Using the Conductor software, a symbolic score (a
converted MIDI file) is played through a MIDI synthesiser. The system is
very precise in the sense that the position of each beat is exactly given by
the downbeat gesture of the stick. This allows for very accurate control of
tempo but also requires practice - even for an experienced conductor! A
more recent system controlling both audio and video is the Personal Orchestra
developed by Borchers et al! (2004) and its further development in You're
the Conductor (see Lee et al., 2004). These systems are conducted using a
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wireless baton with infrared light for estimating the baton position in two
dimensions. The Personal Orchestra is an installation in House of Music in
Vienna, Austria, where the user can conduct real recordings of the Vienna
Philharmonic Orchestra. The tempo of both the audio and the video as well as
the dynamics of the audio can be controlled yielding a very realistic experience.
Due to restrictions in the time manipulation model, tempo is only controlled
in discrete steps. The installation You re the conductor is also a museum exhibit
but aimed for children rather than adults. Therefore it was carefully designed
to be intuitive and easily used. This time it is recordings of the Boston Pops
orchestra that are conducted. A new time stretching algorithm was developed
allowing any temporal changes of the original recording. From the experience
with children users they found that the most efficient interface was a simple
mapping of gesture speed to tempo and gesture size to volume. Several other
conducting systems have been constructed. For example, the Conductor’s
jacket by Marrin Nakral (2000) senses several body parameters such as muscle
tension and respiration that is translated to musical expression. The Virtual
Orchestra is a graphical 3D simulation of an orchestra controlled by a baton
interface developed by Ilmonen! (2000).

A general scheme of a computer-based system for the real-time control
of musical performance can be idealised as made by a “controller” and a
“mapper”. The controller is based on the analysis of audio or gesture input
(i.e. the musician gestures). The analysis provides parameters (i.e. speed and
size of the movements) which can be mapped into acoustic parameters (i.e.
tempo and sound level) responsible for expressive deviations in the musical

performance.

In the following we will look more closely at the mapping between
expressive control gestures and acoustic cues by using music performance
models and semantic descriptions, with special focus on systems which we
have been developing at KTH during the years.
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7.2 Control in musical performance

7.2.1 Control parameters

Expressive music performance implies the control of a set of acoustical pa-
rameters as extensively described in Chapter bl Once these parameters are
identified, it is important to make models which allow their manipulation in a
musically and aesthetically meaningful way. One approach to this problem is
that provided by the KTH performance rule system. This system is the result
of an on-going long-term research project about music performance initiated
by Johan Sundberg (e.g. Sundberg et al., 1983; Sundberg), [1993; Friberg, 1991}
Friberg and Battel,2002). The idea of the rule system is to model the variations
introduced by the musician when playing a score. The rule system contains
currently about 30 rules modelling many performance aspects such as different
types of phrasing, accents, timing patterns and intonation (see Table[Z.1). Each
rule introduces variations in one or several of the performance variables: 101
(Inter-Onset Interval), articulation, tempo, sound level, vibrato rate, vibrato
extent as well as modifications of sound level and vibrato envelopes. Most
rules operate on the “raw” score using only note values as input. However,
some of the rules for phrasing as well as for harmonic, melodic charge need
a phrase analysis and a harmonic analysis provided in the score. This means
that the rule system does not in general contain analysis models. This is a
separate and complicated research issue. One exception is the punctuation
rule which includes a melodic grouping analysis (Friberg et al.,[1998).
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Table 7.1: Most of the rules in Director Musices (Friberg

etal.,2000), showing the affected performance variables

(sl = sound level, dr = interonset duration, dro = offset

to onset duration, va = vibrato amplitude, dc = cent

deviation from equal temperament in cents).
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Short Description

Rule Name Performance
Variables
High-loud sl
Melodic-charge sl dr va
Harmonic-charge sl dr
Chromatic-charge dr sl
Faster-uphill dr
Leap-tone-duration dr
Leap-articulation-dro dro

Repetition-articulation-dro  dro

The higher the pitch, the louder
Emphasis on notes remote from
current chord

Emphasis on chords remote
from current key

Emphasis on notes closer in
pitch; primarily used for atonal
music

Decrease duration for notes in
uphill motion

Shorten first note of an up-leap
and lengthen first note of a
down-leap

Micropauses in leaps

Micropauses in tone repetitions

MARKING DUrAaTION AND METER CONTEXT

Rule Name Performance

Variables

Short Description

Continued on next page
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Table 7.1: (continued)

Duration-contrast dr sl The longer the note, the longer
and louder; and the shorter the
note, the shorter and softer

Duration-contrast-art dro The shorter the note, the longer
the micropause

Score-legato-art dro Notes marked legato in scores
are played with duration over-
lapping with interonset dura-
tion of next note; resulting onset
to offset duration is dr+dro

Score-staccato-art dro Notes marked staccato in scores
are played with micropause; re-
sulting onset to offset duration
is dr-dro

Double-duration dr Decrease duration contrast for
twonotes with duration relation
2:1

Social-duration-care dr Increase duration for extremely
short notes

Inegales dr Long-short patterns of consec-
utive eighth notes; also called
swing eighth notes

Ensemble-swing dr Model different timing and
swing ratios in an ensemble pro-
portional to tempo

Offbeat-sl sl Increase sound level at offbeats

INTONATION

Continued on next page
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Table 7.1: (continued)
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Rule Name Performance Short Description
Variables

High-sharp dc The higher the pitch, the sharper

Mixed-intonation dc Ensemble intonation combining
both melodic and harmonic in-
tonation

Harmonic-intonation dc Beat-free intonation of chords
relative to root

Melodic-intonation dc Close to Pythagorean tuning,
e.g. with sharp leading tones

PHRASING
Rule Name Performance Short Description
Variables

Punctuation dr dro Automatically locates small
tone groups and marks them
with lengthening of last note
and a following micropause

Phrase-articulation dro dr Micropauses after phrase and
subphrase boundaries, and
lengthening of last note in
phrases

Phrase-arch dr sl Each phrase performed with

arch-like tempo curve: starting
slow, faster in middle, and ritar-
dando towards end; sound level
is coupled so that slow tempo

corresponds to low sound level

Continued on next page
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Table 7.1: (continued)

Final-ritard dr Ritardando at end of piece,
modelled from stopping run-

ners

SYNCHRONISATION

Rule Name Performance Short Description

Variables

Melodic-sync dr Generates new track consisting
of all tone onsets in all tracks; at
simultaneous onsets, note with
maximum melodic charge is se-
lected; all rules applied on this
sync track, and resulting du-
rations are transferred back to
original tracks

Bar-sync dr Synchronise tracks on each bar

line

The rules are designed using two methods, (1) the analysis-by-synthesis
method, and (2) the analysis-by-measurements method. In the first method,
the musical expert, Lars Frydén in the case of the KTH performance rules,
tells the scientist how a particular performance principle functions (see5.3.1).
The scientist implements it, e.g. by implementing a function in lisp code. The
expert musician tests the new rules by listening to its effect produced on a
musical score. Eventually the expert asks the scientist to change or calibrate
the functioning of the rule. This process is iterated until the expert is satisfied
with the results. An example of a rule obtained by applying the analysis-
by-synthesis method is the Duration Contrast rule in which shorter notes are
shortened and longer notes are lengthened (Friberg, (1991). The analysis-by-
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measurements method consists of extracting new rules by analyzing databases
of performances (see 5.3.1). For example two databases have been used for
the design of the articulation rules. One database consisted in the same piece
of musidl performed by five pianists with nine different expressive intentions.
The second database was made by thirteen Mozart piano sonatas performed by
a professional pianist. The performances of both databases were all made on
computer-monitored grand pianos, a Yamaha Disklavier for the first database,
and a Bosendorfer SE for the second one (Bresin and Battel, 2000} Bresin and
Widmer, 2000).

For each rule there is one main parameter k which controls the overall
rule amount. When k = 0 there is no effect of the rule and when k = 1 the effect
of the rule is considered normal. However, this “normal” value is selected
arbitrarily by the researchers and should be used only for the guidance of
parameter selection. By making a selection of rules and k values, different
performance styles and performer variations can be simulated. Therefore, the
rule system should be considered as a musician’s toolbox rather than providing
a fixed interpretation (see Figure[/.T)).

Rules

. Ensemble Y
Score —» Intonation  —» Performance
Phrasing Swing
K values

Figure 7.1: Functioning scheme of the KTH performance rule system.

A main feature of the rule system is that most rules are related to the
performance of different structural elements in the music (Friberg and Battel,
2002). Thus, for example, the phrasing rules enhance the division in phrases
already apparent in the score. This indicates an interesting limitation for
the freedom of expressive control: it is not possible to violate the inherent

! Andante movement of Mozart’s sonata in G major, K 545.
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musical structure. One example would be to make ritardandi and accelerandi
in the middle of a phrase. From our experience with the rule system such a
violation will inevitably not be perceived as musical. However, this toolbox
for marking structural elements in the music can also be used for modelling
musical expression on the higher semantic level.

Director Musices? (DM) is the main implementation of the rule sys-
tem and is a stand-alone lisp program available for Windows, MacOS, and
GNU/Linux documented in (Friberg et al.,2000) and (Bresin et al., 2002).

7.2.2 Mapping: from acoustic cues to high-level descriptors

Emotional expressive music performances can easily be modelled using dif-
ferent selections of KTH rules and their parameters as demonstrated by Bresin
and Friberg (2000). Studies in psychology of music have shown that it is
possible to communicate different emotional intentions by manipulating the
acoustical parameters which characterise a specific musical instrument (Juslin,
2001). For instance in piano performance it is possible to control duration and
sound level of each note. In string and blowing instruments it is also possible
to control attack time, the vibrato and spectral energy. Table [/.2 shows a pos-
sible organisation of rules and their k parameters for obtaining performances
with different expressions anger, happiness and sadness.

Table 7.2: Cue profiles for emotions Anger, Happiness
and Sadness, as outlined by [Juslin (2001), and com-
pared with the rule set-up utilised for the synthesis of
expressive performances with Director Musices (DM)

ANGER

Expressive Cue Juslin Macro-Rule in DM

Continued on next page

2h’ttp ://www.speech kth.se/music/performance/download/dm-download.html
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Table 7.2: (continued)

Tempo

Sound level

Articulation

Time deviations

Fast
High
Abrupt tone attacks

Staccato

Sharp duration con-

trasts
Small tempo variabil-

ity

Tone IOl is shortened by 20%
Sound level is increased by 8 dB

Phrase arch rule applied on
phrase level and on sub-phrase

level

Duration contrast articulation

rule

Duration contrast rule

Punctuation rule

HAPPINESS
Expressive Cue Juslin Macro-Rule in DM
Tempo Fast Tone IOl is shortened by 15%
Sound level High Sound level is increased by 3 dB
Articulation Staccato Duration contrast articulation
rule
Large articulation Score articulation rules
variability

Time deviations

Sharp duration con-
trasts
Small timing varia-

tions

Duration contrast rule

Punctuation rule

SADNESS

Continued on next page
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Table 7.2: (continued)

Expressive Cue Juslin Macro-Rule in DM
Tempo Slow Tone IOI is lengthened by 30%
Sound level Low Sound level is decreased by 6 dB
Articulation Legato Duration contrast articulation
rule
Articulation Small articulation Score legato articulation rule
variability

Time deviations

Final ritardando

Soft duration contrasts
Large timing varia-

tions

Duration contrast rule

Phrase arch rule applied on
phrase level and sub-phrase
level

Phrase arch rule applied on sub-
phrase level

Obtained from the Phrase rule

with the next parameter

7.3 Applications

7.3.1 A fuzzy analyser of emotional expression in music and

gestures

An overview of the analysis of emotional expression is given in Chapter[5l We
will heré® focus on one of such analysis systems aimed at real time applications.
As mentioned, for basic emotions such as happiness, sadness or anger, there
is a rather simple relationship between the emotional description and the cue

3This section is a modification and shortening of the paper by [Friberg| (2005)
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values (i.e. measured parameters such as tempo, sound level or articulation).
Since we are aiming at real-time playing applications we will focus here on
performance cues such as tempo and dynamics. The emotional expression
in body gestures has also been investigated but to a lesser extent than in
music. [Camurri et al.) (2003) analysed and modelled the emotional expression
in dancing. [Boone and Cunningham| (1998)) investigated children’s movement
patterns when they listened to music with different emotional expressions.
Dahl and Friberg (2004) investigated movement patterns of a musician playing
a piece with different emotional expressions. These studies all suggested
particular movement cues related to the emotional expression, similar to how
we decode the musical expression. We follow the idea that musical expression
is intimately coupled to expression in body gestures and biological motion in
general (see Friberg and Sundberg, [1999; Juslin et al.,, 2002). Therefore, we
try to apply similar analysis approaches to both domains. Table [/.3] presents
typical results from previous studies in terms of qualitative descriptions of
cue values. As seen in the Table, there are several commonalities in terms of
cue descriptions between motion and music performance. For example, anger
is characterised by both fast gestures and fast tempo. The research regarding
emotional expression yielding the qualitative descriptions as given in Table[7.3|
was the starting point for the development of current algorithms.

The first prototype that included an early version of the fuzzy analyser
was a system that allowed a dancer to control the music by changing dancing
style. It was called The Groove Machine and was presented in a performance at
Kulturhuset, Stockholm 2002. Three motion cues were used, QoM, maximum
velocity of gestures in the horizontal plane, and the time between gestures
in the horizontal plane, thus slightly different from the description above.
The emotions analysed were (as in all applications here) anger, happiness,
and sadness. The mixing of three corresponding audio loops was directly
controlled by the fuzzy analyser output (for a more detailed description see
Lindstrom et al., 2005).
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Emotion = Motion cues Music performance cues

Anger Large Loud

Fast Fast

Uneven Staccato

Jerky Sharp timbre
Sadness Small Soft

Slow Slow

Even soft Legato
Happiness Large Loud

Rather fast  Fast

Staccato

Small tempo variability

Table 7.3: A characterisation of different emotional expressions in terms of cue
values for body motion and music performance. Data taken from Dahl and
Friberg (2004) and Juslin (2001).

7.3.2 Real-time visualisation of expression in music perfor-

mance

The ExpressiBall, developed by Roberto Bresin, is a way to visualise a music
performance in terms of a ball on a computer screen (Friberg et al., 2002). A
microphone is connected to the computer and the output of the fuzzy analyser
as well as the basic cue values are used for controlling the appearance of
the ball. The position of the ball is controlled by tempo, sound level and
a combination of attack velocity and spectral energy, the shape of the ball is
controlled by the articulation (rounded-legato, polygon-staccato) and the color
of the ball is controlled by the emotion analysis (red-angry, blue-sad, yellow-
happy), see Figure The choice of color mapping was motivated by recent
studies relating color to musical expression (Bresin| 2005). The ExpressiBall
can be used as a pedagogical tool for music students or the general public. It
may give an enhanced feedback helping to understand the musical expression.

Greta Music is another application for visualizing music expression.
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Figure 7.2: Two different examples of the Expressiball giving visual feedback
of musical performance. Dimensions used in the interface are: X = tempo, Y =
sound pressure level, Z = spectrum (attack time and spectrum energy), Shape
= articulation, Colour = emotion. The left figure shows the feedback for a sad
performance. The right figure shows the feedback for an angry performance.

In Greta Music the ball metaphor was replaced by the expressive face of the
Greta® Embodied Conversational Agent (ECA) (Mancini et al.,2007). Here the
high-level descriptors, i.e. the emotion labels, are mapped into the emotional
expression of the ECA. The values of the extracted acoustical parameters are
mapped into movement controls of Greta, e.g. tempo in the musical perfor-
mance is mapped into the movement speed of Greta, and sound level into the
spatial extension of her head movements.

7.3.3 The “Ghost in the Cave” game

Another application that makes use of the fuzzy analyser is the collaborative
game Ghost in the Cave (Rinman et al., 2004). It uses as its main input control
either body motion or voice. One of the tasks of the game is to express
different emotions either with the body or the voice; thus, both modalities are
analysed using the fuzzy analyser described above. The game is played in
two teams each with a main player, see Figure The task for each team is to
control a fish avatar in an underwater environment and to go to three different
caves. In the caves there is a ghost appearing expressing different emotions.
Now the main players have to express the same emotion, causing their fish to

4http ://www.speech kth.se/music/projects/gretamusic/
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Figure 7.3: Picture from the first realisation of the game Ghost in the Cave.
Motion player to the left (in white) and voice player to the right (in front of the
microphones).

change accordingly. Points are given for the fastest navigation and the fastest
expression of emotions in each subtask. The whole team controls the speed
of the fish as well as the music by their motion activity. The body motion
and the voice of the main players are measured with a video camera and a
microphone, respectively, connected to two computers running two different
fuzzy analysers described above. The team motion is estimated by small
video cameras (webcams) measuring the Quantity of Motion (QoM). QoM for
the team motion was categorised in three levels (high, medium, low) using
fuzzy set functions. The music consisted of pre-composed audio sequences,
all with the same tempo and key, corresponding to the three motion levels. The
sequences were faded in and out directly by control of the fuzzy set functions.
One team controlled the drums and one team controlled the accompaniment.
The Game has been set up five times since the first realisation at the Stockholm
Music Acoustics Conference 2003, including the Stockholm Art and Science
festival, Konserthuset, Stockholm, 2004, and Oslo University, 2004.
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7.3.4 pDM - Real-time control of the KTH rule system

pDM contains a set of mappers that translate high-level expression descrip-
tions into rule parameters. We have mainly used emotion descriptions (happy,
sad, angry, tender) but also other descriptions such as hard, light, heavy or soft
have been implemented. The emotion descriptions have the advantages that
there has been substantial research made describing the relation between emo-
tions and musical parameters (Sloboda and Juslin, 2001} Bresin and Friberg,
2000). Also, these basic emotions are easily understood by laymen. Typically,
these kinds of mappers have to be adapted to the intended application as well
as considering the function of the controller being another computer algorithm
or a gesture interface. Usually there is a need for interpolation between the
descriptions. One option implemented in pDM is to use a 2D plane in which
each corner is specified in terms of a set of rule weightings corresponding to
a certain description. When moving in the plane the rule weightings are in-
terpolated in a semi-linear fashion. This 2D interface can easily be controlled
directly with the mouse. In this way, the well-known Activity-Valence space
for describing emotional expression can be implemented (Juslin, 2001). Ac-
tivity is related to high or low energy and Valence is related to positive or
negative emotions. The quadrants of the space can be characterised as happy
(high activity, positive valence), angry (high activity, negative valence), tender
(low activity, positive valence), and sad (low activity, negative valence). An
installation using pDM in which the user can change the emotional expression
of the music while it is playing is currently part of the exhibition “Se Hjarnan”
(Swedish for “See the Brain”) touring Sweden for two years.

7.3.5 A home conducting system

Typically the conductor expresses by gestures overall aspects of the perfor-
mance and the musician interprets these gestures and fills in the musical de-
tails. However, previous conducting systems have often been restricted to
the control of tempo and dynamics. This means that the finer details will be
static and out of control. An example would be the control of articulation.
The articulation is important for setting the gestural and motion quality of
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Figure 7.4: Overall schematic view of a home conducting system.

the performance but cannot be applied on an average basis. Amount of ar-
ticulation (staccato) is set on a note-by-note basis dependent on melodic line
and grouping, as reported by Bresin and Battel (2000) and Bresin and Widmer
(2000). This makes it too difficult for a conductor to control it directly. By
using the KTH rule system with pDM described above, these finer details of
the performance can be controlled on a higher level without the necessity to
shape each individual note. Still the rule system is quite complex with a large
number of parameters. Therefore, the important issue when making such a
conducting system is the mapping of gesture parameters to music parameters.
Tools and models for doing gesture analysis in terms of semantic descriptions
of expression have recently been developed (see Chapter[6). Thus, by connect-
ing such a gesture analyser to pPDM we have a complete system for controlling
the overall expressive features of a score. An overview of the general system
is given in Figure 74

Recognition of emotional expression in music has been shown to be
an easy task for most listeners including children from about 6 years of age
even without any musical training (Peretz), 2001). Therefore, by using simple
high-level emotions descriptions such as (happy, sad, angry) the system have
the potential of being intuitive and easily understood by most users including
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children. Thus, we envision a system that can be used by the listeners in their
homes rather than a system used for the performers on the stage. Our main
design goals have been a system that is (1) easy and fun to use for novices as
well as experts, (2) realised on standard equipment using modest computer
power. In the following we will describe the system in more detail, starting
with the gesture analysis followed by different mapping strategies.

Gesture cue extraction We use a small video camera (webcam) as input
device. The video signal is analysed with the EyesWeb tools for gesture recog-
nition (Camurri et al., 2000). The first step is to compute the difference signal
between video frames. This is a simple and convenient way of removing
all background (static) information in the picture. Thus, there is no need to
worry about special lightning, clothes or background content. For simplicity,
we have been using a limited set of tools within EyesWeb such as the overall
quantity of motion (QoM), x y position of the overall motion, size and velocity
of horizontal and vertical gestures.

Mapping gesture cues to rule parameters Depending on the desired applica-
tion and user ability the mapping strategies can be divided in three categories:

Level 1 (listener level) The musical expression is controlled in terms of
basic emotions (happy, sad, angry). This creates an intuitive and simple music
teedback comprehensible without the need for any particular musical knowl-
edge.

Level 2 (simple conductor level) Basic overall musical features are con-
trolled using for example the energy-kinematics space previously found rele-
vant for describing the musical expression (Canazza et al., 2003).

Level 3 (advanced conductor level) Overall expressive musical features or
emotional expressions in level 1 and 2 are combined with the explicit control
of each beat similar to the Radio-Baton system.

Using several interaction levels makes the system suitable both for
novices, children and expert users. Contrary to traditional instruments, this

system may “sound good” even for a beginner when using a lower interaction
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level. It can also challenge the user to practice in order to master higher levels
similar to the challenge provided in computer games.
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Physics-Based Sound Synthesis
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About this chapter

This chapter provides the current status and open problems in the field of
physics-based sound synthesis. Important concepts and methods of the field
are discussed, the state of the art in each technique is presented. The focus
is then shifted towards the current directions of the field. The future paths
are derived and problems that deserve detailed collaborative research are

indicated.
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8.1 Introduction

Physics-based sound synthesis focuses on developing efficient digital audio
processing algorithms built upon the essential physical behaviour of various
sound production mechanisms. The model-based representation of audio can
be used in many digital audio applications, including digital sound synthesis,
structural analysis of sounds, automatic transcription of musical signals, and
parametric audio coding.

Physics-based sound synthesis is currently one of the most active re-
search areas in audio signal processing (Valimaki et al., 2007); many refine-
ments to existing algorithms, as well as several novel techniques are emerging.
The aim of this chapter is to provide the current status in physics-based sound
synthesis by summarizing various approaches and methodologies within the
field, capture the current directions, and indicate open problems that deserve
further research. A recent comprehensive review of physics-based sound syn-
thesis methods is given by [Vdlimaki et al.l (2006), who also provide pointers
to other reviews and tutorials in the field. Our aim is not to duplicate that
effort; we rather focus on selective aspects related to each method. Section[8.2]
presents background information about these aspects. An important point is
that we structurally classify the physics-based sound synthesis methods into
two main groups according to the variables used in computation.

In Section [8.3] without going into technical details (the reader is re-
ferred to [Valimaki et al., 2006, for a detailed discussion of each method), we
briefly outline the basics, indicate recent research, and enlist available imple-
mentations. We then consider some current directions in physics-based sound
synthesis in Section[8.3.3] including the discussion on recent systematic efforts
to combine the two structural groups of physics-based sound synthesis.

A unified modular modelling framework, in our opinion, is one of the
most important open problems in the field of physics-based sound synthesis.
There are, however, other problems, which provide the content of Section[8.4]
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8.2 General concepts

A number of physical and signal processing concepts are of paramount im-
portance in physics-based sound synthesis. The background provided in this
section is crucial for understanding problem definition in Section[8.2.3] as well
as the state of the art and the open problems discussed in the subsequent
sections.

8.2.1 Different flavours of modelling tasks

Physical mechanisms are generally complex, and those related to sound pro-
duction are no exceptions. A useful approach for dealing with complexity is
to use a model, which typically is based on an abstraction that suppresses the
non-essential details of the original problem and allows selective examination
with the essential aspects?. Yet, an abstraction is task-dependent and it is used
for a particular purpose, which in turn determines what is important and what
can be left out.

One level of abstraction allows us to derive mathematical models (e.g.
differential equations) of physical phenomena. Differential equations sum-
marise larger-scale temporal or spatio-temporal relationships of the original
phenomena on an infinitesimally small basis. Musical acoustics, a branch of
physics, relies on simplified mathematical models for a better understanding
of the sound production in musical instruments (Fletcher and Rossing), [1998).
Similar models are used to study the biological sound sources by [Fletcher
(1992).

Computational models have been for long a standard tool in various disci-
plines. At this level, the differential equations of the mathematical models are
discretised and solved by computers, one small step at a time. Computational
models inherit the abstractions of mathematical models, and add one more
level of abstraction by imposing an algorithm for solving them (Press et al.,
2002). Among many possible choices, digital signal processing (DSP) provides

! As in Einstein’s famous dictum: everything should be made as simple as possible, but no

simpler.
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an advanced theory and tools that emphasise computational issues, particu-

larly maximal efficiency.

Computational models are the core of physics-based sound synthesis.
In addition, physics-based sound synthesis inherits constraints from the task
of sound synthesis (Valimaki et al., 2007), i.e. representing huge amount of
audio data preferably by a small number of meaningful parameters. Am-
ong a wide variety of synthesis and processing techniques, physically-based
methods have several advantages with respect to their parameters, control, ef-
ticiency, implementation, and sound quality (Jatte, 1995} [Valimaki et al., 2007).
These advantages have also been more recently exploited in interactive sound
design and sonification (see Hermann and Hunt, 2005; Hermann and Ritter)
2005 and, for a general overview, Chapter [10).

8.2.2 Physical domains, systems, variables, and parameters

Physical phenomena occur in different physical domains: string instruments
operate in mechanical, wind instruments in acoustical, and electro-acoustic in-
struments (such as the analog synthesisers) operate in electrical domains. The
domains may interact, as in the electro-mechanical Fender Rhodes, or they
can be used as analogies (equivalent models) of each other. Analogies make
unfamiliar phenomena familiar to us. It is therefore not surprising to find
many electrical circuits as analogies to describe phenomena of other physical
domains in a musical acoustics textbook (Fletcher and Rossing), [1998)).

A physical system is a collection of objects united by some form of
interaction or interdependence. A mathematical model of a physical system is
obtained through rules (typically differential equations) relating measurable
quantities that come in pairs of variables, such as force and velocity in the
mechanical domain, pressure and volume velocity in the acoustical domain,
or voltage and current in the electrical domain. If there is a linear relationship
between the dual variables, this relation can be expressed as a parameter, such
as impedance Z = U/I being the ratio of voltage U and current I, or by its
inverse, admittance ¥ = I/U. An example from the mechanical domain is
mobility (mechanical admittance) as the ratio of velocity and force. When
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using such parameters, only one of the dual variables is needed explicitly,
because the other one is achieved through the constraint rule.

The physics-based sound synthesis methods use two types of variables
for computation, K-variables and wave variables (Valimaki et al., 2006; Raben-
stein et al, 2007). K-variables refer to the Kirchhoff continuity rules of dual
quantities mentioned above, in contrast to wave components of physical vari-
ables. Instead of pairs of K-variables, the wave variables come in pairs of
incident and reflected wave components. The decomposition into wave compo-
nents is clear in such wave propagation phenomena, where opposite-travelling
waves add up to the actual observable K-quantities. A wave quantity is di-
rectly observable only when there is no other counterpart. It is, however, a
highly useful abstraction to apply wave components to any physical cases,
since this helps in solving computability (causality) problems in discrete-time
modelling.

8.2.3 Problem definition and schemes

Important concepts in physics-based sound synthesis come into the play in the
structure, design, implementation, and execution of the physics-based sound
synthesis techniques. These concepts are enlisted in Table 8.1l In general, the
properties in the first column are easier to handle compared to those in the
second. Thus, the properties in the second column readily point out open
research problems. We will elaborate these problems in Section

For the purposes of this chapter, the main problem of physics-based
sound synthesis is to derive efficient, causal, and explicit computational mod-
els for high-quality, natural-sounding synthetic audio, which are optimally
balancing accuracy, efficiency, and ease of control in interactive contexts. These
models should operate in the widest range of physical domains and handle the
nonlinearities and parameter updates in a robust and predictable manner. In
this respect, a DSP-based formulation and stability guarantee are desirable fea-
tures. Port-based formulations and modular schemes have certain advantages
when attempting to design a general, unified framework for physics-based
sound synthesis. And finally, there is a challenging inverse problem: identifica-
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Common Challenge
causal non-causal
explicit implicit
lumped distributed
linear nonlinear
time-invariant time-varying
terminals ports
passive active
no stability guarantee |stability guarantee
monolithic modular

Table 8.1: Important concepts in physics-based sound synthesis

external external
parameters parameters
. —Po—>P .
E-object signals | R-object
—od—

Figure 8.1: Excitation plus resonator paradigm of physics-based sound syn-
thesis.

tion of model parameters starting from sound recordings.

Based on these concepts and the problem definition, two general schemes
for physics-based sound synthesis emerge. One way of decomposing a physics-
based sound synthesis system is highlighting the functional elements exciter
and resonator (Borin et al., [1992) (abbreviated in Figure 8.1l as E-object and R-
object, respectively). In this generic scheme, the exciter and the resonator are
connected through ports. The exciter is usually nonlinear, whereas resonator is
usually linear, and can be decomposed in sub-models. The interaction between
the objects is usually handled implicitly within the system.

Alternatively, amodular system with explicitlocal interactions is schemat-



8.2. General concepts 309

external external
parameters internal internal parameters
parameters parameters
Po—p Po—p
S-object signals l-object signals S-object
<+—o¢ <+—<¢
metadata metadata

Figure 8.2: Modular interaction diagram.

ically illustrated in Figure This scheme was first proposed by Borin et al.
(1992), but only recently it is being used for implementing physics-based sound
synthesis systems (Rocchesso and Fontana) 2003; [Rabenstein et al., 2007).

In Figure 8.2, an S-object represents a synthesis module that can corre-
spond to both the exciter and the resonator of Figure 8.1l An I-object is an
explicit interconnection object (connector); it can generically model different
physical interactions (impact, friction, plucking, etc) between the S-objects.
Each synthesis module has internal and external parameters, with a reference
of their accessibility from the connector. Internal parameters of a synthesis
module (such as port admittances) are used by a connector for distributing
the outgoing signals; they are only meaningful if the objects are linked. The
external parameters are specific attributes of a synthesis module, such as its
resonance characteristics. These attributes can be modified by the user asyn-
chronously. Each I-object may be connected to other I-objects, or accept control
information provided by the user or an algorithm. Finally, metadata contains
descriptors such as the domain or the type of the synthesis module.

Note that locality implies that only neighbouring synthesis modules
are connected to a connector. However, the modular scheme of Figure
may be considered as a building block for block-based descriptions of sound
sources, allowing a constructivist approach to sound modelling (Rabenstein
et al., 2007).

A reader who is already familiar with the concepts mentioned so far
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may want to proceed to Section[8.3} and read how the available methods relate
to the general schemes presented here, and what is the current status in each
of them. For others, these concepts are explained in the rest of this section.

8.2.4 Important concepts explained
Physical structure and interaction

Physical phenomena are observed as structures and processes in space and
time. As a universal property in physics, the interaction of entities in space
always propagates with a finite velocity. Causality is a fundamental physical
property that follows from the finite velocity of interaction from a cause to the
corresponding effect. The requirement of causality introduces special com-
putability problems in discrete-time simulation, because two-way interaction
with no delay leads to the delay-free loop problem. An evident solution is to
insert a unit delay into the delay-free loop. However, this arbitrary delay has
serious side effects (Borin et al., 2000; |Avanzini, 2001). The use of wave vari-
ables is advantageous, since the incident and reflected waves have a causal
relationship.

Taking the finite propagation speed into account requires using a spa-
tially distributed model. Depending on the case at hand, this can be a full three
dimensional (3-D) model such as that used for room acoustics, a 2-D model
such as for a drum membrane, or a 1-D model such as for a vibrating string.
If the object to be modelled behaves homogeneously as a whole, for example
due to its small size compared to the wavelength of wave propagation, it can
be considered as a lumped system that does not need spatial dimensions.

Signals, signal processing, and discrete-time modelling

The word signal typically means the value of a measurable or observable quan-
tity as a function of time and possibly as a function of place. In signal process-
ing, signal relationships typically represent one-directional cause-effect chains.
Modification of signals can be achieved technically by active electronic compo-
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nents in analog signal processing or by numeric computation in digital signal
processing. This simplifies the design of circuits and algorithms compared to
two-way interaction that is common in (passive) physical systems, for exam-
ple in systems where the reciprocity principle is valid. In true physics-based
modelling, the two-way interactions must be taken into account. This means
that, from the signal processing viewpoint, such models are full of feedback
loops, which further implicates that the concepts of computability (causality)
and stability become crucial, as will be discussed later.

We favour the discrete-time signal processing approach to physics-based
modelling whenever possible. The motivation for this is that digital signal pro-
cessing is an advanced theory and tool that emphasises computational issues,
particularly maximal efficiency. This efficiency is crucial for real-time simu-
lation and sound synthesis. Signal flow diagrams are also a good graphical
means to illustrate the algorithms underlying the simulations.

The sampling rate and the spatial sampling resolution need more focus
in this context. According to the sampling theorem (Shannon, 1948), signals
must be sampled so that at least two samples must be taken per period or
wavelength for sinusoidal signal components or their combinations, in order
to make the perfect reconstruction of a continuous-time signal possible. This
limit frequency, one half of the sampling rate f;, is called the Nyquist frequency
or the Nyquist limit. If a signal component higher in frequency f, is sampled
by rate f;, it will be aliased, i.e., mirrored by the Nyquist frequency back to
the base band by f, = f; — fx. In audio signals, this will be perceived as
very disturbing distortion, and should be avoided. In linear systems, if the
inputs are bandlimited properly, the aliasing is not a problem because no
new frequency components are created, but in nonlinear systems aliasing is
problematic. In modelling physical systems, it is also important to remember
that spatial aliasing can be a problem if the spatial sampling grid is not dense
enough.
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Linearity and time invariance

Linearity of a system means that the superposition principle is valid, i.e. quanti-
ties and signals in a system behave additively “without disturbing” each other.
Mathematically, this is expressed so that if the responses {y:(t), y2(t)} of the sys-
tem to two arbitrary input signals {x;(t), x2(t)}, respectively, are x;1(t) — y1(t)
and x,(t) — y»(t), then the response to Ax;(t) + Bxy(t) — Ayi(t) + By,(t) is the
same as the sum of the responses to Ax;(t) and Bx,(t), for any constants A and
B.

A linear system cannot create any signal components with new frequen-
cies. If a system is nonlinear, it typically creates harmonic (integer multiples)
or intermodulation (sums and differences) frequency components. This is par-
ticularly problematic in discrete-time computation because of the aliasing of
new signal frequencies beyond the Nyquist frequency.

If a system is both linear and time invariant (LTI), there are constant-valued
parameters that effectively characterise its behaviour. We may think that in a
time-varying system its characteristics (parameter values) change according to
some external influence, while in a nonlinear system the characteristics change

according to the signal values in the system.

Linear systems or models have many desirable properties. In digital sig-
nal processing, LTI systems are not only easier to design but also are typically
more efficient computationally. A linear system can be mapped to transform
domains where the behaviour can be analyzed by algebraic equations (Op-
penheim et al., [1996). For continuous-time systems, the Laplace and Fourier
transforms can be applied to map between the time and frequency domains,
and the Sturm-Liouville transform (Trautmann and Rabenstein, 2003) applies
similarly to the spatial dimension?. For discrete-time systems, the Z-transform
and the discrete Fourier transform (DFT and its fast algorithm, FFT) are used.

For nonlinear systems, there is no such elegant theory as for the linear
ones; rather, there are many forms of nonlinearity, which require different
methods, depending on which effect is desired. In discrete-time modelling,

2A technical detail: unlike the Laplace transform, the Sturm-Liouville transform utilises a
non-unique kernel that depends on the boundary conditions.
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nonlinearities bring problems that are difficult to solve. In addition to aliasing,
the delay-free loop problem and stability problems can become worse than
they are in linear systems. If the nonlinearities in a system to be modelled
are spatially distributed, the modelling task is even more difficult than with a
localised nonlinearity.

Energetic behaviour and stability

The product of dual variables such as voltage and current gives power, which,
when integrated in time, yields energy. Conservation of energy in a closed
system is a fundamental law of physics that should also be obeyed in physics-
based modelling.

A physical system can be considered passive in the energetic sense if it
does not produce energy, i.e. if it preserves its energy or dissipates it into
another energy form, such as thermal energy. In musical instruments, the
resonators are typically passive, while excitation (plucking, bowing, blowing,
etc.) is an active process that injects energy to the passive resonators.

The stability of a physical system is closely related to its energetic be-
haviour. Stability can be defined so that the energy of the system remains finite
for finite-energy excitations. In this sense, a passive system always remains
stable. From the signal processing viewpoint, stability may also be mean-
ingful if it is defined so that the variables, such as voltages, remain within a
linear operating range for possible inputs in order to avoid signal clipping and
distortion.

Recently, Bilbaol (2007) has applied the principles of conservation and
dissipation of physical energy to time-domain stability analysis of certain nu-
merical methods that contain, as an added feature, the conservation of an
exact numerical counterpart to physical energy that bounds numerical dy-
namics. His method extends well to strongly nonlinear systems and allows
for a convenient analysis of boundary conditions.

For system transfer functions, stability is typically defined so that the
system poles (roots of the denominator polynomial) in a Laplace transform
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remain in the left half plane, or that the poles in a Z-transform in a discrete-time
system remain inside the unit circle (Oppenheim et al.,[1996)). This guarantees
that there are no responses growing without bounds for finite excitations.

In signal processing systems with one-directional interaction between
stable sub-blocks, an instability can appear only if there are feedback loops.
In general, it is impossible to analyze the stability of such a system without
knowing its whole feedback structure. Contrary to this, in models with phys-
ical two-way interaction the passivity rule is a sufficient condition of stability,
i.e. if each element is passive, then any arbitrary network of such elements
remains stable.

Modularity and locality of computation

For a computational realisation, it is desirable to decompose a model systemat-
ically into blocks and their interconnections. Such an object-oriented approach
helps to manage complex models through the use of the modularity principle.
The basic modules can be formulated to correspond to elementary objects or
functions in the physical domain at hand. Abstractions of new macro-blocks
on the basis of more elementary ones helps hiding details when building ex-
cessively complex models.

For one-directional interactions in signal processing, it is enough to have
input and output terminals for connecting the blocks. For physical interaction,
the connections need to be done through ports, with each port having a pair of
K- or wave variables depending on the modelling method used. This follows
the mathematical principles used for electrical networks (Rabenstein et al.,
2007).

Locality of interaction is a desirable modelling feature, which is also
related to the concept of causality. In a physical system with a single propa-
gation speed of waves, it is enough that a block interacts only with its nearest
neighbours; it does not need global connections to perform its task. If the
properties of one block in such a localised model vary, the effect automatically
propagates throughout the system. On the other hand, if some effects prop-
agate for example at the speed of light but others with the speed of sound in
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air, the light waves are practically simultaneously everywhere. If the sampling
rate in a discrete-time model is tuned to audio bandwidth (typically 44.1 or
48 kHz sample rate), the unit delay between samples is too long to represent
light wave propagation between blocks. Two-way interaction with zero de-
lay means a delay-free loop, the problem that we often face in physics-based
sound synthesis. Technically it is possible to realise fractional delays (Laakso
et al., [1996), but delays shorter than the unit delay contain a delay-free com-
ponent, so the problem is hard to avoid. There are ways to make such systems
computable (Borin et al., 2000), but they may impose additional constraints in
real-time processing in terms of the cost in time (or accuracy).

Types of complexity in physics-based modelling

Models are always just approximations of real physical phenomena. There-
fore, they reduce the complexity of the target system. This may be desired
for a number of reasons, such as keeping the computational cost manage-
able, or more generally forcing some cost function below an allowed limit.
These constraints are particularly important in real-time sound synthesis and

simulation.

The complexity of a model is often the result of the fact that the target
system is conceptually over-complex for a scientist or engineer developing the
model, and thus cannot be improved by the competence or effort available.
An over-complex system may be deterministic and modellable in principle but
not in practice: it may be stochastic due to noise-like signal components, or it
may be chaotic so that infinitesimally small disturbances lead to unpredictable
states.

A particularly important form of complexity is perceptual complexity.
For example, in sound synthesis there may be no need to make the model
more precise, because listeners cannot hear the difference. Phenomena that
are physically prominent but do not have any audible effect can be excluded
in such cases.
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8.3 State-of-the-art

This section starts with an overview of physics-based methods and techniques
for modelling and synthesizing musical instruments with an emphasis on the
state of the art in each technique. The methods are grouped according to their
variables. Wherever possible, we indicate their relation to the concepts and
general schemes discussed in Section [8.2) Section thus focuses on the
K-models (finite difference models, mass-spring networks, modal synthesis,
and source-filter models) whereas Section discusses wave models (wave
digital filters and digital waveguides).

The second part of this section is devoted to a discussion of the current
status of the field; we discuss block-based interconnection strategies, modelling
and control of musical instruments and everyday sounds, perceptual evalua-
tion of physics-based models, and finally outline emerging applications such
as physics-based audio restoration. This part helps us to extrapolate the cur-
rent trends into the future paths and indicate the open problems of the field in

Section [8.4]

Our discussion so far has (indirectly) pointed out many fields related
to the physics-based sound synthesis, including physics (especially musical
acoustics), mathematics, computer science, electrical engineering, digital sig-
nal processing, computer music, perception, human-computer interaction, and
control. A novel result in these fields surely affects our field. However in order
to emphasise our methodology, to keep our focus directed and the size of this
chapter manageable, we have excluded these fields in our discussion, with the
expense of shifting the balance between sound and sense towards sound. We
hope that complementary chapters in this book will altogether provide a more
balanced overview.
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8.3.1 K-models

Finite difference models

A finite difference scheme is a generic tool for numerically integrating differ-
ential equations (Strikwerda) [1989; Bilbao| 2007). In this technique, the math-
ematical model, which is typically distributed on a bounded spatio-temporal
domain, corresponds to the excitation plus resonator paradigm (see Figure[8.1)).
This mathematical model is discretised with the help of grid functions and dif-
ference operators. The numerical model can be explicit or implicit (in this case,
iteration may be needed, see [Strikwerda, [1989). In either case, the operations
are local. Typically one physical K-variable is directly observable, and the
other is hidden in the states of the system.

Early examples of using finite differences in physics-based sound syn-
thesis can be found in the works by Hiller and Ruiz| (1971a)), Hiller and Ruiz
(1971b) and Chaigne (1992). Since then, finite differences have been applied
successfully to multi-dimensional structures; Chaigne (2002) systematically
extends this line of research.

The finite difference model parameters are typically derived from the
physical material properties, although the loss terms in most cases are simpli-
fied due to the lack of a general theory. Therefore, some difference schemes
may be preferred over the others based on their numerical properties, as done
by Bensa et al.|(2003)), who have showed that a mixed derivative term has supe-
rior numerical properties for modelling frequency dependent losses compared
to higher-order temporal differences. A promising direction concerning the
correlation of perception and the model parameters is the work of McAdams
et al. (2004).

Standard DSP tools for analysis and design cannot be facilitated for finite
difference models, as they do not follow regular DSP formulations. Recent
DSP-oriented (re)formulations attempt to fill this gap (Smith, 2007, 2004a}
Pakarinen, 2004; Karjalainen and Erkut, 2004).

The DSP tools aside, von Neumann analysis provides a standard tech-
nique for investigating the stability of an LTI finite-difference structure (Strik-
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werda, [1989; Press et al., 2002} Savioja, [1999; Bilbao, 2004). Finite difference
schemes have provisions for modelling nonlinear and time-varying systems,
but it has been difficult to analyze their stability and passivity. A recent work
by Bilbaol (2007) is a remedy in this sense.

Although the locality of the finite difference structures have been used
for parallel processing in general applications, in sound synthesis a parallel
implementation has been rarely addressed, except a parallel hardware imple-
mentation of a 2-D plate equation by Motuk et al. (2005). Despite the large
number of publications in the field, available sound synthesis software consists
of a few Matlab toolboxes that focus on 1-D structures (Kurz and Feiten) 1996;
Kurz| 1995} Karjalainen and Erkut, 2004). The DSP-oriented finite difference
structures have been implemented in BlockCompiler® by [Karjalainenl (2003)
(see alsoRabenstein et al., 2007).

Mass-spring networks

This group of techniques (also referred to as mass-interaction, cellular or particle
systems) decompose the original physical system in its structural atoms (Cadoz
et al.,[1983). These structural atoms are masses, springs, and dash-pots in the
mechanical domain. The interactions between the atoms are managed via
explicit interconnection elements that handle the transfer of the K-variables
between the synthesis objects. By imposing a constraint on the causality of
action and reaction, and by using finite-difference formalism, modularity is
also achieved (Cadoz et al., [1983). Thus, it is possible to construct complex
modular cellular networks that are in full compliance with the diagram in
Figure Mass-spring systems typically include special interaction objects
for implementing time-varying or nonlinear interactions (Florens and Cadoz,
1997). However, the energetic behaviour and stability analysis of the resulting
network is hard to estimate, since the existing analysis tools apply only to LTI

cases.

The principles of mass-spring networks for physics-based sound syn-
thesis were introduced by (Cadoz et all (1993) within their system CORDIS-

Shttp://www.acoustics.hut.fi/software/BlockCompiler/
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ANIMA, which is a comprehensive audio-visual-haptic system. In this paradigm,
sound synthesis becomes part of a more general constructive, physics-based
approach to multisensory interaction and stimulation. Moreover, by regarding
sound synthesis as a part of a broader approach including the micro-structural
creation of sound and the macro-temporal construction of music, the same
paradigm can be used both for synthesis of sound and composition of music
(Cadoz, 2002). The developments, achievements, and results along this line in

a large time-span are outlined in a review article by (Cadoz et al. (2003).

Despite the successful results, constructing a detailed mass-spring net-
work is still a hard task, since the synthesis objects and their interaction topol-
ogy require a large number of parameters. To address this issue, Cadoz and
his coworkers developed helper systems for support, authoring, analysis, and
parameter estimation of mass-spring networks (Castagné and Cadoz, 2002;
Cadoz et al., 2003} [Szilas and Cadoz, [1998).

A renewed interest (probably due to the intuitiveness of the mass-spring
metaphor) in cellular networks resulted in other systems and implementations,
which are built upon the basic idea of the modular interactions but placing ad-
ditional constraints on computation, sound generation, or control. An example
implementation is PMPD# by [Henry]| (2004).

PMPD closely follows the CORDIS-ANIMA formulation for visuali-
sation of mass-spring networks within the pd-GEM environment (Puckette)
1997), and defines higher-level aggregate geometrical objects such as squares
and circles in 2-D or cubes or spheres in 3-D. Although the package only
generates slowly-varying control-rate signals, it is a very valuable tool for un-
derstanding the basic principles of mass-spring networks and physics-based

control. Other systems that are based on similar principles are TAO by Pearson
(1995) and CYMATIC by Howard and Rimell (2004).

“PMPD has multi-platform support and it is released as a free software under the GNU
Public License (GPL). It can be downloaded from http://drpichon. free. fr/pmpd/.
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Modal synthesis

Linear resonators can also be described in terms of their vibrational modes
in the frequency domain. This representation is particularly useful for sound
sources that have a small number of relatively sharp resonances (such as the
xylophone or the marimba), and may be obtained by experimental modal
analysis (Ewins| 2000} Bissinger| 2003).

The modal description, essentially a frequency-domain concept, was
successfully applied to discrete-time sound synthesis by |Adrien! (1989, [1991).
In his formulation, the linear resonators (implemented as a parallel filter-
bank) are described in terms of their modal characteristics (frequency, damp-
ing factor, and mode shape for each mode), whereas connections (representing
all non-linear aspects) describe the mode of interaction between objects (e.g.
strike, pluck, or bow). These ideas were implemented in MOSAIC software
platform (Morrison and Adrien,[1993), which was later ported and extended to
Modalys®. Note that, although the basic idea of the modal synthesis resembles
the excitation plus resonator scheme in Figure 8.1, Modalys and more recent
implementations are modular and fully support the bidirectional interaction
scheme of Figure[8.2] (usually by iteration).

Modal synthesis is best suited for mechanical domain and uses K-
variables. The resonator filterbank is essentially a lumped model, however
a matrix block brings back the spatial characteristics of a distributed system by
transforming the input force to modal coordinates for weighting the individual
resonances. An excellent DSP formulation of modal synthesis, based on the
state-space formalism, is given by [Smith! (2007).

If the modal density of a sound source is high (such as a string instru-
ment body), or if there are many particles contained in a model (such as a
maracas) modal synthesis becomes computationally demanding. If the accu-
racy is not of paramount importance, instead of a detailed bookkeeping of
each mode or particle, using stochastic methods significantly reduces the com-
putational cost without sacrificing the perceived sound quality (Cook) [1997).
The basic building blocks of modal synthesis, as well as stochastic extensions

5Proprietary software of IRCAM, see http://www.ircam.fr/logiciels.html
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are included in STK (Cook, 2002; |(Cook and Scavone, 1999)@.

Two linear modal resonators linked by an interaction element as in
Figure[8.2lhas been reported by Rocchesso and Fontanal (2003). The interaction
element simulates nonlinear impact or friction iteratively and provides energy
to the modal resonators. These impact and friction models are implemented

as pd plugins?.

The functional transform method (FTM) is a recent development closely
related to the modal synthesis (Irautmann and Rabenstein, 2003). In FTM,
the modal description of a resonator is obtained directly from the governing
PDEs by applying two consecutive integral transforms (Laplace and Sturm-
Liouville) to remove the temporal and spatial partial derivatives, respectively.
The advantage of this approach is that while traditional modal synthesis pa-
rameters are bound to the measured modal patterns of complex resonators,
FTM can more densely explore the parameter space, if the problem geome-
try is simple enough and physical parameters are available. More recently,
nonlinear and modular extensions of the method, as well as multirate imple-
mentations to reduce the computational load have been reported (Trautmann
and Rabenstein) 2004; Petrausch and Rabenstein, 2005).

Source-filter models

When an exciter in Figure[8.1lis represented by a signal generator, a resonator
by a time-varying filter, and the bidirectional signal exchange between them is
reduced to unidirectional signal flow from the exciter towards the resonator,
we obtain a source-filter model. In some cases, these reductions can be physically
justified, however in general they are mere simplifications, especially when the
source is extremely complex, such as in the human voice production (Sundberg,
1991} Kob), 2004; [Titze|, 2004} |Arroabarren and Carlosena), 2004).

Since the signal flow is strictly unidirectional, this technique does not

®STK has multiplatform support and it is released as open source without any specific
license. It can be downloaded fromhttp://ccrma.stanford.edu/sotftware/stk/

7 Available fromhttp://www.soundobject.org/software.html} pd externals are pro-
vided under the GPL license.
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provide good means for interactions. However, the resonators may be de-
composed to arbitrary number of sub-blocks, and outputs of several exciters
may be added. Thus, to a certain degree, the modularity is provided. The
exciter is usually implemented as a switching wavetable, and resonators are
simple time-varying filters. Anadvantage here is that these components are in-
cluded in every computer music and audio signal processing platform. Thus,
source-filter models can be used as early prototypes of more advanced physical
models.

This is, for example, the case in virtual analog synthesis. This term became
popular when the Nord Lead 1 synthesiser was introduced into the market as
“an analog-sounding digital synthesiser that uses no sampled sounds®’. In-
stead, a source-filter based technique was used. Stilson and Smith! (1996) have
introduced more physically-oriented sound synthesis models of analog elec-
tric circuits (Stilson, 2006), whereas Valimaki and Huovilainen! (2006) report
useful oscillator and filter algorithms for virtual analog synthesis.

The final reason of our focus on the source-filter models here is the com-
muted synthesis technique (Smith), 1993} Karjalainen et al.,[1993), as it converts
a port-based physical model into a source signal (usually an inverse-filtered
recorded tone) and a terminal-based filter under the assumptions of linearity
and time-invariance. This method works very well for plucked (Laurson et al.,
2001} Valimaki et al.,2004) or struck (Valimaki et al., 2003) string instruments,
and it is especially advantageous for parameter estimation. These advantages
have been utilised by Laurson et al. (2005) in their PWGLSynth for high-quality
physics-based sound synthesis and control. [Valimaki et al.| (2006) and [Smith
(2007) provide comprehensive discussions on commuted synthesis.

8.3.2 Wave models
Wave digital filters

The wave digital filter (WDF) theory is originally formulated for conversion of
analog filters into digital filters by [Fettweis| (1986). In physics-based sound

Shttp://www.clavia.com/
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synthesis, a physical system is first converted to an equivalent electrical circuit
using the domain analogies, then each circuit element is discretised (usually
by the bilinear transform). Each object is assigned a port resistance and the
energy transfer between objects is carried out by explicit interconnection ob-
jects (adaptors), which implement Kirchhoff laws and eliminate the delay-free
loops. Lumped WDF models are mostly used as exciters, as in the pioneering
work of Van Duyne et al.|(1994), but are also applicable to resonators. Modern
descriptions of the wave digital principle as a tool in physics-based sound
synthesis are given by Bilbao (2004) and [Valimaki et al.| (2006).

The WDF technique is fully compliant with, and actually an inspiration
to the modular interaction scheme in Figure However, in its original form,
its disadvantage is that the class of compatible blocks is restricted to those
that communicate via wave variables, i.e. only blocks with wave ports can be
connected to the WDF adaptors. Rabenstein et al.| (2007) present two different
directions to open the wave-based interconnection strategy to K-type models.

Digital waveguides

Digital waveguides (DWGs) formulated by Smith (2007) are the most popular
physics-based method for 1-D structures, such as strings and wind instru-
ments. The reason for this is their extreme computational efficiency. They
have been also used in generalised networks (Rocchesso and Smith, 2003),
as well as in 2-D and 3-D modelling in the form of digital waveguide mesh
(Van Duyne and Smith| 1993} [1995; Savioja et al.,[1995; Murphy et al., 2007).

A DWG is a bi-directional delay line pair with an assigned port admit-
tance Y and it accommodates the wave variables of any physical domain. The
change in Y across a junction of the waveguide sections causes scattering, and
the scattering junctions of interconnected ports have to be formulated. Since
DWGs are based on the wave components, this is not a difficult task, as the
reflected waves can be causally formulated as a function of incoming waves.
DWGs are mostly compatible with wave digital filters, but in order to be com-
patible with K-modelling techniques, special conversion algorithms must be
applied to construct hybrid models. The exciting development of the DWG
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theory and its applications per instrument family can be found in the works
by Smith! (2007) and Valimadki et al. (2006); here, after discussing a related
technique, we will consider its software implementations.

Essl et al. (2004a) discuss the theory of banded waveguides, a new syn-
thesis method for sounds made by solid objects and an alternative method for
treating two- and three-dimensional objects. Itis a departure from waveguides
in the sense that it divides the excitation signal into frequency bands. Each
band contains primarily one resonant mode. For each band, digital waveg-
uides are used to model the dynamics of the travelling wave and the resonant
frequency of the mode. Amongst many things, the method enables to cre-
ate non-linear and highly inharmonic sounds, but it is essentially an efficient
technique to model complex resonators with few modes. A companion article
by [Essl et al.| (2004b)) presents musical applications of this synthesis method,
including bar percussion instruments, the musical saw, bowed glasses, bowed
bowls, a bowed cymbal, and a tabla.

As in the case of modal synthesis, the basic synthesis blocks of digital
and banded waveguides are included in STK as specific classes. STK also
offers prototype waveguide models of many instrument families, but excludes
the interactors (or I-objects, as depicted in Figure [8.2). In contrast, both the
synthesis objects and the interactors are fully supported in the two software
environments presented by Rabenstein et al.|(2007), namely the Binary Connec-
tion Tree (BCT) and BlockCompiler (BC). Based on the suitable interconnection
strategies between the wave and K-based blocks, BCT and BC allow to build
complex physics-based sound synthesis systems without burdening the user
with problems of block compatibility. We next discuss these suitable intercon-
nection strategies.

8.3.3 Current directions in physics-based sound synthesis
Block-based interconnection strategies

Using hybrid approaches in sound synthesis to maximise strengths and min-
imise weaknesses of each technique, has been previously addressed by |Jatfe
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(1995). It has been pointed out that hybridisation typically shows up after
a technique has been around for some time and its characteristics have been
extensively explored.

A basic question, with increasing research interest and practical ap-
plication scenarios, is to understand how different discrete-time modelling
paradigms are interrelated and can be combined, whereby K-models and wave
models can be understood in the same theoretical framework. [Rabenstein et al.
(2007) and Murphy et al.| (2007) indicate recent results in interconnection of
wave and K-blocks by using specific interconnector elements (KW-converters),
both in the form of theoretical discussions and by examples.

Modelling and control of Western and ethnic instruments

Around the mid-1990s, we reached the point where most Western orchestral
instruments could be synthesised based on a physical model, and commercial
products were introduced to the market place. Comprehensive summaries of
physics-based sound synthesis of orchestral instrument families are provided
by [Smith (2004b)) and Valimaki et al.| (2006).

More recently, many authors have focused on acoustical analysis and
model-based sound synthesis of ethnic and historical musical instruments. An
example is the work of Penttinen et al. (2006), many others (e.g. the Finnish
kantele, various lutes, ancient Chinese and African flutes, the Tibetan praying
bowl, and the Japanese sho) are listed by [Valimaki et al. (2006). Note that this
trend is not limited to physics-based sound synthesis methods, as discussed by
Whalley| (2005) in a special issue devoted to the process of combining digital
technology and non-Western musical instruments in the creation of new works.

The work of Penttinen et al.l (2006) is also important in the sense that it
tackles thejoint synthesis-control problem by combining a high-level, computer-
assisted composition environment with real-time sound synthesis. Here, the
control data is provided by a notation module in a deterministic, expressive,
repeatable, and precise fashion (Laurson et al.) 2005)2. The results were found
of excellent quality by listeners in informal settings, which indicates that sound

http://www.siba.fi/PWGL
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quality, expressiveness, and control are an inseparable whole, a single entity

in sound generation and modelling.

Modelling and control of everyday sounds

We have also recently seen applications of physical modelling techniques to
non-musical sound sources. A summary of this research line is provided
by [Rocchesso (2004); many other examples (e.g. bird song, wind chimes,
footsteps, and beach balls) are enlisted by [Valiméki et al.| (2006).

An interesting aspect in this line of research, especially in the works
by Cook! (1997)) and by [Rocchesso and Fontanal (2003) is the stochastic higher-
level control blocks that govern the dynamics of simplistic (“cartoonified”)
low-level resonator structures.

Perceptual evaluation

Another direction is the subjective evaluation of perceptual features and pa-
rameter changes in physics-based synthesis, as witnessed by the works of
McAdams et al.| (2004), Rocchesso and Scalcon/ (1999), [Lakatos et al. (2000),
Jarveldinen et al| (2001), Jarveldinen and Tolonen (2001) and Jarveldinen and
Karjalainen| (2006).

This line of research provides musically relevant information on the
relation of timbre and the properties of human hearing. These results help in
reducing the complexity of synthesis models, because details that are inaudible
need not be modelled. Besides the gaps in our understanding in acoustics
of musical instruments and everyday sounds, these perceptual issues are of
paramount importance in sound generation and modelling.

Physics-based audio restoration

The first attempts at audio restoration based on physical models were con-
ducted by Esquef et al.| (2002). While this can be successful for single tones, the
practical application of such methods for recordings including a mix of several
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instruments is a challenge for future research. The main problem is high-
quality source separation, which is required before this kind of restoration
process. Sophisticated algorithms have been devised for this task, but gener-
ally speaking, separation of a musical signal into individual source signals is
still a difficult research problem (Klapuri, 2003} Virtanen), 2007).

8.4 Open problems and future paths

8.4.1 Sound source models and parameter estimation

There are many musical instruments yet to be studied acoustically. An acous-
tical study may be combined with the physics-based sound synthesis in order
to verify the acoustical characteristics of the instrument in focus. Moreover,
there is a vast amount of performance characteristics to be explored. Ideally,
these characteristics should be extracted from recordings rather than isolated

experiments.

Physical parameter extraction techniques need to be extended. For
best sound quality, computational methods that automatically calibrate all
the parameter values of a physical model according to the sound of a good
instrument should exist. An ideal model should not only be well suited to
represent the original process, but it should be flexible enough to offer simple
ways to perform the processing. The effectiveness of a model can hence be
measured in terms of how accurate the reconstruction of the modelled process
is, or in terms of its parametric control properties. To date, physical models of
sound and voice have been appreciated for their desirable properties in terms
of synthesis, control and expressiveness. However, it is also widely recognised
that they suffer from being inadequate to be fitted to real observed data, due
to the high number of parameters involved, to the fact that control parameters
are not related to the produced sound signal in a trivial way, and to the severe
nonlinearities in the numerical schemes in some cases.

All these cues make the parametric identification of physics-based mod-
els a formidable problem. In the last decade several approaches to the problem
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of model inversion have been investigated for the identification of structural
and of control parameters. Among these, the use of nonlinear optimisation
algorithms; the combination of physical models, sound analysis, and approx-
imation theory; the use of techniques from nonlinear time series analysis and
dynamical reconstruction theory. Future research in voice and sound physical
modelling should certainly take into account the importance of model fitting
to real data, both in terms of system structure design and in terms of para-
metric identification. Joint design of numerical structures and identification
procedures may also be a possible path to complexity reduction. It is also
desirable that from the audio-based physical modelling paradigm, new model
structures emerge which will be general enough to capture the main sound
features of broad families of sounds, e.g. sustained tones from wind and
string instruments, percussive sounds, etc., and to be trained to reproduce the
peculiarities of a given instrument from recorded data.

Physical virtual analog synthesis is an important future path. Building
an analog circuit and comparing the measured physical variables with the syn-
thetic ones may improve the tuning of the virtual analog model parameters,
and thus the quality of the audio output. Since many analog electrical, mechan-
ical, and acoustical systems can be decomposed into elementary components,
itis desirable to build a library of such components. The theory of wave digital
tilters (Fettweis| [1986) and block-based physical modelling (Rabenstein et al.,
2007) may be facilitated for this purpose.

Important future directions in hybrid modelling include analysis of
the dynamic behaviour of parametrically varying hybrid models, as well as
benchmark tests for computational costs of the proposed structures.

8.4.2 Directivity and sound radiation modelling

Motivated by the immersive and virtual reality applications (Lokki et al., 2002}
Savioja et al) [1999), the directivity and distributed radiation research and
modelling are expected to be major challenging problems in physics-based
sound synthesis in the next decade.

Being distributed sound sources, musical instruments typically exhibit
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complex sound radiation patterns (Fletcher and Rossing), 1998). The direc-
tional masking and reflections caused by the player and other objects in an
environment further shape these patterns (Cook and Trueman),[1998). Further-
more, sound radiation involves diffraction effects that are very perceptible and
important. In an offline simulation, Derveaux et al. (2003) have demonstrated
the evolution of the directivity pattern in the near field of a classical guitar,
especially during the attack. However, these phenomena have been largely
ignored in real-time applications due to their high computational cost.

The attempts to efficiently incorporate the directional radiation charac-
teristics of sound sources into direction-dependent physical modelling have a long
history (Huopaniemi et al., 1994; Karjalainen et al., 1995; Huopaniemi et al.,
1995). [Karjalainen et al. (1995) report three different methods for retaining
the directional radiation information during spatial sound synthesis: 1) direc-
tional filtering, 2) a set of elementary sources, and 3) a direction-dependent
excitation. The first two methods have been used for creating interactive vir-
tual auditory environments, as reported by [Lokki et al.| (2002) and Savioja
et all (1999). Nevertheless, a significant part of the effort in virtual acoustic
simulations has been devoted to simulating the acoustics of room and concert
halls, assuming that the sound is provided, for instance, by a recording (see
the overview of related work in the paper by [James et al., 2006).

James et al| (2006) recently proposed a novel algorithm for real-time
audio-visual synthesis of realistic sound radiation from rigid objects, based
on the modal synthesis paradigm. They pre-compute the linear vibration
modes of an object and relate each mode to its sound pressure field, or acoustic
transfer function, using standard methods from numerical acoustics. Each
transfer function is then approximated to a specified accuracy using low-order
multi-pole sources placed near the object.

Compared to the geometrically vibration sources thatJames et al.|(2006)
consider, musical instruments typically exhibit more structured radiation char-
acteristics. For instance, Hill et al. (2004) show how the input admittance of
a classical guitar and its sound-pressure response can be characterised and
reconstructed using only a small set of acoustical parameters. We therefore

expect improvements, generalisations, and a wide-spread use of direction-
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dependent physical modelling of musical instruments in the near future.

8.4.3 Control

In addition to the stochastic control blocks (Cook,[1997;Rocchesso and Fontana,
2003), nonlinear dynamics (Strogatz, [1994) could also help to control the sim-
plistic low-level sound source models. This potential is surprisingly under-
researched (the most mature applications are mentioned by /Cadoz et al., 2003
and |Rodet and Vergez,[1999). If carefully designed, the discrete-time nonlinear
blocks can successfully modify the characteristics of simplistic synthesis ob-
jects in a dynamical fashion. This way, coherent and plausible sonic behaviour
(including synchronisation and flocking, Strogatz, 2003) of a large group of
animate/inanimate objects may be efficiently modelled.

Going back to less exotic sound sources, the user control (or “playing”)
of physical models of musical instruments is another problem area where gen-
eral solutions are unavailable. The piano is one of the easiest cases, because the
player only controls the fundamental frequency and dynamic level of tones.
In the cases of string and wind instruments, the control issue requires clever
technical solutions. The control of virtual musical instruments is currently a
lively research field (Paradiso,[1997; Cook)1992;[Howard and Rimell,2004; Kar-
jalainen et al.,2006). Yet, a remaining challenge is how to make controllability
and interactivity central design principles in physics-based sound synthesis.

8.4.4 Applications

An ultimate dream of physical modelling researchers and instrument builders
is virtual prototyping of musical instruments. This application will preemi-
nently require physical models with excellent precision in the simulation of
sound production. A musical instrument designer should have the possibility
to modify a computer model of a musical instrument and then play it to verify
that the design is successful. Only after this would the designed instrument
be manufactured. Naturally, fine details affecting the timbre of the instrument
should be faithfully simulated, since otherwise this chain of events would be
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fruitless. Current research is still far away from this goal and more research
work is required.

The concept of Structured Audio (Vercoe et al) [1998), which is intro-
duced as part of the MPEG-4 international multimedia standard and aims for
parametric description and transmission of sound, opens up a new paradigm
that, together with other MPEG4 ideas such as the Audio BIFS (Binary Format
for Scenes), remains to be explored.

In addition to synthesizing musical sounds, in the future, the physi-
cal modelling techniques are expected to be applied to numerous everyday
sound sources for human-computer interfaces, computer games, electronic
toys, sound effects for films and animations, and virtual reality applications.

Despite a long development history, significant recent advances, and
premises such as control, efficiency, and sound quality, the physics-based
sound synthesis still lacks a wide-spread use in music as a compositional
tool for a composer/user (as opposed to a performance tool), although several
case studies have been reported by (Chafe (2004). We believe that the most
important factor behind this is the lack of a unified modular modelling frame-
work in full compliance with the scheme in Figure Such a framework
should optimally balance accuracy, efficiency, and ease of control, and operate
in the widest range of physical domains. It should also handle the param-
eter updates in a robust and predictable manner in real-time. Useful tools
and metaphors should minimise the time devoted to instrument making and
maximise the time devoted to music making. Designing such a framework
may require a holistic approach spanning the domain from sound to sense,
and bringing the expertise in audio, control, and music together. In this re-
spect, promising results have been obtained, but some challenges still remain
(Rabenstein et al.,2007), and there is a vast amount of opportunities for further
research and development.






Bibliography

J.-M. Adrien. Dynamic modeling of vibrating structures for sound synthesis,
modal synthesis. In Proc. AES 7th Int. Conf., pages 291-300, Toronto, Canada,
May 1989.

J.-M. Adrien. The missing link: modal synthesis. In G. De Poli, A. Piccialli,
and C. Roads, editors, Representations of Musical Signals, pages 269-297. The
MIT Press, Cambridge, MA, 1991.

I. Arroabarren and A. Carlosena. Vibrato in singing voice: The link between
source-filter and sinusoidal models. EURASIP Journal on Applied Signal Pro-
cessing, 2004(7):1007-1020, July 2004. Special issue on model-based sound
synthesis.

E. Avanzini. Computational Issues in Physically-based Sound Models. PhD thesis,
Dept. of Computer Science and Electronics, University of Padova, Italy, 2001.

J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. O. Smith. The simulation of
piano string vibration: From physical models to finite difference schemes
and digital waveguides. J. Acoust. Soc. Am., 114(2):1095-1107, Aug. 2003.

S. Bilbao. Wave and Scattering Methods for Numerical Simulation. John Wiley and
Sons, Chichester, UK, 2004. ISBN 0-470-87017-6.

S. Bilbao. Robust physical modeling sound synthesis for nonlinear systems.
Signal Processing Magazine, IEEE, 24(2):32-41, 2007.



334 BIBLIOGRAPHY

G. Bissinger. Modal analysis of a violin octet. ]. Acoust. Soc. Am., 113(4):
2105-2113, Apr. 2003.

G. Borin, G. De Poli, and A. Sarti. Algorithms and structures for synthesis
using physical models. Computer Music J., 16(4):30—42, 1992.

G. Borin, G. De Poli, and D. Rocchesso. Elimination of delay-free loops in
discrete-time models of nonlinear acoustic systems. IEEE Trans. Speech and
Audio Processing, 8(5):597-605, Sep. 2000.

C. Cadoz. The physical model as a metaphor for musical creation
“pico. TERA”, a piece entirely generated by physical model. In Proc. Int.
Computer Music Conf., pages 305-312, Gothenburg, Sweden, 2002.

C. Cadoz, A. Luciani, and J.-L. Florens. Responsive input devices and sound
synthesis by simulation of instrumental mechanisms: The CORDIS system.
Computer Music J., 8(3):60-73, 1983.

C. Cadoz, A. Luciani, and J.-L. Florens. CORDIS-ANIMA. a modeling and
simulation system for sound and image synthesis. The general formalism.
Computer Music J., 17(1):19-29, Spring 1993.

C. Cadoz, A. Luciani, and J.-L. Florens. Artistic creation and computer inter-
active multisensory simulation force feedback gesture transducers. In Proc.
Conf. New Interfaces for Musical Expression NIME, pages 235-246, Montreal,
Canada, May 2003.

N. Castagné and C. Cadoz. Creating music by means of “physical thinking”:
The musician oriented Genesis environment. In Proc. COST-G6 Conf. Digital
Audio Effects, pages 169-174, Hamburg, Germany, Sep. 2002.

C. Chafe. Case studies of physical models in music composition. In Proc. 18th
International Congress on Acoustics (ICA), pages 297 —300, Kyoto, Japan, April
2004.

A. Chaigne. Numerical simulations of stringed instruments — today’s situation
and trends for the future. Catgut Acoustical Society Journal, 4(5):12-20, May
2002.



BIBLIOGRAPHY 335

A. Chaigne. On the use of finite differences for musical synthesis. Application
to plucked stringed instruments. J. Acoustique, 5(2):181-211, Apr. 1992.

P. Cook and D. Trueman. A database of measured musical instrument body
radiation impulse responses, and computer applications for exploring and
utilizing the measured filter functions. In Proc. Intl. Symp. Musical Acoustics,
pages 303-308, Leavenworth, WA, USA, 1998.

P. R. Cook. Real sound synthesis for interactive applications. A. K. Peters, Natick,
MA, USA, 2002.

P. R. Cook. A meta-wind-instrument physical model, and a meta-controller
for real-time performance control. In Proc. Int. Computer Music Conf., pages
273-276, San Jose, California, October 14-18 1992.

P. R. Cook. Physically informed sonic modeling (PhISM): Synthesis of percus-
sive sounds. Computer Music J., 21(3):38—49, 1997.

P.R. Cook and G. P. Scavone. The Synthesis ToolKit STK. In Proc. Int. Computer
Music Conf., Beijing, China, Oct. 1999. For an updated version of STK see
http://ccrma-www.stanford.edu/software/stk/.

G. Derveaux, A. Chaigne, P. Joly, and E. Bécache. Time-domain simulation of
a guitar: Model and method. J. Acoust. Soc. Am., 114:3368-3383, 2003.

P. Esquef, V. Vdlimé&ki, and M. Karjalainen. Restoration and enhancement of
solo guitar recordings based on sound source modeling. J. Audio Eng. Soc.,
50(4):227-236, Apr. 2002.

G. Essl, S. Serafin, P. R. Cook, and J. O. Smith. Theory of banded waveguides.
Computer Music J., 28(1):37-50, 2004a.

G. Essl, S. Serafin, P. R. Cook, and J. O. Smith. Musical applications of banded
waveguides. Computer Music |., 28(1):51-63, 2004b.

D. J. Ewins. Modal Testing: Theory, Practice and Application. Taylor & Francis
Group, second edition, 2000.


http://ccrma-www.stanford.edu/software/stk/

336 BIBLIOGRAPHY

A. Fettweis. Wave digital filters: Theory and practice. Proc. IEEE, 74(2):270-327,
Feb. 1986.

N. H. Fletcher. Acoustic systems in biology. Oxford University Press, New York,
USA, 1992.

N. H. Fletcher and T. D. Rossing. The Physics of Musical Instruments. Springer-
Verlag, New York, NY, USA, 2nd edition, 1998.

J.-L. Florens and C. Cadoz. The physical model: Modeling and simulating
the instrumental universe. In G. De Poli, A. Piccialli, and C. Roads, editors,
Representations of Musical Signals, pages 227-268. The MIT Press, Cambridge,
Massachusetts, 1991.

C. Henry. PMPD: Physical modelling for pure data. In Proc. Int. Computer
Music Conf., Coral Gables, Florida, USA, Nov. 2004.

T. Hermann and A. Hunt. Guest editors’ introduction: An introduction to
interactive sonification. Multimedia, IEEE, 12(2):20-24, 2005.

T. Hermann and H. Ritter. Model-based sonification revisited — authors” com-
ments on Hermann and Ritter, ICAD 2002. ACM Trans. Appl. Percept., 2(4):
559-563, October 2005.

T.J. W. Hill, B. E. Richardson, and S. J. Richardson. Acoustical parameters for
the characterisation of the classical guitar. Acta Acustica united with Acustica,
90(2):335-348, 2004.

L. Hiller and P. Ruiz. Synthesizing musical sounds by solving the wave equa-
tion for vibrating objects: Part 1. ]. Audio Eng. Soc., 19(6):462-470, June
1971a.

L. Hiller and P. Ruiz. Synthesizing musical sounds by solving the wave equa-
tion for vibrating objects: Part 2. |. Audio Eng. Soc., 19(7):542-551, 1971b.

D. M. Howard and S. Rimell. Real-time gesture-controlled physical modelling
music synthesis with tactile feedback. EURASIP Journal on Applied Signal
Processing, 2004(7):1001-1006, July 2004. Special issue on model-based sound
synthesis.



BIBLIOGRAPHY 337

J. Huopaniemi, M. Karjalainen, V. Vilimé&ki, and T. Huotilainen. Virtual instru-
ments in virtual rooms-a real-time binaural room simulation environment
for physical models of musical instruments. In Proc. Intl. Computer Music
Conf., pages 455-462, Aarhus, Denmark, 1994.

J. Huopaniemi, M. Karjalainen, and V. Vidliméki. Physical models of musi-
cal instruments in real-time binaural room simulation. In Proc. Int. Congr.
Acoustics (ICA’95), volume 3, pages 447-450, Trondheim, Norway, 1995.

D. A. Jaffe. Ten criteria for evaluating synthesis techniques. Computer Music J.,
19(1):76-87, 1995.

D. L. James, ]J. Barbic, and D. K. Pai. Precomputed acoustic transfer: output-
sensitive, accurate sound generation for geometrically complex vibration
sources. In Proc. ACM SIGGRAPH '06, pages 987-995, New York, NY, USA,
2006.

H. Jarveldinen and T. Tolonen. Perceptual tolerances for decay parameters in
plucked string synthesis. J. Audio Eng. Soc., 49(11):1049-1059, Nov. 2001.

H. Jarveldinen, V. Vilimaki, and M. Karjalainen. Audibility of the timbral
effects of inharmonicity in stringed instrument tones. Acoustics Research
Letters Online, 2(3):79-84, July 2001.

H. Jarveldinen and M. Karjalainen. Perceptibility of inharmonicity in the acous-
tic guitar. Acta Acustica united with Acustica, 92(5):842-847, October 2006.

M. Karjalainen. BlockCompiler: A research tool for physical modeling and
DSP. In Proc. COST-G6 Conf. Digital Audio Effects, pages 264-269, London,
UK, Sep. 2003.

M. Karjalainen and C. Erkut. Digital waveguides versus finite difference struc-
tures: Equivalence and mixed modeling. EURASIP Journal on Applied Signal
Processing, 2004(7):978-989, July 2004.

M. Karjalainen, V. Viliméki, and Z. Janosy. Towards high-quality sound syn-
thesis of the guitar and string instruments. In Proc. Int. Computer Music Conf.,
pages 56-63, Tokyo, Japan, Sep. 1993.



338 BIBLIOGRAPHY

M. Karjalainen, J. Huopaniemi, and V. Vdliméki. Direction-dependent physical
modeling of musical instruments. In Proc. Int. Congr. Acoustics (ICA’95),
volume 3, pages 451-454, Trondheim, Norway, 1995.

M. Karjalainen, T. M&ki-Patola, A. Kanerva, and A. Huovilainen. Virtual air
guitar. J. Audio Eng. Soc., 54(10):964-980, October 2006.

A. Klapuri. Multiple fundamental frequency estimation based on harmonicity
and spectral smoothness. IEEE Trans. Speech and Audio Processing, 11(6):
804-816, Nov. 2003.

M. Kob. Singing voice modeling as we know it today. Acta Acustica united
with Acustica, 90(4):649-661, July/Aug. 2004. Selection of papers presented
at SMAC 2003.

M. Kurz. Klangsynthese mittels physicalisher Modellierung einer schwingen-
den Saite durch numerische Integration der Differentialgleichung. Master’s
thesis, Technical University Berlin, 1995.

M. Kurz and B. Feiten. Physical modelling of a stiff string by numerical
integration. In Proc. Int. Computer Music Conf., pages 361-364, Hong Kong,
Aug. 1996.

T. I. Laakso, V. Vdlimdki, M. Karjalainen, and U. K. Laine. Splitting the unit
delay — Tools for fractional delay filter design. IEEE Signal Processing Mag.,
13(1):30-60, Jan. 1996.

S. Lakatos, P. R. Cook, and G. P. Scavone. Selective attention to the parameters
of a physically informed sonic model. Acoustics Research Letters Online, Mar.
2000. Published in J. Acoust. Soc. Am. 107, L31-L36.

M. Laurson, C. Erkut, V. Vilimé&ki, and M. Kuuskankare. Methods for modeling
realistic playing in acoustic guitar synthesis. Computer Music J., 25(3):38-49,
2001.

M. Laurson, V. Norilo, and M. Kuuskankare. PWGLSynth: A visual synthesis
language for virtual instrument design and control. Computer Music J., 29
(3):29-41, 2005.



BIBLIOGRAPHY 339

T. Lokki, L. Savioja, R. Vddnénen, J. Huopaniemi, and T. Takala. Creating in-
teractive virtual auditory environments. Computer Graphics and Applications,
IEEE, 22(4):49-57, 2002.

S.McAdams, A. Chaigne, and V. Roussarie. The psychomechanics of simulated
sound sources: Material properties of impacted bars. J. Acoust. Soc. Am., 115
(3):1306-1320, Mar. 2004.

J. Morrison and J. M. Adrien. MOSAIC: A framework for modal synthesis.
Computer Music Journal, 17(1):45-56, 1993.

E. Motuk, R. Woods, and S. Bilbao. Parallel implementation of finite difference
schemes for the plate equation on a FPGA-based multi-processor array. In
Proc. EUSIPCO, Antalya, Turkey, Sep. 2005. Special session on modal-based
sound synthesis.

D. Murphy, A. Kelloniemi, J. Mullen, and S. Shelley. Acoustic modeling using
the digital waveguide mesh. Signal Processing Magazine, IEEE, 24(2):55-66,
2007.

A.V.Oppenheim, A. S. Willsky, and S. H. Navab. Signals and Systems. Prentice-
Hall, Englewood Cliffs, NJ, second edition, 1996.

J. Pakarinen. Spatially distributed computational modeling of a nonlinear
vibrating string. Master’s thesis, Helsinki University of Technology, Espoo,
Finland, June 2004.

J. Paradiso. Electronic music interfaces: New ways to play. IEEE Spectrum, 34
(12):18-30, December 1997.

M. D. Pearson. Tao: a physical modelling system and related issues. Organised
Sound, 1(1):43-50, Apr. 1995.

H. Penttinen, J. Pakarinen, V. Vdlimé&ki, Mikael Laurson, Henbing Li, and Marc
Leman. Model-based sound synthesis of the guqin. J. Acoust. Soc. America,
120(6):4052-4063, 2006.

S. Petrausch and R. Rabenstein. Tension modulated nonlinear 2D models for
digital sound synthesis with the functional transformation method. In Proc.



340 BIBLIOGRAPHY

EUSIPCO, Antalya, Turkey, Sep. 2005. Special session on modal-based sound
synthesis. CD-R Proceedings.

W. H. Press, S. A. Teukolsky, W. A. Vetterling, and B. P. Flannery. Numerical
recipes in C++. Cambridge Univestiy Press, Cambridge, UK, 2nd edition,
2002.

M. Puckette. Pure data. In Proc. Int. Computer Music Conf., pages 224-227,
Thessaloniki, Greece, Sep. 1997.

R. Rabenstein, S. Petrausch, A. Sarti, G. De Sanctis, C. Erkut, and M. Kar-
jalainen. Block-based physical modeling for digital sound synthesis. Signal
Processing Magazine, IEEE, 24(2):42-54, 2007.

D. Rocchesso. Physically-based sounding objects, as we develop them today.
J. New Music Research, 33(3):305-313, September 2004.

D. Rocchesso and E. Fontana, editors. The Sounding Object. Edizioni di Mondo
Estremo, Firenze, Italy, 2003.

D. Rocchesso and F. Scalcon. Bandwidth of perceived inharmonicity for musi-
cal modeling of dispersive strings. IEEE Trans. Speech and Audio Processing,
7(5):597-601, Sep. 1999.

D. Rocchesso and J. O. Smith. Generalized digital waveguide networks. IEEE
Trans. Speech and Audio Processing, 11(3):242-254, May 2003.

X. Rodet and C. Vergez. Nonlinear dynamics in physical models: From basic
models to true musical-instrument models. Computer Music J., 23(3):35-49,
September 1999.

L. Savioja. Modeling Techniques for Virtual Acoustics. PhD thesis, Helsinki
University of Technology, Espoo, Finland, 1999.

L. Savioja, J. Backman, A. Jarvinen, and T. Takala. Waveguide mesh method for
low-frequency simulation of room acoustics. In Proc. 15th Int. Congr. Acoust.
(ICA’95), volume 2, pages 637-640, Trondheim, Norway, June 1995.



BIBLIOGRAPHY 341

L. Savioja, J. Huopaniemi, T. Lokki, and R. Vddnédnen. Creating interactive
virtual acoustic environments. J. Audio Eng. Soc., 47(9):675-705, 1999.

C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379—-423 and 623-656, July and October 1948.

J. O. Smith. Efficient synthesis of stringed musical instruments. In Proc. Int.
Computer Music Conf., pages 6471, Tokyo, Japan, Sep. 1993.

J. O. Smith. Physical Audio Signal Processing, August 2007 Edition. http://ccrma.
stanford.edu/~jos/pasp/, August 2007.

J. O. Smith. On the equivalence of the digital waveguide and finite dif-
ference time domain schemes. http://www.citebase.org/abstract?id=oai:
arXiv.org:physics/0407032, July 2004a.

J. O. Smith. Virtual acoustic musical instruments: Review and update. Journal
of New Music Research, 33(3):283-304, Sep. 2004b.

T. S. Stilson. Efficiently-variable Non-oversampled Algorithms in Virtual-analog
Music Synthesis: a Root-locus Perspective. PhD thesis, Stanford, CA, USA,
2006.

T. S. Stilson and J. O. Smith. Analyzing the Moog VCF with considerations
for digital implementation. In Proc. International Computer Music Conference,
pages 398-401, Hong Kong, China, August 1996.

J. C. Strikwerda. Finite difference schemes and partial differential equations.
Wadsworth, Brooks & Cole, California, 1989.

S. Strogatz. Sync. Allen Lane, The Penguin Press, London, UK, 2003.

S. Strogatz. Nonlinear Dynamics and Chaos. Studies in nonlinearity. Westview
Press, 1994.

J. Sundberg. Synthesizing singing. In G. De Poli, A. Piccialli, and C. Roads,
editors, Representations of Musical Signals, pages 299-320. The MIT Press,
Cambridge, MA, USA, 1991.


http://ccrma.stanford.edu/~jos/pasp/
http://ccrma.stanford.edu/~jos/pasp/
http://www.citebase.org/abstract?id=oai:arXiv.org:physics/0407032
http://www.citebase.org/abstract?id=oai:arXiv.org:physics/0407032

342 BIBLIOGRAPHY

N. Szilas and C. Cadoz. Analysis techniques for physical modeling networks.
Computer Music |., 22(3):33-48, 1998.

I. R. Titze. Theory of glottal airflow and source-filter interaction in speaking
and singing. Acta Acustica united with Acustica, 90(4):641-648, July/Aug. 2004.

L. Trautmann and R. Rabenstein. Digital Sound Synthesis by Physical Model-
ing Using the Functional Transformation Method. Kluwer Academic/Plenum
Publishers, New York, NY, 2003.

L. Trautmann and R. Rabenstein. Multirate simulations of string vibrations
including nonlinear fret-string interactions using the functional transforma-
tion method. EURASIP Journal on Applied Signal Processing, 2004(7):949-963,
June 2004.

S. A. Van Duyne and J. O. Smith. Physical modeling with the 2-d digital
waveguide mesh. In Proc. Int. Computer Music Conf., pages 40—47, Tokyo,
Japan, 1993.

S. A. Van Duyne and J. O. Smith. The tetrahedral digital waveguide mesh. In
Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,
pages 463—-466, New Paltz, NY, 1995.

S. A. Van Duyne, J. R. Pierce, and J. O. Smith. Traveling wave implementation
of a lossless mode-coupling filter and the wave digital hammer. In Proc. Intl.
Computer Music Conf. (ICMC), pages 411-418, Aarhus, Denmark, 1994.

B. L. Vercoe, W. G. Gardner, and E. D. Scheirer. Structured audio: creation,
transmission, and rendering of parametric sound representations. Proc.
IEEE, 86(3):922-940, Nov. 1998.

T. Virtanen. Monaural sound source separation by nonnegative matrix factor-
ization with temporal continuity and sparseness criteria. IEEE Trans. Audio,
Speech and Language Proc., 15(3):1066-1074, 2007.

V. Viliméki and A. Huovilainen. Oscillator and filter algorithms for virtual
analog synthesis. Comput. Music J., 30(2):19-31, June 2006.



BIBLIOGRAPHY 343

V. Vidliméki, M. Laurson, and C. Erkut. Commuted waveguide synthesis of
the clavichord. Computer Music J., 27(1):71-82, 2003.

V. Vilimdki, H. Penttinen, J. Knif, M. Laurson, and C. Erkut. Sound synthesis of
the harpsichord using a computationally efficient physical model. EURASIP
Journal on Applied Signal Processing, 2004(7):934-948, July 2004. Special issue
on model-based sound synthesis.

V. Vidliméki, J. Pakarinen, C. Erkut, and M. Karjalainen. Discrete-time mod-
elling of musical instruments. Rep. Prog. Phys., 69(1):1-78, January 2006.

V. Vilimaki, R. Rabenstein, D. Rocchesso, X. Serra, and J. O. Smith. Signal
processing for sound synthesis: Computer-generated sounds and music for
all from the Guest Editors. Signal Processing Magazine, IEEE, 24(2):9-11, 2007.

I. Whalley. New technology, non-Western instruments and composition. Or-
ganised Sound, 10(01):1 — 2, Apr. 2005.






Chapter

Interactive Sound

Federico Avanzini

Department of Information Engineering, University of Padua

About this chapter

This chapter tries to trace a route that, starting from studies in ecological
perception and action-perception loop theories, goes down to sound modelling
and design techniques for interactive computer animation and virtual reality
applications.

We do not intend to provide an in-depth discussion about different the-
ories of perception. We rather review a number of studies from experimental
psychology that we consider to be relevant for research in multimodal virtual
environments and interfaces, and we argue that such research needs to become
more aware of studies in ecological perception and multimodal perception.

The chapter starts with an analysis of relevant literature in perception,
while sound modelling techniques and applications to multimodal interfaces
and VR are addressed in the last part of the chapter. The technically inclined
reader may turn the chapter upside-down and start reading the last sections,
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referring to the initial material when needed. Where necessary, we will make
use of the notions about physics-based sound synthesis techniques reviewed
in Chapter[8l

9.1 Introduction

Most of Virtual Reality (VR) applications make use of visual displays, haptic
devices, and spatialised sound displays. Multisensory information is essential
for designing immersive virtual worlds, as an individual’s perceptual experi-
ence is influenced by interactions among sensory modalities. As an example,
in real environments visual information can alter the haptic perception of ob-
ject size, orientation, and shape (Welch and Warren, [1986). Similarly, being
able to hear sounds of objects in an environment, while touching and manipu-
lating them, provides a sense of immersion in the environment not obtainable
otherwise (Hahn et al.,[1998). Properly designed and synchronised haptic and
auditory displays are likely to provide much greater immersion in a virtual
environment than a high-fidelity visual display alone. Moreover, by skewing
the relationship between the haptic and visual and/or auditory displays, the
range of object properties that can be effectively conveyed to the user can be
significantly enhanced.

The importance of multimodal feedback in computer graphics and inter-
action has been recognised for a long time (Hahn et al., 1998) and is motivated
by our daily interaction with the world. Streams of information coming from
different channels complement and integrate each other, with some modality
possibly dominating over the remaining ones, depending on the task (Welch
and Warren, [1986; Ernst and Biilthoff, 2004). Research in ecological acous-
tics (Gaver, [1993a)b) demonstrates that auditory feedback in particular can
effectively convey information about a number of attributes of vibrating ob-
jects, such as material, shape, size, and so on (see also Chapter [10).

Recent literature has shown that sound synthesis techniques based on
physical models of sound generation mechanisms allow for high quality syn-
thesis and interactivity, since the physical parameters of the sound models
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can be naturally controlled by user gestures and actions. Sounds generated
by solid objects in contact are especially interesting since auditory feedback
is known in this case to provide relevant information about the scene (e.g.
object material, shape, size). Sound models for impulsive and continuous
contact have been proposed for example in the papers by van den Doel and
Pail (1998) and by |Avanzini et al. (2003). Physically-based sound models of
contact have been applied by DiFilippo and Pai (2000) to the development of
an audio-haptic interface for contact interactions.

A particularly interesting research direction is concerned with bimodal
(auditory and haptic) perception in contact interaction. Starting from a classic
work by [Lederman (1979), many studies have focused on continuous con-
tact (i.e. scraping or sliding) and have investigated the relative contributions
of tactile and auditory information to judgments of roughness of both real
surfaces (Lederman), 1979} [Lederman et al., 2002; \Guest et al., 2002) and syn-
thetic haptic and auditory textures (McGee et al., 2002). Impulsive contact
interactions (i.e. impact) are apparently less investigated. A few studies
have investigated the effect of auditory feedback on haptic stiffness percep-
tion (DiFranco et al., 1997 |Avanzini and Crosato, 2006). Again, results from
ecological acoustics (Freed, 1990; \Giordano, 2006) provide useful indications
about which auditory cues are relevant to stiffness/hardness perception, and
can be exploited in the design of synthetic sound feedback.

The chapter is organised as follows. In Section [9.2] we provide a con-
cise overview of the ecological approach to perception, and we focus on the
literature on ecological acoustics. Section 0.3 addresses the topic of multisen-
sory perception and interaction, and introduces some powerful concepts like
sensory combination/integration, embodiment and enaction, sensory substi-
tution. Finally, Section 0.4 discusses recent literature on interactive computer
animation and virtual reality applications with a focus on multimodal feed-
back and especially auditory feedback. We will emphasise the relevance of
studies in ecological acoustics and multimodal perception in aiding the design

of multimodal interfaces and virtual environments.
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9.2 Ecological acoustics

The ecological approach to perception, originated in the work of Gibson, refers
to a particular idea of how perception works and how it should be studied.
General introductions to the ecological approach to perception are provided by
Gibsonl/ (1986) and Michaels and Carellol (1981)). [Carello and Turvey (2002) also
provide a synthetic overview of the main concepts of the ecological approach.

The label “ecological” reflects two main themes that distinguish this
approach from more established views. First, perception is an achievement
of animal-environment systems, not simply animals (or their brains). What
makes up the environment of a particular animal is part of this theory of
perception. Second, the main purpose of perception is to guide action, so a
theory of perception cannot ignore what animals do. The kinds of activities
that a particular animal does, e.g. how it eats and moves, are part of this theory
of perception.

9.2.1 The ecological approach to perception
Direct versus indirect perception

The ecological approach is considered controversial because of one central
claim: perception is direct. To understand the claim we can contrast it with

the more traditional view.

Roughly speaking, the classical theory of perception states that percep-
tion and motor control depend upon internal referents, such as the retina for
vision and cochlea for audition. These internal, psychological referents for
the description and control of motion are known as sensory reference frames.
Sensory reference frames are necessary if sensory stimulation is ambiguous
(i.e. impoverished) with respect to external reality; in this case, our position
and motion relative to the physical world cannot be perceived directly, but can
only be derived indirectly from motion relative to sensory reference frames.
Motion relative to sensory reference frames often differs from motion relative
to physical reference frames (e.g. if the eye is moving relative to the external
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environment). For this reason, sensory reference frames provide only an in-
direct relation to physical reference frames. For example, when objects in the
world reflect light, the pattern of light that reaches the back of the eye (the
retina) has lost and distorted a lot of detail. The role of perception is then
fixing the input and adding meaningful interpretations to it so that the brain
can make an inference about what caused that input in the first place. This
means that accuracy depends on the perceiver’s ability to “fill in the gaps”
between motion defined relative to sensory reference frames and motion de-
fined relative to physical reference frames, and this process requires inferential
cognitive processing.

A theory of direct perception, in contrast, argues that sensory stimula-
tion is determined in such a way that there exists a 1:1 correspondence between
patterns of sensory stimulation and the underlying aspects of physical real-
ity (Gibson,[1986)). This is a very strong assumption, since it basically says that
reality is fully specified in the available sensory stimulation. |Gibsonl (1986)
provides the following example in the domain of visual perception, which
supports, in his opinion, the direct perception theory. If one assumes that
objects are isolated points in otherwise empty space, then their distances on a
line projecting to the eye cannot be discriminated, as they stimulate the same
retinal location. Under this assumption it is correct to state that distance is
not perceivable by eye alone. However Gibson argues that this formulation
is inappropriate for describing how we see. Instead he emphasises that the
presence of a continuous background surface provides rich visual structure.

Including the environment and activity into the theory of perception
allows a better description of the input, a description that shows the input to
be richly structured by the environment and the animal’s own activities. Ac-
cording to Gibson, this realisation opens up the new possibility that perception
might be veridical. A relevant consequence of the direct perception approach
is that sensory reference frames are unnecessary: if perception is direct, then
anything that can be perceived can also be measured in the physical world.
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Energy flows and invariants

Consider the following problem in visual perception: how can a perceiver
distinguish the motion of an object from his/her own motion? |Gibson! (1986)
provides an ecological solution to this problem, from which some general
concepts can be introduced. The solution goes as follows: since the retinal
input is ambiguous, it must be compared with other input. A first example
of additional input is the information on whether any muscle commands had
been issued to move the eyes or the head or the legs. If no counter-acting
motor command is detected, then object motion can be concluded; on the con-
trary, if such motor commands are present then this will allow the alternative
conclusion of self-motion. When the observer is moved passively (e.g. in a
train), other input must be taken into account: an overall (global) change in the
pattern of light indicates self-motion, while a local change against a stationary
background indicates object motion.

This argument opened a new field of research devoted to the study of
the structure in changing patterns of light at a given point of observation:
the optic flow. The goal of this research is to discover particular patterns,
called invariants, which are relevant to perception and hence to action of an
animal immersed in an environment. Perceivers exploit invariants in the optic
flow, in order to effectively guide their activities. |Carello and Turvey| (2002)
provide the following instructive example: a waiter, who rushes towards the
swinging door of the restaurant kitchen, adjusts his motion in order to control
the collision with the door: he maintains enough speed to push through the
door, and at the same time he is slow enough not to hurt himself. In order for
his motion to be effective he must know when a collision will happen and how
hard the collision will be. One can identify structures in the optic flow that are
relevant to these facts: these are examples of quantitative invariants.

The above considerations apply not only to visual perception but also to
other senses, including audition (see Section9.2.2). Moreover, recent research
has introduced the concept of global array (Stoffregen and Bardy, 2001). Ac-
cording to this concept, individual forms of energy (such as optic or acoustic
flows) are subordinate components of a higher-order entity, the global array,
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which consists of spatio-temporal structure that extends across many dimen-
sions of energy. The general claim underlying this concept is that observers are
not separately sensitive to structures in the optic and acoustic flows but, rather,
observers are directly sensitive to patterns that extend across these flows, that
is, to patterns in the global array.

Stoffregen and Bardy| (2001) exemplify this concept by examining the
well known McGurk effect (McGurk and MacDonald, 1976), which is widely
interpreted as reflecting general principles of intersensory interaction. Studies
of this effect use audio-visual recordings in which the visual portion shows a
speaker saying one syllable, while the audio track contains a different syllable.
Observers are instructed to report the syllable that they hear, and perceptual
reports are strongly influenced by the nominally ignored visible speaker. One
of the most consistent and dramatic findings is that perceptual reports fre-
quently are not consistent with either the visible or the audible event. Rather,
observers often report “a syllable that has not been presented to either modality
and that represents a combination of both”. The wide interest in the McGurk
effect arises in part from the need to explain why and how the final percept
differs from the patterns in both the optic and acoustic arrays. In particular,
Stoffregen and Bardy| (2001) claim that the McGurk effect is consistent with
the general idea that perceptual systems do not function independently, but
work in a cooperative manner to pick up higher-order patterns in the global
array. If speech perception is based on information in the global array then
it is unnatural (or at least uncommon), for observers who can both see and
hear the speaker, to report only what they hear. The global array provides
information about what is being said, rather than about what is visible or what
is audible: multiple perceptual systems are stimulated simultaneously and the
stimulation has a single source (i.e. a speaker). In research on the McGurk
effect the discrepancy between the visible and audible consequences of speech
is commonly interpreted as a conflict between the two modalities, but it could
also be interpreted as creating information in the global array that specifies the
experimental manipulation, that is, the global array may specify that what is
seen and what is heard arise from two different speech acts.
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Affordances

The most radical contribution of Gibson’s theory is probably the notion of
affordance. |Gibsonl/ (1986, p. 127) uses the term affordance as the noun form
of the verb “to afford”. The environment of a given animal affords things for
that animal. What kinds of things are afforded? The answer is that behaviours
are afforded. A stair with a certain proportion of a person’s leg length affords
climbing (is climbable); a surface which is rigid relative to the weight of an
animal affords stance and traversal (is traversable); a ball which is falling with
a certain velocity, relative to the speed that a person can generate in running
toward it, affords catching (is catchable), and so on. Therefore, affordances are
the possibilities for action of a particular animal-environment setting; they are
usually described as “-ables”, as in the examples above. What is important is
that affordances are not determined by absolute properties of objects and envi-
ronment, but depend on how these relate to the characteristics of a particular
animal, e.g. size, agility, style of locomotion, and so on (Stoffregen, 2000).

The variety of affordances constitute ecological reformulations of the
traditional problems of size, distance, and shape perception. Note that affor-
dances and events are not identical and, moreover, that they differ from one
another in a qualitative manner (Stotfregen, 2000). Events are defined without
respect to the animal, and they do not refer to behaviour. Instead, affordances
are defined relative to the animal and refer to behaviour (i.e. they are animal-
environment relations that afford some behaviour). The concept of affordance
thus emphasises the relevance of activity to defining the environment to be
perceived.

9.2.2 Everyday sounds and the acoustic array

Ecological psychology has traditionally concentrated on visual perception.
There is now interest in auditory perception and in the study of the acoustic
array, the auditory equivalent of the optic array.

The majority of the studies in this field deal with the perception of prop-
erties of environment, objects, surfaces, and their changing relations, which
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is a major thread in the development of ecological psychology in general. In
all of this research, there is an assumption that properties of objects, surfaces,
and events are perceived as such. Therefore studies in audition investigate the
identification of sound source properties, such as material, size, shape, and so
on.

Two companion papers by (Gaver (1993a)b) have greatly contributed to
the build-up of a solid framework for ecological acoustics. Specifically, (Gaver
(1993a) deals with foundational issues, addresses such concepts as the acoustic
array and acoustic invariants, and proposes a sort of “ecological taxonomy” of
sounds.

Musical listening versus everyday listening

Gaver (1993a) introduces the concept of everyday listening, as opposed to
musical listening. When a listener hears a sound, she/he might concentrate
on attributes like pitch, loudness, and timbre, and their variations over time.
Or she/he might notice its masking effect on other sounds. Gaver refers to
these as examples of musical listening, meaning that the considered perceptual
dimensions and attributes have to do with the sound itself, and are those used
in the creation of music.

On the other hand, the listener might concentrate on the characteristics
of the sound source. As an example, if the sound is emitted by a car engine the
listener might notice that the engine is powerful, that the car is approaching
quickly from behind, or even that the road is a narrow alley with echoing walls
on each side. Gaver refers to this as an example of everyday listening, the
experience of listening to events rather than sounds. In this case the perceptual
dimensions and attributes have to do with the sound-producing event and its
environment, rather than the sound itself.

Everyday listening is not well understood by traditional approaches to
audition, although it forms most of our experience of hearing the day-to-day
world. Descriptions of sound in traditional psychoacoustics are typically based
on Fourier analysis and include frequency, amplitude, phase, and duration.
Traditional psychoacoustics takes these “primitive” parameters as the main
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dimensions of sound and tries to map them into corresponding “elemental”
sensations (e.g. the correspondence between sound amplitude and perceived
loudness, or between frequency and perceived pitch). This kind of approach
does not consider higher-level structures that are informative about events.

Everyday listening needs a different theoretical framework, in order to
understand listening and manipulate sounds along source-related dimensions
instead of sound-related dimensions. Such a framework must answer two
fundamental questions. First, it has to develop an account of ecologically
relevant perceptual attributes, i.e. the features of events that are conveyed
through listening. Thus the first question asked by (Gaver (1993a) is: “What
do we hear?”. Second, it has to develop an ecological acoustics, that describes
which acoustic properties of sounds are related to information about the sound
sources. Thus the second question asked by (Gaver (1993b) is: “How do we
hear it?”

Acoustic flow and acoustic invariants

Any source of sound involves an interaction of materials. Let us go back to the
above example of hearing an approaching car: part of the energy produced in
the engine produces vibrations in the car, instead of contributing to its motion.
Mechanical vibrations, in turn, produce waves of acoustic pressure in the air
surrounding the car, where the waveforms follows the movement of the car’s
surfaces (within limits determined by the frequency-dependent coupling of
the surface’s vibrations to the medium). These pressure waves then contain
information about the vibrations that caused them, and result in a sound
signal from which a listener might obtain such information. More in general,
the patterns of vibration produced by contacting materials depend both on
contact forces, duration of contact, and time-variations of the interaction, as

well as sizes, shapes, materials, and textures of the objects.

Sound also conveys information about the environment in which the
event have occurred. In everyday conditions, a listener’s ear is reached not
only by the direct sound but also by the reflections of sound over various
other objects in the environment, resulting in a coloration of the spectrum.
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In addition, the transmitting medium also has an influence on sound signals:
dissipation of energy, especially at high-frequency, increases with the path
travelled by the sound waves and thus carries information about the distance
of the source. Another example is the Doppler effect, which is produced when
sound sources and listeners are in relative motion, and results in a shift of
the frequencies. Changes in loudness caused by changes in distance from
a moving sound source may provide information about time-to-contact in a
fashion analogous to changes in visual texture. The result is an acoustic array,
analogous to the optical array described previously.

Several acoustic invariants can be associated to sound events: for in-
stance, several attributes of a vibrating solid, including its size, shape, and
density, determine the frequencies of the sound it produces. It is quite obvious
that a single physical parameters can influence simultaneously many different
sound parameters. As an example, changing the size of an object will scale
the sound spectrum, i.e. will change the frequencies of the sound but not their
pattern. On the other hand, changing the object shape results in a change of
both the frequencies and their relationships. Gaver argues that these complex
patterns of change may serve as information for distinguishing the responsible
physical parameters: ecological acoustics focuses on discovering this kind of
acoustic invariants.

Maps of everyday sounds

As already mentioned, Gaver has proposed an ecological categorisation of
everyday sounds.

A first category includes sounds generated by solid objects. The pattern
of vibrations of a given solid is structured by a number of its physical attributes.
Properties can be grouped in terms of attributes of the interaction that has
produced the vibration, those of the material of the vibrating objects, and
those of the geometry and configuration of the objects.

Aerodynamic sounds are caused by the direct introduction and modi-
fication of atmospheric pressure differences from some source. The simplest
aerodynamic sound is exemplified by an exploding balloon. Other aerody-
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namic sounds, e.g. the noise of a fan, are caused by more continuous events.
Another sort of aerodynamic event involves situations in which changes in
pressure themselves transmit energy to objects and set them into vibration (for
example, when wind passes through a wire).

Sound-producing events involving liquids (e.g. dripping and splashing)
are similar to those of vibrating solids: they depend on an initial deformation
that is counter-acted by restoring forces in the material. The difference is that
no audible sound is produced by the vibrations of the liquid. Instead, the
resulting sounds are created by the resonant cavities (bubbles) that form and
oscillate in the surface of the liquid. As an example, a solid object that hits
a liquid pushes it aside and forms a cavity that resonates to a characteristic
frequency, amplifying and modifying the pressure wave formed by the impact
itself.

Although all sound-producing events involve any of the above cate-
gories (vibrating solids, aerodynamic, or liquid interactions), many also de-
pend on complex patterns of simpler events. As an example, footsteps are tem-
poral patterns of impact sounds. The perception of these patterned sounds is
also related to the timing of successive events, (e.g. successive footstep sounds
must occur within a range of rates and regularities in order to be perceived as
walking). A slightly more complex example is a door slam, which involves the
squeak of scraping hinges and the impact of the door on its frame. This kind of
compound sounds involve mutual constraints on the objects that participate
in related events: concatenating the creak of a heavy door closing slowly with
the slap of a slammed light door would probably not sound natural.

Starting from these considerations, Gaver derived a tentative map of
everyday sounds, which is shown in figure©.Jland discussed in the following.

e Basic Level Sources: consider, for example, the region describing sounds
made by vibrating solids. Four different sources of vibration in solids
are indicated as basic level events: deformation, impacts, scraping and
rolling.

e Patterned Sources involve temporal patterning of basic events. For in-
stance, walking, as described above, but also breaking, spilling, and so on,
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Complexity increases towards the

are all complex events involving patterns of simpler impacts. Similarly,

crumpling or crushing are examples of patterned deformation sounds. In

addition, other sorts of information are made available by their temporal

complexity. For example, the regularity of a bouncing sound provides

information about the symmetry of the bouncing object.

e Compound events involve more than one type of basic level event. An

example is the slamming door discussed above. Other examples are the

sounds made by writing, which involve a complex series of impacts and

scrapes over time, while those made by bowling involve rolling followed

by impact sounds.

e Hybrid events involve yet another level of complexity in which more
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than one basic type of material is involved. As an example, the sounds
resulting from water dripping on a reverberant surface are caused both
by the surface vibrations and the quickly-changing reverberant cavities,
and thus involve attributes both of liquid and vibrating solid sounds.

9.2.3 Relevant studies

Although still quite “young”, the literature on ecological acoustics has pro-
duced a number of relevant results in the last 20 years. In the following we
briefly review some of the most influential studies, classified according to the
categorisation by Gaver discussed above: basic, patterned, compound, and
hybrid sources. It has to be noted that most of these studies are concerned
with sound events produced from interactions of solids objects, while sound-
producing events that involve liquids and aerodynamic interactions have been
addressed less frequently. A reason for this is probably that sounds from solids
are especially interesting when talking about interaction: auditory feedback is
frequently generated when we touch or interact with objects, and these sounds
often convey potentially useful information regarding the nature of the objects
with which we are interacting.

Basic level sources

Many studies have investigated the perception of object material from impact
sounds. Wildes and Richards|(1988) tried to find an acoustical parameter that
could characterise material type independently from variations in other fea-
tures (e.g. size or shape). Materials can be characterised using a coefficient
of internal friction, which measures anelasticity (in ascending order of anelas-
ticity we have steel, glass, wood and rubber). This coefficient is measurable
using both the quality factor Q and the decay time f, of vibration, the latter
being the time required for amplitude to decrease to 1/e of its initial value.
Decreasing anelasticity results in increasing Q and ¢,.

Lutfi and Oh! (1997) performed a study on material discrimination in
synthetic struck clamped bar sounds. Stimuli were synthesised by varying
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elasticity and density of the bars, with values taken in the ranges of various
metals, glass, and crystal. Perturbations on parameter values were applied ei-
ther to all the frequency components together (lawful covariation) or indepen-
dently to each of them (independent perturbation). Listeners were presented
with a pair of stimuli, were given a target material (either iron or glass), and
had to tell which of two presented stimuli was produced by the target mate-
rials. Participants performance was analyzed in terms of the weights given to
three different acoustical parameters: frequency, decay, and amplitude. Data
revealed that discrimination was mainly based on frequency in all conditions,
with amplitude and decay rate being of secondary importance.

Klatzky et al.|(2000) also investigated material discrimination in stimuli
with variable frequency and internal friction. In a first experimental setup
subjects were presented with pairs of stimuli and had to judge on a continuous
scale the perceived difference in the materials. In another experiment they
were presented with one stimulus and had to categorise the material using
four response alternatives: rubber, wood, glass and steel. Results indicated
that judgments of material difference were significantly influenced by both
the friction coefficient and the fundamental frequency. An effect of both these
variables was found in a categorisation task: for lower decay factors steel and
glass were chosen over rubber and plexiglass. Glass and wood were chosen
for higher frequencies than steel and plexiglass.

Besides material, another relevant ecological dimension of impact sounds
is the hardness of collision. [Freed| (1990) tried to relate hardness to some
attack-related timbral dimensions. His stimuli were generated by percussing
four cooking pans, with variable diameter, by means of six mallets of variable
hardness. Mallet hardness ratings were found to be independent of the size
of the pans, thus revealing the ability to judge properties of the percussor
independently of properties of the sounding object. The analysis of results
showed that the useful information for mallet hardness rating was contained
in the first 300 ms of the signals. Four acoustical indices were measured in
this sound attack portion: average spectral level, spectral level slope (i.e. rate
of change in spectral level, a measure of damping), average spectral centroid,
and spectral centroid TWA (time weighted average). These acoustical indices



360 Chapter 9. Interactive Sound

were used as predictors in a multiple regression analysis and were found to
account for 75% of the variance of the ratings.

When we consider continuous contact (e.g. scraping) instead of impul-
sive contact, a relevant ecological dimension is surface roughness. In a classic
study, Lederman! (1979) compared the effectiveness of tactile and auditory in-
formation in judging the roughness of real surfaces. Roughness of aluminum
plates was manipulated by varying the distance between adjacent grooves of
tixed width, or by varying the width of the grooves. Subjects were given the
task to rate numerically the roughness. In one condition participants only
listened to the sounds generated by the experimenter by moving his fingertips
on the plate. In a second condition subjects were asked to move their fingertips
onto the plate while wearing cotton plugs and earphones. In a third condition
they were able to hear the sounds they generated when touching the plate. Re-
sults showed that when both tactile and auditory information were present, the
tactile one dominated in determining experimental performance. Roughness
estimates were shown to increase as both the distance between grooves and
the width of the grooves decreased. More recent research by Lederman and
coworkers has focused on roughness perception when the surface is explored
using a rigid probe rather than with the bare skin: as the probe provides a rigid
link between the skin and the surface, vibratory roughness perception occurs
in this case. [Lederman et al./(2002) investigated relative contributions of haptic
and auditory information to roughness judgments. Stimuli were obtained by
asking subjects to explore with a probe a set of plates with periodic textures
of varying inter-element spacings. Three conditions were used: touch-only,
audition-only, and touch+audition. Results showed that, although dominance
of haptic information was still found, sound played a more relevant role than
in the case of direct contact with fingers. The authors argue that this may be
due not only to the different interaction conditions, but also to the fact that
the amplitude of the produced sounds is considerably greater for probe-based
exploration than for bare skin contact.

The auditory perception of geometric properties of interacting objects
has also been investigated. (Carello et al. (1998) studied the recognition of the
length of wood rods dropped on the floor. In their experiments subjects judged
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the perceived length by adjusting the distance of a visible surface in front of
them. Subjects were found to be able to scale length of the rods consistently
and physical length was found to correlate strongly with estimated length.
Analysis of the relationship between the acoustical and perceptual levels was
carried on using three acoustical features: signal duration, amplitude and
spectral centroid. None of the considered acoustical variables predicted length
estimates better than actual length. Length estimates were then explained by
means of an analysis of the moments of inertia of a falling rod. Results of these
latter analysis show potential analogies between the auditory and the tactile
domain.

Patterned and compound sources

According to figure0.1], patterned sound sources include bouncing, breaking,
walking, and so on. Many of these everyday sounds have been investigated
in the literature. |Warren and Verbrugge| (1988) studied acoustic invariants in
bouncing and breaking events, and distinguished between two classes of in-
variants: structural invariants that specify the properties of the objects, and
transformational invariants that specify their interactions and changes. War-
ren and Verbrugge investigated the nature of the transformational invariants
that allow identification of breaking and bouncing events. On the basis of a
physical analysis the authors hypothesised that the nature of these invariants
was essentially temporal, static spectral properties having little or no role.
Experimental stimuli were generated by dropping one of three different glass
objects on the floor from different heights, so that for each of the objects a
bouncing event and a breaking one were recorded. Once the ability of par-
ticipants to correctly identify these two types of events was assessed with
the original stimuli, two further experiments were conducted using synthetic
stimuli. The bouncing event was synthesised by superimposing four trains
of damped quasi-periodic pulses, each one generated from a recorded frame
of a bouncing glass sound, all with the same damping. The breaking event
was synthesised by superimposing the same sequences, but using different
damping coefficients for each of them. Identification performance was ex-
tremely accurate in all cases, despite the strong simplifications of the spectral
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and temporal profile of the acoustical signal. The transformational invariants
for bouncing was then identified as a single damped quasi-periodic sequence
of pulses, while that for breaking was identified as a multiple damped quasi-
periodic sequence of pulses.

Repp| (1987) reports a study on auditory perception of another patterned
sound composed of impact events: hands clapping. In particular he hypoth-
esised that subjects are able to recognise size and configuration of clapping
hands from the auditory information. Recognition of hands size was also
related to recognition of the gender of the clapper, given that males have
in general bigger hands than females. In a first experiment, clapper gender
and hand size recognition from recorded clapping sounds were investigated.
Overall clapper recognition was not good, although listeners performance in
the identification of their own claps was much better. Gender recognition was
barely above chance. Gender identification appeared to be guided by miscon-
ceptions: faster, higher-pitched and fainter claps were judged to be produced
by females and vice-versa. In a second experiment subjects had to recognise
the configuration of clapping hands. In this case performance was quite good:
although hands configuration was a determinant of the clapping sound spec-
trum, the best predictor of performance was found to be clapping rate, spectral
variables having only a secondary role.

A study on gender recognition in walking sounds is reported by |Li et al.
(1991). Subjects were asked to categorise the gender of the walker on the basis
of four recorded walking sequences. Results show that recognition levels are
well above chance. Several anthropometric measures were collected on the
walkers (height, weight and shoe size). Duration analysis on the recorded
walking excerpts indicated that female and male walkers differed with respect
to the relative duration of stance and swing phases, but not with respect to
walking speed. Nonetheless judged maleness was significantly correlated with
this latter variable, and not with the former. Several spectral measures were
derived from the experimental stimuli (spectral centroid, skewness, and kur-
tosis, spectral mode, average spectral level, and low and high spectral slopes).
Two components were then derived from principal components analysis, and
were then used as predictors for both physical and judged gender. Overall
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male walkers were characterised by lower spectral centroid, mode and high
frequency energy, and by higher skewness, kurtosis and low-frequency slope.
These results were then tested in a further experiment. Stimuli were gener-
ated by manipulating the spectral mode of the two most ambiguous walking
excerpts. Consistently with previous analyses, the probability of choosing the
response “male” was found to decrease as spectral mode increased. A final
experiment showed that judged gender could be altered by having a walker
wear shoes of the opposite gender.

Unlike the previous studies, the work of (Gygi et al. (2004) did not focus
on a specific event or feature. Instead the authors use for their experiments
a large (70) and varied catalogue of sounds, which covers “nonverbal hu-
man sounds, animal vocalisations, machine sounds, the sounds of various
weather conditions, and sounds generated by human activities”. Patterned,
compound, and hybrid sounds (according to the terminology used by Gaver)
areincluded, e.g. beer can opening, bowling, bubbling, toilet flushing, etc. The
experiments applied to non-verbal sound an approach adopted in speech per-
ception studies, namely the use of low-, high-, and bandpass filtered speech
to assess the importance of various frequency regions for speech identifica-
tion. The third experiment is perhaps the most interesting one. The authors
seem to follow an approach already suggested by Gaverl (1993b): “[...] if one
supposes that the temporal features of a sound are responsible for the per-
ception of some event, but that its frequency makeup is irrelevant, one might
use the amplitude contour from the original sound to modify a noise burst.”.
Results from this experiment show that identifiability is heavily affected by
experience and has a strong variability between sounds. The authors tried to
quantify the relevance of temporal structures through a selection of time- and
frequency-domain parameters, including statistics of the envelope (a measure
of the envelope “roughness”), autocorrelation statistics (to reveal periodicities
in the waveform), and moments of the long term spectrum (to see if some
spectral characteristics were preserved when the spectral information was
drastically reduced). Correlation of these parameters with the identification
results showed that three variables were mainly used by listeners: number of
autocorrelation peaks, ratio of burst duration to total duration, cross-channel
correlation. These are all temporal features, reflecting periodicity, amount of



364 Chapter 9. Interactive Sound

silence, and coherence of envelope across channels.

9.3 Multimodal perception and interaction

9.3.1 Combining and integrating auditory information

Humans achieve robust perception through the combination and integration
of information from multiple sensory modalities. According to some authors,
multisensory perception emerges gradually during the first months of life, and
experience significantly shapes multisensory functions. By contrast, a different
line of thinking assumes that sensory systems are fused at birth, and the single
senses differentiate later. Empirical findings in newborns and young children
have provided evidence for both views. In general experience seems to be
necessary to fully develop multisensory functions.

Sensory combination and integration

Looking at how multisensory information is combined, two general strategies
can be identified (Ernst and Biilthoff,2004): the first is to maximise information
delivered from the different sensory modalities (sensory combination). The
second strategy is to reduce the variance in the sensory estimate to increase its
reliability (sensory integration).

Sensory combination describes interactions between sensory signals that
are not redundant: they may be in different units, coordinate systems, or about
complementary aspects of the same environmental property. Disambiguation
and cooperation are examples for this kind of interactions: if a single modality
isnot enough to provide a robust estimate, information from several modalities
can be combined. As an example, object recognition is achieved through
different modalities that complement each other and increase the information
content.

By contrast, sensory integration describes interactions between redun-
dant signals. [Ernst and Biilthotf (2004) illustrate this concept with an example:
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when knocking on wood at least three sensory estimates about the location
of the knocking event can be derived: visual, auditory and proprioceptive.
In order for these three location signals to be integrated, they first have to be
transformed into the same coordinates and units. For this, the visual and audi-
tory signals have to be combined with the proprioceptive neck-muscle signals
to be transformed into body coordinates. The process of sensory combination
might be non-linear. At a later stage the three signals are then integrated to
form a coherent percept of the location of the knocking event.

There are a number of studies that show that vision dominates the in-
tegrated percept in many tasks, while other modalities (in particular audition
and touch) have a less marked influence. This phenomenon of visual dom-
inance is often termed visual capture. As an example, it is known that in
the spatial domain vision can bias the perceived location of sounds whereas
sounds rarely influence visual localisation. One key reason for this asymmetry
seems to be that vision provides more accurate location information.

In general, however, the amount of cross-modal integration depends on
the features to be evaluated or the tasks to be accomplished. The modality
precision or modality appropriateness hypothesis by Welch and Warren/ (1986)
is often cited when trying to explain which modality dominates under what
circumstances. These hypotheses state that discrepancies are always resolved
in favour of the more precise or more appropriate modality. As an example,
the visual modality usually dominates in spatial tasks, because it is the most
precise at determining spatial information. For temporal judgments however
the situation is reversed and audition, being the more appropriate modality,
usually dominates over vision. In texture perception tasks, haptics dominates
on other modalities, and so on. With regard to this concept, Ernst and Biilthoftf
(2004) note that the terminology modality precision and modality appropri-
ateness can be misleading because it is not the modality itself or the stimulus
that dominates: the dominance is determined by the estimate and how reliably
it can be derived within a specific modality from a given stimulus. Therefore,
the term estimate precision would probably be more appropriate. The authors
also list a series of questions for future research, among which one can find
“What are the temporal aspects of sensory integration?”. This is a particu-
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larly interesting question in the context of this chapter since, as already noted,
temporal aspects are especially related to audition.

Auditory capture and illusions

Psychology has a long history of studying intermodal conflict and illusions
in order to understand mechanisms of multisensory integration. Much of the
literature on multisensory perception has focused on spatial interactions: an
example is the ventriloquist effect, in which the perceived location of a sound
shifts towards a visual stimulus presented at a different position. Identity in-
teractions are also studied: an example is the already mentioned McGurk effect
(McGurk and MacDonald)| 1976), in which what is being heard is influenced
by what is being seen (for example, when hearing /ba/ but seeing the speaker
say /ga/ the final perception may be /da/).

As already noted, the visual modality does not always win in cross-
modal tasks. In particular, the senses can interact in time, i.e they interact
in determining not what is being perceived or where it is being perceived,
but when it is being perceived. The temporal relationships between inputs
from the different senses play an important role in multisensory integration.
Indeed, a window of synchrony between auditory and visual events is crucial
even in the spatial ventriloquist effect, which disappears when the audio-
visual asynchrony exceeds approximately 300 ms. This is also the case in the
McGurk effect, which fails to occur when the audio-visual asynchrony exceeds
200 — 300 ms.

There is a variety of cross-modal effects that demonstrate that, outside
the spatial domain, audition can bias vision. In a recent study, Shams et al.
(2002) presented subjects with a briefly flashed visual stimulus that was ac-
companied by one, two or more auditory beeps. There was a clear influence
of the number of auditory beeps on the perceived number of visual flashes.
That is, if there were two beeps subjects frequently reported seeing two flashes
when only one was presented. Maintaining the terminology above, this effect
may be called auditory capture.

Another recent study by Morein-Zamir et al.l (2003) has tested a related
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hypothesis: that auditory events can alter the perceived timing of target lights.
Specifically, four experiments reported by the authors investigated whether
irrelevant sounds can influence the perception of lights in a visual temporal
order judgment task, where participants judged which of two lights appeared
first. The results show that presenting one sound before the first light and
another one after the second light improves performance relative to baseline
(sounds appearing simultaneously with the lights), as if the sounds pulled the
perception of lights further apart in time. More precisely, the performance
improvement results from the second sound trailing the second light. On the
other hand, two sounds intervening between the two lights lead to a decline in
performance, as if the sounds pulled the lights closer together. These results
demonstrate a temporal analogue of the spatial ventriloquist effect.

These capture effects, or broadly speaking, these integration effects, are
of course not only limited to vision and audition. In principle they can occur
between any modalities (even within modalities). In particular some authors
have investigated whether audition can influence tactile perception similarly
to what [Shams et al| (2002) have done for vision and audition. Hotting and
Roder!(2004) report upon a series of experiments where a single tactile stimulus
was delivered to the right index finger of subjects, accompanied by one to four
task-irrelevant tones. Participants (both sighted and congenitally blind) had
tojudge the number of tactile stimuli. As a test of whether possible differences
between sighted and blind people were due to the availability of visual input
during the experiment, half of the sighted participants were run with eyes open
(sighted seeing) and the other half were blindfolded (sighted blindfolded).
The first tone always preceded the first tactile stimulus by 25 ms and the
time between the onsets of consecutive tones was 100 ms. Participants were
presented with trials made of a single tactile stimulus accompanied by no, one,
two, three or four tones. All participants reported significantly more tactile
stimuli when two tones were presented than when no or only one tone was
presented. Sighted participants showed a reliable illusion for three and four
tones as well, while blind participants reported a lower number of perceived
tactile stimuli than sighted seeing or sighted blindfolded participants. These
results extend the finding of the auditory-visual illusion established by Shams
et al. (2002) to the auditory-tactile domain. Moreover, the results (especially
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the discrepancies between sighted and congenitally blind participants) suggest
thatinterference by a task-irrelevant modality is reduced if processing accuracy
of the task-relevant modality is high.

Bresciani et al. (2005) conducted a very similar study, and investigated
whether the perception of tactile sequences of two to four taps delivered to
the index fingertip can be modulated by simultaneously presented sequences
of auditory beeps when the number of beeps differs (less or more) from the
number of taps. This design allowed to systematically test whether task-
irrelevant auditory signals can really modulate (influence in both directions)
the perception of tactile taps, or whether the results of Hotting and Roder|(2004)
merely reflected an original but very specific illusion. In a first experiment, the
auditory and tactile sequences were always presented simultaneously. Results
showed that tactile tap perception can be systematically modulated by task-
irrelevant auditory inputs. Another interesting point is the fact that subjects
responses were significantly less variable when redundant tactile and auditory
signals were presented rather than tactile signals alone. This suggests that even
though auditory signals were irrelevant to the task, tactile and auditory signals
were probably integrated. In a second experiment, the authors investigate
how sensory integration is affected by manipulation of the timing between
auditory and tactile sequences. Results showed that the auditory modulation
of tactile perception was weaker when the auditory stimuli were presented
immediately before the onset or after the end of the tactile sequences. This
modulation completely vanished with a 200 ms gap between the auditory and
tactile sequences. [Shams et al./(2002) found that the temporal window in which
audition can bias the perceived number of visual flashes is about 100 ms. These
results suggest that the temporal window of auditory-tactile integration might
be wider than for auditory-visual integration.

The studies discussed above provide evidence of the fact that the more
salient (or reliable) a signal is, the less susceptible to bias this signal should
be. In the same way, the more reliable a biasing signal is, the more bias it
should induce. Therefore, the fact that auditory signals can bias both visual
and tactile perception probably indicates that, when counting the number of
events presented in a sequence, auditory signals are more reliable than both
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visual and tactile signals. When compared to the studies by Shams et al. (2002),
the effects observed on tactile perception are relatively small. This difference
in the magnitude of the auditory-evoked effects likely reflects a higher saliency
of tactile than visual signals in this kind of non-spatial task.

Other authors have studied auditory-tactile integration in surface tex-
ture perception. Lederman and coworkers, already mentioned in Section©9.2.3}
have shown that audition had little influence on texture perception when par-
ticipants touched the stimulus with their fingers (Lederman, 1979). However,
when the contact was made via a rigid probe, with a consequent increase of
touch-related sound and a degradation of tactile information, auditory and
tactile cues were integrated (Lederman et al., 2002). These results suggest
that although touch is mostly dominant in texture perception, the degree of
auditory-tactile integration can be modulated by the reliability of the single-
modality information

A related study was conducted by (Guest et al. (2002). In their experi-
mental setup, participants had to make forced-choice discrimination responses
regarding the roughness of abrasive surfaces which they touched briefly. Tex-
ture sounds were captured by a microphone located close to the manipulated
surface and subsequently presented through headphones to the participants
in three different conditions: veridical (no processing), amplified (12dB boost
on the 2 — 20kHz band), and attenuated (12dB attenuation in the same band).
The authors investigated two different perceptual scales: smooth-rough, and
moist-dry. Analysis of discrimination errors verified that attenuating high fre-
quencies led to a bias towards an increased perception of tactile smoothness
(or moistness), and conversely the boosted sounds led to a bias towards an
increased perception of tactile roughness (or dryness). This work is partic-
ularly interesting from a sound-design perspective, since it investigates the
effects of a non-veridical auditory feedback (not only the spectral envelope is
manipulated, but sounds are picked up in the vicinity of the surface and are
therefore much louder than in natural listening conditions).
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9.3.2 Perception is action
Embodiment and enaction

According to traditional mainstream views of perception and action, percep-
tion is a process in the brain where the perceptual system constructs an internal
representation of the world, and eventually action follows as a subordinate
function. This view of the relation between perception and action makes then
two assumptions. First, the causal flow between perception and action is pri-
marily one-way: perception is input from world to mind, action is output from
mind to world, and thought (cognition) is the mediating process. Second, per-
ception and action are merely instrumentally related to each other, so that each
is a means to the other. If this kind of “input-output” picture is right, then it
must be possible, at least in principle, to disassociate capacities for perception,
action, and thought.

Although everyone agrees that perception depends on processes taking
place in the brain, and that internal representations are very likely produced in
the brain, more recent theories have questioned such a modular decomposition
in which cognition interfaces between perception and action. The ecological
approach discussed in Section 0.2 rejects the one-way assumption, but not the
instrumental aspect of the traditional view, so that perception and action are
seen as instrumentally interdependent. Others argue that a better alternative
is to reject both assumptions: the main claim of these theories is that it is not
possible to disassociate perception and action schematically, and that every
kind of perception is intrinsically active and thoughtful: perception is not a
process in the brain, but a kind of skillful activity on the part of the animal
as a whole. As stated by Noél (2005), only a creature with certain kinds of
bodily skills (e.g. a basic familiarity with the sensory effects of eye or hand
movements, etc.) could be a perceiver.

One of the most influential contributions in this direction is due toVarela
et al. (1991) (see O’Regan and Noé¢, 2001, for a detailed review of other works
based on similar ideas). They presented an “enactive conception” of experi-
ence, which is not regarded as something that occurs inside the animal, but
rather as something that the animal enacts as it explores the environment in
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Figure 9.2: A cartoon representation of traditional views of the perception-
action functions as a causal one-way flow.

which it is situated. In this view, the subject of mental states is the embodied,
environmentally-situated animal. The animal and the environment form a
pair in which the two parts are coupled and reciprocally determining. Per-
ception is thought of in terms of activity on the part of the animal. The term
“embodied” is used by the authors as a mean to highlight two points: first,
cognition depends upon the kinds of experience that are generated from spe-
cific sensorimotor capacities. Second, these individual sensorimotor capacities
are themselves embedded in a biological, psychological, and cultural context.
Sensory and motor processes, perception and action, are fundamentally insep-
arable in cognition.

O’Regan and No¢| (2001) have introduced closely related concepts, ac-
cording to which perception consists in exercising an exploratory skill. The
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authors illustrate their approach with an example: the sensation of softness
that one might experience in holding a sponge consists in being aware that
one can exercise certain practical skills with respect to the sponge: one can
for example press it, and it will yield under the pressure. The experience of
softness of the sponge is characterised by a variety of such possible patterns of
interaction with the sponge. The authors term sensorimotor contingencies the
laws that describe these interactions. When a perceiver knows, in an implicit,
practical way, that at a given moment he is exercising the sensorimotor contin-
gencies associated with softness, then he is in the process of experiencing the
sensation of softness.

O’Regan and No¢| (2001) then classify sensory inputs according to two
criteria, i.e. corporality and alerting capacity. Corporality is the extent to
which activation in a neural channel systematically depends on movements
of the body. Sensory input from sensory receptors like the retina, the cochlea,
and mechanoreceptors in the skin possesses corporality, because any body
motion will generally create changes in the way sensory organs are positioned
in space, and consequently in the incoming sensory signals (the situation is less
clear for the sense of smell, but sniffing, blocking the nose, moving the head, do
affect olfactory stimulation). Proprioceptive input from muscles also possesses
corporality, because there is proprioceptive input when muscle movements
produce body movements. The authors argue that corporality is one important
factor that explains the extent to which a sensory experience will appear to an
observer as being truly sensory, rather than non-sensory, like a thought, or a
memory. The alerting capacity of sensory input is the extent to which that input
can cause automatic orienting behaviours that capture cognitive processing
resources. According to these definitions, vision, touch, hearing, and smell
have not only high corporality but also high alerting capacity. With high
corporality and high alerting capacity, vision, touch, hearing and smell have
strong phenomenal presence. This is in accordance with the usual assumption
that they are the prototypical sensory modalities.

A possible objection to the definitions of perception and action given
above is that most sensations can be perceived without any exploratory skill
being engaged. For example, having the sensation of red or of a bell ringing
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does not seem to involve the exercising of skills. An immediate counter-
objection is that sensations are never instantaneous, but are always extended
over time, and that at least potentially, they always involve some form of
activity. O’Regan and Noé (2001) refer to a number of experiments, especially
in the domain of visual perception, that support this idea. Experiments on
“change blindness” present observers with displays of natural scenes and ask
them to detect cyclically repeated changes (e.g. large object shifting, changing
colors, and so on). Under normal circumstances a change of this type would
create a transient signal in the visual system that would be detected by low-
level visual mechanisms and would attract attention to the location of the
change. In the “change blindness” experiments, however, conditions were
arranged in such a way that these transients were hidden by superimposing
a brief global flicker over the whole visual field at the moment of the change.
It was shown that in this condition observers have great difficulty seeing
changes, even when the changes are extremely large (and are perfectly visible to
someone who knows what they are). Such results contrast with the subjective
impression of “seeing everything” in an observed scene or picture. The authors
regard them as a support to the view that an observer sees the aspects of a scene
which he/she is currently “visually manipulating”, which makes it reasonable
that only a subset of scene elements that share a particular scene location can
be perceived at a given moment.

A related example, again in the domain of visual perception, is dis-
cussed by Noél (2005) who introduces the concept of “experiential blindness”
and reports upon cases where this phenomenon has been observed. According
to Noe there are, broadly speaking, two different kinds of blindness: blind-
ness due to damage or disruption of the sensitive apparatus (caused by e.g.
cataracts, retinal injury, and so on), and blindness that is not due to the absence
of sensation or sensitivity, but rather to the person’s inability to integrate sen-
sory stimulation with patterns of movement and thought. The latter is termed
experiential blindness because it occurs despite the presence of normal visual
sensation. The author considers attempts to restore sight in congenitally blind
individuals whose blindness is due to cataracts impairing the eye’s sensitivity
by obstructing light on its passage to the retina. The medical literature re-
ports that surgery restores visual sensation, at least to a significant degree, but
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that it does not restore sight. In the period immediately after the operation,
patients suffer blindness despite rich visual sensations. This clearly contrasts
with the traditional input-output picture described at the beginning of this sec-
tion, according to which removing the cataract and letting in the light should
enable normal vision. A related phenomenon is that of blindness caused by
paralysis. Normally the eyes are in nearly constant motion, engaging in sharp
movements several times a second. If the eyes cease moving, they loose their
receptive power. A number of studies are reported by Noél(2005), which show
that images stabilised on the retina fade from view. This is probably an in-
stance of the more general phenomenon of sensory fatigue thanks to which we
do not continuously feel our clothing on our skin, the glasses resting on the
bridge of our nose, or a ring on our finger. This suggests that some minimal
amount of eye and body movement is necessary for perceptual sensation.

Audition and sensory substitution

According to the theories discussed above, the quality of a sensory modality
does not derive from the particular sensory input channel or neural activity
involved in that specific modality, but from the laws of sensorimotor skills that
are exercised. The difference between “hearing” and “seeing” lies in the fact
that, among other things, one is seeing if there is a large change in sensory
input when blinking; on the other hand, one is hearing if nothing happens
when one blinks but there is a left/right difference when one turns the head,
and so on. This line of reasoning implies that it is possible to obtain a visual
experience from auditory or tactile input, provided the sensorimotor laws that
are being obeyed are the laws of vision.

The phenomenon of sensory substitution is coherent with this view.
Perhaps the first studies on sensory substitution are due to Bach-y-Rita who,
starting from 1967, has been experimenting with devices to allow blind people
to “see” via tactile stimulation provided by a matrix of vibrators connected to
a video camera. A comprehensive review of this research stream is provided
by Kaczmarek et al.| (1991). The tactile visual substitution systems developed
by Bach-y-Rita and coworkers use matrices of vibratory or electrical cutaneous
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stimulators to represent the luminance distribution captured by a camera on
a skin area (the back, the abdomen, the forehead, or the fingertip). Due to
technical reasons and to bandwidth limitations of tactile acuity, these devices
have a rather poor spatial resolution, being generally matrices of not more
than 20 x 20 stimulators. One interesting result from early studies was that
blind subjects were generally unsuccessful in trying to identify objects placed
in front of a fixed camera. It was only when the observer was allowed to
actively manipulate the camera that identification became possible. Although
subjects initially located the stimulation on the skin area being stimulated, with
practice they started to locate objects in space (although they were still able to
feel local tactile sensation). This point supports the idea that the experience
associated with a sensory modality is not wired into the neural hardware, but
is rather a question of exercising sensorimotor skills: seeing constitutes the
ability to actively modify sensory impressions in certain law-obeying ways.

A certain amount of studies investigate sensory substitution phenomena
that involve audition. One research stream deals with the use of echolocation
devices to provide auditory signals to a user, depending on the direction, dis-
tance, size and surface texture of nearby objects. Such devices have been stud-
ied as prostheses for the blind. Ifukube et al. (1991) designed an apparatus in
which a frequency-modulated ultrasound signal (with carrier and modulating
frequencies in a similar range as that produced by bats for echolocation) is emit-
ted from a transmitting array with broad directional characteristics in order to
detect obstacles. Reflections from obstacles are picked up by a two-channel re-
ceiver and subsequently digitally down-converted by a 50:1 factor, resulting in
signals that are in the audible frequency range and can be presented binaurally
through earphones. The authors evaluated the device through psychophysi-
cal experiments in order to establish whether obstacles may be perceived as
localised sound images corresponding to the direction and the size of the ob-
stacles. Results showed that the auditory feedback was successfully used for
the recognition of small obstacles, and also for discriminating between several
obstacles at the same time without any virtual image.

While such devices cannot provide a truly visual experience, they nev-
ertheless provide users with the clear impression of things being “out in front
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of them”. In this sense, these devices can be thought as variants of the blind
person’s cane. Blind people using a cane sense the external environment that
is being explored through the cane, rather than the cane itself. The tactile
sensations provided by the cane are “relocated” onto the environment, and
the cane itself is forgotten or ignored. (O'Regan and Nog| (2001) prefer to say
that sensations in themselves are situated nowhere, and that the location of a
sensation is an abstraction constructed in order to account for the invariance

structure of the available sensorimotor contingencies.

A related research was conducted by Meijer| (1992)), who developed an
experimental system for the conversion of a video stream into sound patterns,
and investigated possible applications of such a device as a vision substitution
device for the blind. According to the image-to-sound mapping chosen by
Meijer, a N X M pixel image is sampled from the video stream at a given rate,
and converted into a spectrogram in which grey level of the image corresponds
to partial amplitude. Therefore the device potentially conveys more detailed
information than the one developed by lIfukube et al.l (1991), since it provides
a representation of the entire scene rather than simply detecting obstacles and
isolated objects. The approach followed by Mejer resembles closely the work
by Bach-y-Rita, except that audition instead of tactile stimulation is used as
substitute for vision. Although from a purely mathematical standpoint the
chosen image-to-sound mapping ensures the preservation of visual informa-
tion to a certain extent, it is clear that perceptually such a mapping is highly
abstract and a priori completely non-intuitive. Accordingly, Meijer| (1992) re-
marks that the actual perception of these sound representations remains to be
evaluated. However, it must also be noted that users of such devices some-
times testify that a transfer of modalities indeed takes placél. Again, this
finding is consistent with the sensorimotor theories presented above, since the
key ingredient is the possibility for the user to actively manipulate the device.

The experience of a visually impaired user, who explicitly described herself as seeing with
the visual-to-auditory substitution device, is reported at http://www.seeingwithsound.
com/tucson2002f.ram
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9.4 Sound modelling for multimodal interfaces

In this final section we discuss recent literature on interactive computer ani-
mation and virtual reality applications. All of these applications involve direct
interaction of an operator with virtual objects and environments and require
multimodal feedback in order to enhance the effectiveness of the interaction.
We will especially focus on the role of auditory feedback, and will emphasise
the relevance of studies in ecological acoustics and multimodal perception,
which we have previously discussed, in aiding the design of multimodal in-
terfaces and virtual environments.

The general topic of the use of sound in interfaces is also addressed in
Chapter

9.4.1 Interactive computer animation and VR applications
The need for multisensory feedback

Typical current applications of interactive computer animation and VR appli-
cations (Srinivasan and Basdogan,[1997) include medicine (surgical simulators
for medical training, manipulation of micro and macro robots for minimally
invasive surgery, remote diagnosis for telemedicine, aids for the disabled such
as haptic interfaces for non-sighted people), entertainment (video games and
simulators that enable the user to feel and manipulate virtual solids, fluids,
tools, and avatars), education (e.g. interfaces giving students the feel of phe-
nomena at nano, macro, or astronomical scales, “what if” scenarios for non-
terrestrial physics, display of complex data sets), industry (e.g. CAD systems
in which a designer can manipulate the mechanical components of an assem-
bly in an immersive environment), and arts (virtual art exhibits, concert rooms,
museums in which the user can log in remotely, for example to play musical
instruments or to touch and feel haptic attributes of the displays, and so on).
Most of the virtual environments (VEs) built to date contain complex visual
displays, primitive haptic devices such as trackers or gloves to monitor hand
position, and spatialised sound displays. However it is being more and more
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acknowledged that accurate auditory and haptic displays are essential in order
to realise the full promise of VEs.

Being able to hear, touch, and manipulate objects in an environment, in
addition to seeing them, provides a sense of immersion in the environment
that is otherwise not possible. It is quite likely that much greater immersion
in a VE can be achieved by synchronizing even simple haptic and auditory
displays with the visual one, than by increasing the complexity of the visual
display alone. Moreover, by skewing the relationship between the haptic and
visual and/or auditory displays, the range of object properties that can be
effectively conveyed to the user can be significantly enhanced. Based on these
considerations, many authors (see for example/Hahn et al.,[1998/and Srinivasan
and Basdogan, 1997) emphasise the need to make a more concerted effort to
bring the three modalities together in VEs.

The problem of generating effective sounds in VEs has been addressed
in particular by [Hahn et al.| (1998), who identify three sub-problems: sound
modelling, sound synchronisation, and sound rendering. The first problem has
long been studied in the field of computer music (see also Chapter[§). However,
the primary consideration in VE applications is the effective parametrisation
of sound models so that the parameters associated with motion (changes of
geometry in a scene, user’s gestures) can be mapped to the sound control
parameters, resulting in an effective synchronisation between the visual and
auditory displays. Finally, sound rendering refers to the process of generating
sound signals from models of objects and their movements within a given
environment, which is in principle very much equivalent to the process of
generating images from their geometric models: the sound energy being emit-
ted needs to be traced within the environment, and perceptual processing of
the sound signal may be needed in order to take into account listener effects
(e.g. filtering with Head Related Transfer Functions). The whole process of
rendering sounds can be seen as a rendering pipeline analogous to the image
rendering pipeline.

Until recently the primary focus for sound generation in VEs has been
in spatial localisation of sounds. On the contrary, research about models for
sound sources and mappings between object motion/interaction and sound
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control is far less developed. In Section we will concentrate on this latter
topic.

Learning the lessons from perception studies

Given the needs and the requirements addressed in the previous section, many
lessons can be learned from the studies in direct (ecological) perception and
in the action-perception loop that we have reviewed in the first part of this
chapter.

The concept of “global array” proposed by Stoffregen and Bardy| (2001)
is a very powerful one: the global array provides information that can opti-
mise perception and performance, and that is not available in any other form
of sensory stimulation. Humans may detect informative global array patterns,
and they may routinely use this information for perception and control, in
both VE and daily life. According to Stoffregen and Bardy| (2001), in a sense
VE designers do not need to make special efforts to make the global array
available to users: the global array is already available to users. Rather than
attempting to create the global array, designers need to become aware of the
global array that already exists, and begin to understand how multisensory
displays structure the global array. The essential aspect is the initial identi-
fication of the relevant global array parameters, which makes it possible to
construct laboratory situations in which these parameters can be manipulated,
and in which their perceptual salience and utility for performance in virtual

environments can be evaluated.

For the specific case of auditory information, the description of sound
producing events by |Gaver| (1993b) provides a framework for the design of
environmental sounds. Gaver emphasises that, since it is often difficult to
identify the acoustic information of events from acoustic analysis alone, it is
useful to supplement acoustic analyses with physical analyses of the event
itself. Studying the physics of sound-producing events is useful both in sug-
gesting relevant source attributes that might be heard and in indicating the
acoustic information for them. Resynthesis, then, can be driven by the result-
ing physical simulations of the event.
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The studies on multimodal perception reviewed in Section[9.3|also pro-
vide a number of useful guidelines and even quantitative data. We have
seen that streams of information coming from different channels complement
and integrate each other, with some modality possibly dominating over the
remaining ones depending on the features to be evaluated or the tasks to be ac-
complished (the modality precision or modality appropriateness hypothesis by
Welch and Warren,|1986)). In particular, when senses interact in time, a window
of synchrony between the feedback of different modalities (e.g. auditory and
visual, or auditory and haptic feedbacks) is crucial for multisensory integra-
tion. Many of the studies previously discussed (e.g.,Shams et al., 2002; | Guest
et al.,[2002; Bresciani et al., 2005) report quantitative results about “integration
windows” between modalities. These estimates can be used as constraints for
the synchronisation of rendering pipelines in a multimodal architectures.

9.4.2 Sound models

Physics-based approaches

Sound synthesis techniques traditionally developed for computer music ap-
plications (e.g. additive, subtractive, frequency modulation, Zolzer, 2002)
provide abstract descriptions of sound signals. Although well suited for the
representation of musical sounds, these techniques are in general not effec-
tive for the generation of non-musical interaction sounds. We have seen in
Section 0.2 that research in ecological acoustics points out that the nature of
everyday listening is rather different and that auditory perception delivers
information which goes beyond attributes of musical listening.

On the other hand, physically-based sound modelling approaches (see
Chapter [§) generate sound from computational structures that respond to
physical input parameters, and therefore they automatically incorporate com-
plex responsive acoustic behaviours. Moreover, the physical control param-
eters do not require in principle manual tuning in order to achieve realistic
output. Again, results from research in ecological acoustics aid in determining
what sound features are perceptually relevant, and can be used to guide the
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tuning process.

A second advantage of physically-based approaches is interactivity and
ease in associating motion to sound control. As an example, the parameters
needed to characterise collision sounds, e.g. relative velocity at collision, are
computed in the VR physical simulation engine and can be directly mapped
into control parameters of a physically-based sound model. The sound feed-
back consequently responds in a natural way to user gestures and actions.
This is not the case with traditional approaches to sound synthesis, where the
problem of finding a motion-correlated parametrisation is not a trivial one.
Think about the problem of parameterizing real recorded sounds by their at-
tributes such as amplitude and pitch: this corresponds to a sort of “reverse
engineering” problem where one tries to determine how the sounds were gen-
erated starting from the sounds themselves. Designing effective mappings
between user gestures and sound control parameters is important especially
in the light of the studies in action-perception loop, that we have addressed in
Section@9.3.2]

Finally, physically-based sound models can in principle allow the cre-
ation of dynamic virtual environments in which sound rendering attributes
are incorporated into data structures that provide multimodal encoding of
object properties: shape, material, elasticity, texture, mass, and so on. In this
way a unified description of the physical properties of an object can be used to
control the visual, haptic, and sound rendering, without requiring the design
of separate properties for each thread. This problem has already been stud-
ied in the context of joint haptic-visual rendering, and recent haptic-graphic
APIs (Iechnologies, 2002} Sensegraphics, 2006) adopt a unified scene graph
that takes care of both haptics and graphics rendering of objects from a single
scene description, with obvious advantages in terms of synchronisation and
avoidance of data duplication. Physically-based sound models may allow
the development of a similar unified scene, that includes description of audio
attributes as well.

For all these reasons, it would be desirable to have at disposal sound
modelling techniques that incorporate complex responsive acoustic behaviours
and can reproduce complex invariants of primitive features: physically-based
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models offer a viable way to synthesise naturally behaving sounds from com-
putational structures that respond to physical input parameters. Although tra-
ditionally developed in the computer music community and mainly applied
to the faithful simulation of existing musical instruments, physical models are
now gaining popularity for sound rendering in interactive applications (Cook,
2002).

Contact sounds

As already remarked in Section[9.2] an important class of sound events is that
of contact sounds between solids, i.e. sounds generated when objects come in
contact with each other (collision, rubbing, etc.: see also figure 0.T)). Various
modelling approaches have been proposed in the literature.

Van den Doel and coworkers (van den Doel and Pai, [1998; van den Doel
etal.,2001) proposed modal synthesis (Adrien,1991) as an efficient yet accurate
framework for describing the acoustic properties of objects. Modal synthesis
techniques have been already presented in Chapter[8l Here, we recall that if a
resonating object is modelled as a network of N masses connected with springs
and dampers, then a geometrical transformation can be found that turns the
system into a set of decoupled equations. The transformed variables {g,} | are
generally referred to as modal displacements, and obey a second-order linear
oscillator equation:

) + 1) + @2 = ), ©.1)

where g, is the oscillator displacement and f represents any driving force,
while w, is the oscillator center frequency. The parameter 1/m, controls the
“inertial” properties of the oscillator (1, has the dimension of a mass), and g,
is the oscillator damping coefficient and relates to the decay properties of the
system. Modal displacements g, are related to physical displacement through
an N x K matrix A, whose elements a4, weigh the contribution of the nth mode
at a location k. If the force f is an impulse, the response g, of each mode is a



9.4. Sound modelling for multimodal interfaces 383

damped sinusoid and the physical displacement at location k is given by

N N
xk(t) = Zankqn(t) = anke_gnt/z Sin(a)nt)- (92)
n=1 n=1
Any pre-computed contact force signal can then be convolved to the impulse
response and thus used to drive the modal synthesiser.

The modal representation of a resonating object is naturally linked to
many ecological dimensions of the corresponding sounds. The frequencies
and the amount of excitation of the modes of a struck object depend on the
shape and the geometry of the object. The material determines to a large
extent the decay characteristics of the sound. The amplitudes of the frequency
components depend on where the object is struck (as an example, a table
struck at the edges makes a different sound than when struck at the center).
The amplitude of the emitted sound is proportional to the square root of the
energy of the impact.

The possibility of linking the physical model parameter to ecological
dimensions of the sound has been demonstrated in the paper by Klatzky et al.
(2000), already discussed in Section9.2l In this work, the modal representation
proposed by van den Doel and Pail (1998) has been applied to the synthesis of
impact sounds with material information.

An analogous modal representation of resonating objects was also adopted
bylAvanzini et al./(2003). The main difference with the above mentioned works
lies in the approach to contact force modelling. While van den Doel and
coworkers adopt a feed-forward scheme in which the interacting resonators
are set into oscillation with driving forces that are externally computed or
recorded, the models proposed by |Avanzini et al.| (2003) embed direct compu-
tation of non-linear contact forces. Despite the complications that arise in the
synthesis algorithms, this approach provides some advantages. Better qual-
ity is achieved due to accurate audio-rate computation of contact forces: this
is especially true for impulsive contact, where contact times are in the order
of few ms. Interactivity and responsiveness of sound to user actions is also
improved. This is especially true for continuous contact, such as stick-slip
friction (Avanzini et al.,2005). Finally, physical parameters of the contact force
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models provide control over other ecological dimensions of the sound events.
As an example, the impact model used by |Avanzini et al. (2003), and originally
proposed by Hunt and Crossley| (1975), describe the non-linear contact force
as

(9.3)

fx(),v(b) = { ](C)X(t)a +AxBT o) A+ po®) - x>0,

x<0,

where x is the interpenetration of the two colliding objects and v = *. Then
force parameters, such as the force stiffness k, can be related to ecological
dimensions of the produced sound, such as perceived stiffness of the impact.
Similar considerations apply to continuous contact models (Avanzini et al.,
2005).

It has been shown that this approach allows for a translation of the map
of everyday sounds proposed by Gaver into a hierarchical structure in which
“patterned” and “compound” sounds models are built upon low-level, “basic”
models of impact and friction (see9.I). Models for bouncing, breaking, rolling,
crumpling sounds are described in the works by Rath and Fontanal (2003) and
Rath and Rocchessol(2005). See also Chapter[I0ifor a description of “sounding
objects” synthesised with this approach.

A different physically-based approach has been proposed by |O’Brien
et al. (2001, 2002). Rather than making use of heuristic methods that are
specific to particular objects, their approach amounts to employing finite-
element simulations for generating both animated video and audio. This task
is accomplished by analyzing the surface motions of objects that are animated
using a deformable body simulator, and isolating vibrational components that
correspond to audible frequencies. The system then determines how these
surface motions will generate acoustic pressure waves in the surrounding
medium and models the propagation of those waves to the listener. In this
way, sounds arising from complex nonlinear phenomena can be simulated,
but the heavy computational load prevents real-time sound generation and
the use of the method in interactive applications.
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Other classes of sounds

The map of everyday sounds developed by Gaver (see figure 0.1) comprises
three main classes: solids, liquids, and gases. Research on sound modelling is
clearly biased toward the first of these classes, while less has been done for the
others.

A physically-based liquid sound synthesis methodology has been devel-
oped by van den Doel (2005). The fundamental mechanism for the production
of liquid sounds is identified as the acoustic emission of bubbles. After re-
viewing the physics of vibrating bubbles as it is relevant to audio synthesis,
the author has developed a sound model for isolated single bubbles and vali-
dated it with a small user study. A stochastic model for the real-time interactive
synthesis of complex liquid sounds such as those produced by streams, pour-
ing water, rivers, rain, and breaking waves is based on the synthesis of single
bubble sounds. It is shown by ivan den Doell (2005) how realistic complex high
dimensional sound spaces can be synthesised in this manner.

Dobashi et al./ (2003) have proposed a method for creating aerodynamic
sounds. Examples of aerodynamic sound include sound generated by swing-
ing swords or by wind blowing. A major source of aerodynamic sound is
vortices generated in fluids such as air. The authors have proposed a method
for creating sound textures for aerodynamic sounds by making use of com-
putational fluid dynamics. Next, they have developed a method using the
sound textures for real-time rendering of aerodynamic sound according to the
motion of objects or wind velocity.

This brief overview shows that little has been done in the literature
about models of everyday sounds in the “liquids” and “gases” categories
(we are sticking to the terminology used by (Gaver (1993a), and reported in
figure 0.1). These are topics that need more research to be carried out in the
tuture.
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9.4.3 Applications to multimodal interfaces
Multimodal rendering

An important consequence of using physically-based sound models is that
synchronisation with other modalities is in principle straightforward, since
the parameters that are needed to characterise the sounds resulting from me-
chanical contact come directly from the simulation. In other cases where only
simple kinematic information like trajectory is present, needed information

like velocity and acceleration can be calculated.

A particularly interesting problem is simultaneous audio-haptic ren-
dering. There is a significant amount of literature that deals with the design
and the evaluation of interfaces that involve auditory feedback in conjunction
with haptic/tactile feedback. In order to be perceived as realistic, auditory and
haptic cues have to be synchronised so that they appear simultaneous. They
must also be perceptually similar — a rough surface has to both sound and feel
rough. Synchronizing the two modalities is more than synchronizing two sep-
arate events. Rather than triggering a pre-recorded audio sample or tone, the
audio and the haptics change together when the user applies different forces
to the object.

Rendering a virtual surface, i.e. simulating the interaction forces that
arises when touching a stiff object, is the prototypical haptic task. Properly
designed visual (Wu. et al., [1999) and/or auditory (DiFranco et al.,[1997) feed-
back can be combined with haptics in order to improve perception of stiffness,
or even compensate for physical limitations of haptic devices and enhance
the range of perceived stiffness that can be effectively conveyed to the user.
Physical limitations (low sampling rates, poor spatial resolution of haptic de-
vices) constrain the values for haptic stiffness rendering to ranges that are often
far from typical values for stiff surfaces (Kuchenbecker et al., 2006). Ranges
for haptic stiffness are usually estimated by requiring the system to be passive
(Colgate and Brown,[1994), thus guaranteeing stability of the interaction, while
higher stiffness values can cause the system to become unstable, i.e. to oscillate

in an uncontrolled way.
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Perceptual experiments on a platform that integrates haptic and sound
displays were reported by IDiFranco et al. (1997). Prerecorded sounds of con-
tact between several pairs of objects were played to the user through the
headphones to stimulate the auditory senses. The authors studied the influ-
ence of auditory information on the perception of object stiffness through a
haptic interface. In particular, contact sounds influenced the perception of
object stiffness during tapping of virtual objects through a haptic interface.
These results suggest that, although the range of object stiffness that can be
displayed by a haptic interface is limited by the force-bandwidth of the in-
terface, the range perceived by the subject can be effectively increased by the
addition of properly designed impact sounds.

While the auditory display adopted by IDiFranco et al. (1997) was rather
poor (the authors used recorded sounds), a more sophisticated approach
amounts to synthesise both auditory and haptic feedback using physically-
based models. This approach was taken in the work of DiFilippo and Pai
(2000). In this work the modal synthesis techniques described by lvan den
Doel and Pail (1998) were applied to audio-haptic rendering. Contact forces
are computed at the rate of the haptic rendering routine (e.g., 1kHz), then the
force signals are upsampled at the rate of the audio rendering routine (e.g.,
44 .1kHz) and filtered in order to remove spurious impulses at contact breaks
and high frequency position jitter. The resulting audio force is used to drive the
modal sound model. This architecture ensures low latency between haptic and
audio rendering (the latency is 1ms if the rate of the haptic rendering routine is
1kHz), which is below the perceptual tolerance for detecting synchronisation
between auditory and haptic contact events.

A related study was recently conducted bylAvanzini and Crosato (2006).
In this paper the sound models proposed by |Avanzini et al. (2003} 2005) were
integrated into a multimodal rendering architecture, schematically depicted
in Fig.0.3] which extends typical haptic-visual architectures (Salisbury et al.,
2004). The sound rendering thread runs at audio rate (e.g. 44.1kHz) in parallel
with other threads. Computation of audio contact forces is triggered by col-
lision detection from the haptic rendering thread. Computation of 3D sound
can be cascaded to the sound synthesis block. It was shown that the proposed
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Figure 9.3: An architecture for multimodal rendering of contact interactions.
Adapted from Fig. 3 inSalisbury et al.|(2004).

rendering scheme allows tight synchronisation of the two modalities, as well
as a high degree of interactivity and responsiveness of the sound models to
gestures and actions of a user. The setup was used to run an experiment on
the relative contributions of haptic and auditory information to bimodal judg-
ments of contact stiffness: experimental results support the effectiveness of
auditory feedback in modulating haptic perception of stiffness.

Substituting modalities

In Section0.3.2lwe have already reviewed some studies that address the topic
of sensory substitution with applications to the design of interfaces. The focus
of such studies (Ifukube et al., 1991} Kaczmarek et al., 1991; Meijer| 1992) is
especially substitution systems for visually-impaired users. The very same
idea of sensory substitution can be exploited in a different direction: having
an interface which is not able to provide feedback of a given modality (e.g. a
passive device such as a standard mouse is not able to provide haptic feedback),
that modality can effectively substituted with feedback of other modalities,
provided that it uses the same sensory-motor skills. We will try to clarify this
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concept in the remainder of this section. The studies briefly reviewed in the
following, although not specifically related with audio but rather with visual
and haptic feedback, contain interesting ideas that may be applied to auditory
rendering.

Lécuyer et al| (2000) developed interaction techniques for simulating
contact without a haptic interface, but with a passive input device combined
with the visual feedback of a basic computer screen. The authors exemplify
the general idea as follows: assume that a user manipulates a cube in a VE
using a passive device like a mouse, and has to insert it inside a narrow duct.
As the cube is inserted in the duct, it “visually resists” motion by reducing its
speed, and consequently the user increases the pressure on the mouse which
results in an increased feedback force by the device. The combined effects of
the visual slowing down of the cube and the increased feedback force from the
device provides the user with an “illusion” of force feedback, as if a friction
force between the cube and the duct was rendered haptically. Lecuyer and
coworkers have applied this idea to various interactive tasks, and have shown
that properly designed visual feedback can to a certain extent provide a user
with “pseudo-haptic” feedback.

Similar ideas have driven the work of van Mensvoort (2002), who de-
veloped a cursor interface in which the cursor position is manipulated to give
feedback to the user. The user has main control over the cursor movements, but
the system is allowed to apply tiny displacements to the cursor position. These
displacements are similar to those experienced when using force-feedback sys-
tems, but while in force-feedback systems the location of the cursor changes
due to the force sent to the haptic display, in this case the cursor location is
directly manipulated. These active cursor displacements result in interactive
animations that induce haptic sensations like stickiness, stiffness, or mass.

The same approach may be experimented with auditory instead of vi-
sual feedback: audition indeed appears to be an ideal candidate modality to
support illusion of substance in direct manipulation of virtual objects, while
in many applications the visual display does not appear to be the best choice
as a replacement of kinesthetic feedback. Touch and vision represent differ-

ent priorities, with touch being more effective in conveying information about
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“intensive” properties (material, weight, texture, and so on) and vision empha-
sizing properties related to geometry and space (size, shape). Moreover, the
auditory system tends to dominate in judgments of temporal events, and in-
tensive properties strongly affect the temporal behaviour of objects in motion,
thus producing audible effects at different time scales.
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About this chapter

The goal of this chapter is to define the state of the art of research in sound
design and auditory display. The aim is to provide a wide overview of the
extremely different fields, where these relatively new disciplines find applica-
tion. These fields range from warning design and computer auditory display
to architecture and media.
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10.1 Introduction

Sounds in human-computer interfaces have always played a minor role as
compared to visual and textual components. Research efforts in this segment of
Human-Computer Interaction (HCI) have also been relatively little, as testified
by the relatively new inclusion of Sound and Music Computing (H.5.5 in the
ACM Computing Classification System?2) as a sub-discipline of Information
Interfaces and Presentation (H.5). The words sound or audio do not appear in
any other specification of level-one or level-two items of the hierarchy. On the
other hand, for instance, computer graphics is a level-two item on its own (1.3),
and Image Processing and Computer Vision is another level-two item (1.4).

So, the scarcity of literature, especially the lack of surveys of the field,
do not come as a surprise. Indeed, a survey was published by Hereford
and Winnl (1994), where a deep investigation of the state of the art of sound
usage in Human-Computer Interaction was presented. The main important
topics of that overview are: Earcons (symbolic and iconic), and sound in
data sonification and in virtual reality environments. The literature study
follows some important applications, pointing out successes and problems of
the interfaces, always pushing the reader to think about lack of knowledge
and need of further explorations. The paper ends with useful guidelines for
the interface designer who uses sound, trying to stress the need to improve
the knowledge about how people interpret auditory messages and about how
sound can be used in human-computer interfaces to convey the information
contained in some data set. The knowledge about sound perception is not
enough to perform good interactions, as the nature of the interface affects the
creation of users” mental models of the device.

The rest of this chapter intends to go beyond Hereford’s survey, in
several ways. We consider a selection of major works that appeared in the field
in the last couple of decades. These works have been either very influential for
following researches, or have appeared in respected journals thus being likely
to affect wide audiences.

The chapter organisation into six main sections reflects the topics that

Zhttp://www.acm.org/class/
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have been most extensively studied in the literature, i.e. warnings, earcons,
auditory icons, mapping, sonification, and sound design. Indeed, there are
wide overlaps between these areas (e.g. sound design and mapping can be
considered as part of a task of sonification). However, several important
works have been found that are in some way specific and representative of
each area. The overall progression of the chapter goes from simple and low-
level to complex and high-level. This is similar to what one would find in the
table of contents of a textbook of the relative, more consolidated, discipline
of information visualisation (Ware, 2004): from basic to complex issues in
information and perception, towards information spaces and data mapping,
and finally to interaction with displays and data. In our chapter, special
relevance has been assigned to the concept of mapping, for the importance it
had in auditory display, as well as in the different context of computer music
programming and performance.

10.2 Warnings, alerts and audio feedback

Auditory warnings are perhaps the only kind of auditory displays that have
been thoroughly studied and for whom solid guidelines and best design prac-
tices have been formulated. A milestone publication summarizing the multi-
faceted contributions to this sub-discipline is the book edited by Stanton and
J.Edworthy| (1999a). This book opening chapter summarises well the state of
the art in human factors for auditory warnings as it was in the late nineties.
Often warnings and alerts are designed after anecdotal evidence, and this is
also the first step taken by the authors as they mention problems arising in
pilot cockpits or central control rooms. Then, auditory displays are confronted
against visual displays, to see how and when to use one sensory channel in-
stead of the other. A good observation is that hearing tends to act as a natural
warning sense. It is the ears-lead-eyes pattern® that should be exploited. The
authors identify four areas of applications for auditory warnings: personal
devices, transport, military, and control rooms. Perhaps a fifth important area
is geographic-scale alerts, as found in a paper by |Avanzini et al. (2004).

Thttp://c2.com/cgi/wiki?SonificationDesignPatterns
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The scientific approach to auditory warnings is usually divided into
the two phases of hearing and understanding, the latter being influenced
by training, design, and number of signals in the set. Studies in hearing
triggered classic guidelines such as those individuated by [Pattersonl (1990).
He stated, for instance, that alarms should be set between 15 and 25 dB above
the masked threshold of environment. Patterson faced also the issue of design
for understanding, by suggesting a sound coding system that would allow
mapping different levels of urgency.

The possibility that using naturalistic sounds could be better for reten-
tionis discussed in the introductory chapter of Stanton and J.Edworthy|(1999a)),
especially with reference to the works of Blattner et al.|(1989) and Gaver! (1994).
The problem of the legacy with traditional warnings is also discussed (sirens
are usually associated with danger, and horns with mechanical failures). The
retention of auditory signals is usually limited to 4 to 7 items that can be ac-
quired quickly, while going beyond is hard. In order to ease the recalls, it is
important to design the temporal pattern accurately. Moreover, there is a sub-
stantial difference in discriminating signals in absolute or relative terms. In the
tinal part of their introductory chapter, Stanton and Edworthy focus on their
own work on the classification of alarm-related behaviours, especially Alarm-
Initiated Activities (AIA) in routine events (where ready-made responses are
adequate) and critical events (where deductive reasoning is needed). In the
end, designing good warnings means balancing between attention-getting
quality of sound and impact on routine performance of operators.

In the same book, the chapter “Auditory warning affordances” (Stanton
and J.Edworthy, [1999b) is one of the early systematic investigations on the use
of “ecological” stimuli as auditory warnings. The expectation is that sounds
that are representative of the event to which they are alarming would be more
easily learnt and retained. By using evocative sounds, auditory warnings
should express a potential for action: for instance, sound from a syringe pump
should confer the notion of replacing the drug. Here, a methodology for
designing “ecological” auditory warnings is given, and it unrolls through the
phases of highlighting a reference function, finding or generating appropriate
sounds, ranking the sounds for appropriateness, evaluating properties in terms
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of learning and confusion, mapping urgency onto sounds. A study aimed at
testing the theory of auditory affordances is conducted by means of nomic
(heartbeat for ECG monitor), symbolic (nursery chime for infant warmer), or
metaphoric (bubbles for syringe pump) sound associations. Some results are
that:

e Learned mappings are not easy to override;

e There is a general resistance to radical departures in alarm design prac-

tice;

e Suitability of a sound is easily outweighed by lack of identifiability of an

alarm function.

However, for affordances that are learnt through long-time practice, perfor-
mance can still be poor if an abstract sound is chosen. As a final remark for
further research, the authors recommend to get the end users involved when
designing new alarms. This is a call for more participatory design practices
that should apply to auditory interface components in general, and not only

to warnings.

If one considers a few decades of research in human-machine interfaces,
the cockpit is one of the most extensively studied environments, even from
an acoustic viewpoint. It is populated by alarms, speech communications,
and it is reached by “natural” sounds, here intended as produced by system
processes or events, such as mechanical failures. In the framework of the func-
tional sounds of auditory warning affordances, Ballasl (1999) proposes five
linguistic functions used to analyze the references to noise in accident briefs:
exclamation, deixis (directing attention), simile (interpretation of an unseen
process), metaphor (referring to another type of sound-producing event), and
onomatopoeia. To see how certain acoustic properties of the sounds affect the
identification of brief sound phenomena, an acoustic analysis was performed
on a set of 41 everyday sounds. A factor related to perceptual performance
turned out to be the union of (i) harmonics in continuous sounds or (ii) similar
spectral patterns in bursts of non-continuous sounds. This union is termed Hy
and it describes a form of spectral/temporal entropy. The author notices that
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the warning design principles prescribe similar spectral patterns in repeated
bursts, a property similar to Hy. An innovative point of this paper is that
counting the pulses can give a hint for identification performance. Experimen-
tal results give some evidence that the repetition of a component improves
identification, whereas the aggregation of different components impairs iden-
tification. In the last section, the chapter describes the work of E. Guyot, who
investigated the relationship between cognition and perception in categori-
sation of everyday sounds. She suggested three levels for the categorisation
(abstraction) process:

1. Type of excitation;
2. Movement producing the acoustic pattern;

3. Event identification.

Her work is related with the work of [Schafer (1994)), (Gaver (1993b)), and [Ballas
(1993). In particular, Ballas” perceptual and cognitive clustering of 41 sounds
resulted in the categories:

e Water-related;
e Signalling and danger-related;
e Doors and modulated noises;

e Two or more transient components.

Finally, Ballas” chapter provides a connection with the soundscape studies of
ecological acousticians (see also Section [10.7.3)).

Special cases of warnings are found where it is necessary to alert many
people simultaneously. Sometimes, these people are geographically spread,
and new criteria for designing auditory displays come into play. InlAvanzini
et al.| (2004) the authors face the problem of a system alert for the town of
Venice, periodically flooded by the so-called “acqua alta”, i.e. the high tide
that covers most of the town with 10-40 cm of water. For more than three
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decades, a system of eight electromechanical and omnidirectional sirens have
been providing an alert system for the whole historic town.

A study of the distribution of the signal levels throughout the town was
tirst performed. A noise map of the current alert system used in Venice was
realised by means of a technique that extracts building and terrain data from
digital city maps in ArcView format with reasonable confidence and limited
user intervention. Then a sound pressure level map was obtained by import-
ing the ArcView data into SoundPLAN, an integrated software package for
noise pollution simulations. This software is mainly based on a ray tracing
approach. The result of the analysis was a significantly non-uniform distribu-
tion of the SPL throughout the town. One of the goals of this work is, thus,
the redefinition and optimisation of the distribution of the loudspeakers. The
authors considered a Constraint Logic Programming (CLP) approach to the
problem. CLP is particularly effective for solving combinatorial minimisation
problems. Various criteria were considered in proposing new emission points.
For instance, the aforementioned Patterson’s recommendations require that
the acoustic stimulus must be about 15 dB above the background noise to be
clearly perceived. Also, installation and maintenance costs make it impractical
to install more than 12 loudspeakers in the city area. By taking into account
all of these factors, a much more effective distribution of the SPL of the alert
signals was achieved. The second main issue of this work is the sound design
of the alert signals. In this sense the key questions here considered are:

e How to provide information not only about the arrival of the tide but
also about the magnitude of the phenomenon;

e How to design an alert sound system that would not need any listening-
training, but only verbal/textual instructions.

Venice being a tourist town, this latter point is particularly important. It
would mean that any person should intuitively understand what is going on,
not only local people. The choices of the authors went towards abstract sig-
nals, i.e. earcons, structured as a couple of signals, according to the concept of
“attenson” (attention-getting sounds). The two sound stages specify the rising
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of the tide and the tide level, respectively. Also, the stimulus must be notice-
able without being threatening. The criteria for designing sounds providing
different urgency levels were the variation of the fundamental frequency, the
sound inharmonicity and the temporal patterns.

The validation of the model concludes the paper. The subjects did not
receive any training but only verbal instructions. The alert signal proved
to be effective, and no difference between Venetians and non-Venetians was
detected. In conclusion, a rich alert model for a very specific situation and for a
particular purpose was successfully designed and validated. The model takes
into account a number of factors ranging from the topography and architecture
of Venice, to the need of culturally non-biased alert signal definition, as well as
to the definition of articulated signals able to convey the gravity of the event

in an intuitive way.

10.3 Earcons

Blattner, Sumikawa and Greenberg introduced the concept of earcons (Blattner
etal.,[1989), defining them as “non-verbal audio messages that are used in com-
puter/user interfaces to provide information to the user about some computer
object, operation or interaction”. These messages are called motives, “brief
succession of pitches arranged in such a way as to produce a tonal pattern suf-
ficiently distinct to allow it to function as an individual recognisable entity”.
Earcons must be learned, since there is no intuitive link between the sound
and what it represents: the earcons are abstract/musical signals as opposed
to auditory icons (Gaver, 1993a), where natural/everyday sounds are used in
order to build auditory interfaces (see Section [10.4).

In 1998, Brewster presented a new structured approach to auditory
display defining composing rules and a hierarchical organisation of musical
parameters (timbre, thythm, register, etc.), in order to represent hierarchical
organisations of computer files and folders (Brewster, 1998). Typical appli-
cations of this work are telephone-based interfaces (TBls), where navigation
is a problem because the visual display is small or absent. As already men-
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tioned, the main idea is to define a set of sound-design/composing rules for
very simple “musical atoms”, the earcons, with the characteristics of being
easily distinguishable one from the other.

The three experiments described in the paper explore different aspects
of the earcons. The first one is more “abstract” and aims at defining easily
recognisable and distinguishable earcons. The second one addresses the very
concrete problem of lo-fi situations, where monophony of signals and a limited
bandwidth are strong limitations. In the same experiment the fundamental
aspect of “musical memory” is considered: the navigation test was carried
out right after the training and repeated after one week. As far as retention
is concerned, very good results were achieved: there was no significant dif-
tference between the performances right after the training and after one week.
On the contrary, in some cases the listeners were even more skilled in rec-
ognizing the earcons one week later than immediately after the training. An
interesting feedback coming from the experiments was that the listeners de-
veloped mnemonic strategies based on the identification of the earcons with
something external as, for example, geometric shapes (triangles and so on).
This could be a good cue for earcon sound design. The third experiment is
a bit more artificial: the idea is to identify a sound (timbre+ register) with
numbers and to represent hierarchies in a book-like style (chapter, sections,
subsections) by means of “sounding numbers”. In general, these experiments
show how problematic the design of earcons is, when many hierarchical levels
are involved or when many items are present: one needs to think about very
articulated or even polyphonic earcons, challenging the listening skills of the
user. In any case, situations which do not present very complex navigation
requirements (as in the case of TBI applications), can build upon earcons a
robust and extensible method for representing hierarchies.

The work presented in a recent paper by McGookin and Brewster|(2004)
faces the problem of concurrent earcon presentation. Before tackling the prob-
lem, the paper provides a very good three-page survey about auditory display,
sonification, auditory icons and earcons. The main concepts about auditory
scene analysis are then presented, since they provide useful guidelines for
designing more robust earcons. Two experiments are illustrated, which are
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also exemplary for their use of statistical analysis and workload measures. In
the first experiment, the goal is to see how recognition of earcons and their
parameters gets worse as the number of concurrent earcons is increased. In the
second experiment, new design solutions are tested in their ability to increase
the earcon robustness against concurrent presentation. It turns out that using
multiple timbres or staggering the onsets will improve attribute identification.
As a practical final result of the experiments, four guidelines for designing
robust concurrent earcons are given.

10.4 Auditory icons

Another concept has been introduced in the nineties by Bill Gaverl (1993b)ic)
as an earcon counterpart: auditory icons. The basic idea is to use natural and
everyday sounds to represent actions and sounds within an interface. The two
papers by Gaver can be considered as a foundation for later works on everyday
listening: the author presents a fundamental aspect of our way of perceiving
the surrounding environment by means of the auditory system. Trying to
reply to the question “what do we hear in the world?” (Gaver, 1993b), a first
and most relevant consideration emerges: a lot of research efforts were and
are devoted to